[1] LIU D X, WANG H Y, ZHENG D W, et al. World progress of oil shale in-situ exploitation methods[J]. Nat Gas Ind, 2009, 29(5):128-132. 刘德勋, 王红岩, 郑德温, 等. 世界油页岩原位开采技术进展[J]. 天然气工业, 2009, 29(5):128-132. [2] KANG Z Q, YANG D, ZHAO Y S, et al. Thermal cracking and corresponding permeability of Fushun oil shale[J]. Oil Shale, 2011, 28(2):273-283. [3] LIU Z J, YANG D, HU Y Q, et al. Influence of in situ pyrolysis on the evolution of pore structure of oil shale[J]. Energies, 2018, 11(4):755. [4] DONG F K, YANG D, FENG Z J. Permeability evolution of jimsar oil shale under high temperature and triaxial stresses[J]. Coal Technology, 2017, 36(8):165-166. 董付科, 杨栋, 冯子军. 高温三轴应力下吉木萨尔油页岩渗透率演化规律[J]. 煤炭技术, 2017, 36(8):165-166. [5] YANG D, XUE J X, KANG Z Q, et al. Dry distillation and seepage experiments of Fushun oil shale[J]. Journal of Xi'an Shiyou University (Natural Edition), 2007, 22(2):23-25. 杨栋, 薛晋霞, 康志勤, 等. 抚顺油页岩干馏渗透实验研究[J]. 西安石油大学学报(自然科学版), 2007, 22(2):23-25. [6] LIU Z H, YANG D, XUE J X, et al. Experimental study on seepage law of distilied oil shale[J]. Journal of Taiyuan University of Technology, 2006, 37(4):414-416. 刘中华, 杨栋, 薛晋霞, 等. 干馏后油页岩渗透规律的实验研究[J]. 太原理工大学学报, 2006, 37(4):414-416. [7] KANG Z Q, WANG W, CAO W, et al. Experimental study of permeating law of oil shale under in-situ process[J]. Journal of Taiyuan University of Technology, 2013, 44(6):768-770. 康志勤, 王玮, 曹伟, 等. 原位开采背景下油页岩渗透规律的研究[J]. 太原理工大学学报, 2013, 44(6):768-770. [8] LI J, TANG D Z, XUE H Q, et al. Discission of oil shale in-situ conversion process in china[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2014, 36(1):58-64. 李隽, 汤达祯, 薛华庆, 等. 中国油页岩原位开采可行性初探[J]. 西南石油大学学报, 2014, (1):58-64. [9] GENG Y D, LIANG W G, LIU J, et al. Evolution of pore and fracture structure of oil shale under high temperature and high pressure[J]. Energ Fuel, 2017, 31(10):10404-10413. [10] YANG L S, YANG D, ZHAO J, et al. Changes of oil shale pore structure and permeability at different temperatures[J]. Oil Shale, 2016, 33(2):101-110. [11] KANG Z Q, WANG W, ZHAO Y S, et al. Three-dimensional percolation mechanism in oil shale under different temperatures based on micro-CT[J]. Chin J Rock Mech Eng, 2014, 33(9):1837-1842. 康志勤, 王玮, 赵阳升, 等. 基于显微CT技术的不同温度下油页岩孔隙结构三维逾渗规律研究[J]. 岩石力学与工程学报, 2014, 33(9):1837-1842. [12] KANG Z Q, ZHAO J, YANG D, et al. Study of the evolution of micron-scale pore structure in oil shale at different temperatures[J]. Oil Shale, 2017, 34(1):42. [13] LIU T Y, XIAO L Z, FU R S, et al. Applications and characterization of NMR relaxation derived from sphere-capillary model[J]. Chin J Geophys, 2004, 47(4):663-671. 刘堂晏, 肖立志, 傅容珊, 等. 球管孔隙模型的核磁共振(NMR)弛豫特征及应用[J]. 地球物理学报, 2004, 47(4):663-671. [14] ZHOU Y, WEI G Q, GUO H S. Impact factors analysis and decision tree correction of NMR porosity measurements[J]. Well Logging Technology, 2011,35(3):210-214. 周宇, 魏国齐, 郭和坤. 核磁共振孔隙度影响因素分析与校准[J]. 测井技术, 2011, 35(3):210-214. [15] DENG F, XIAO L Z, TAO Y, et al. Low-field and on-line NMR detection for fluid molecular structure[J]. Chinese J Magn Reson, 2017, 34(2):214-222. 邓峰, 肖立志, 陶冶, 等. 低场核磁共振流体分子结构在线探测技术[J]. 波谱学杂志, 2017, 34(02):214-222. [16] HE Y D, MAO Z Q, XIAO L Z, et al. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chin J Geophys, 2005, 48(2):373-378. 何雨丹, 毛志强, 肖立志, 等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报, 2005, 48(2):373-378. [17] SI-MA L Q, ZHAO H, DAI S H. Analysis of adaptability of application of NMR logging in igneous rock reservoirs[J]. Progress in Geophysics, 2012, 27(1):145-152. 司马立强, 赵辉, 戴诗华. 核磁共振测井在火成岩地层应用的适应性分析[J]. 地球物理学进展, 2012, 27(1):145-152. [18] ZHAO P Q, SUN Z C, LUO X P, et al. Study on the response mechanisms of nuclear magnetic resonance (NMR) log in tight oil reservoirs[J]. Chin J Geophys, 2016, 59(5):1927-1937. 赵培强, 孙中春, 罗兴平, 等. 致密油储层核磁共振测井响应机理研究[J]. 地球物理学报, 2016, 59(5):1927-1937. [19] TANG J P, PAN Y S, ZHANG Z G. NMRI research on storage and transport of coalbed methane[J]. Journal of Liaoning Technical University, 2005, 24(5):674-676. 唐巨鹏, 潘一山, 张佐刚. 煤层气赋存和运移规律的NMRI研究[J]. 辽宁工程技术大学学报, 2005, 24(5):674-676. [20] YANG Z M, XIAN B A, JIANG H Q, et al. The experimental study on coalbed gas reservoir using nuclear magnetic resonance technique[J]. China Coalbed Methane, 2009, 6(4):20-23. 杨正明, 鲜保安, 姜汉桥, 等. 煤层气藏核磁共振技术实验研究[J]. 中国煤层气, 2009, 6(4):20-23. [21] CAI Y D, LIU D M, PAN Z J, et al. Petrophysical characterization of chinese coal cores with heat treatment by nuclear magnetic resonance[J]. Fuel, 2013, 108(11):292-302. [22] YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of adsorption-pores of coals from north China:An investigation on CH4 adsorption capacity of coals[J]. Int J Coal Geol, 2008, 73(1):27-42. [23] YAO Y B, LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95(1):52-158. [24] HINAI A A, REZAEE R, ESTEBAN L, et al. Comparisons of pore size distribution:A case from the western Australian gas shale formations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8:1-13. [25] LI J J, YIN J X, ZHANG Y N, et al. A comparison of experimental methods for describing shale pore features-A case study in the Bohai Bay Basin of eastern China[J]. Int J Coal Geol, 2015, 152:39-49. [26] SAIDIAN M, GODINEZ L J, RIVERA S, et al. Porosity and pore size distribution in mudrocks:A comparative study for Haynesville, Niobrara, Monterey, and Eastern European Silurian formations[C]//Colorado:Unconventional Resources Technology Conference, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2014:1226-1243. [27] LI G Y, MA Z L, ZHENG J C, et al. NMR analysis of the physical change of oil shales during in situ pyrolysis at different temperatures[J]. Petroleum Geology & Experiment, 2016, 38(3):402-406. 李广友, 马中良, 郑家锡, 等. 油页岩不同温度原位热解物性变化核磁共振分析[J]. 石油实验地质, 2016, 38(3):402-406. [28] KAUSIK R, FELLAH K, RYLANDER E, et al. NMR Petrophysics for tight oil shale enabled by core resaturation[C]//International Symposium of the Society of Core Analysts. 2014:3. [29] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7):1371-1380. [30] LI S, TANG D, PAN Z, et al. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance[J]. Fuel, 2013, 111(3):746-754. [31] HAO J Q, GU Z J, ZHOU J G, et al. The relationship of rheology of magnetite rock with anisotropy of magnetic susceptibilility[J]. Chin J Geophys, 1999, 42(1):112-119. 郝锦绮, 顾芷娟, 周建国, 等. 磁铁矿岩的流变与磁化率各向异性[J]. 地球物理学报, 1999, 42(1):112-119. [32] LIU Z C, CHENG Q, LIU N G, et al. NMR on-line measurement of stress sensitivity of tight matrix limestone cores in a karstic reservoir[J]. Chinese J Magn Reson, 2017, 34(2):206-213. 刘中春, 程倩, 刘乃贵, 等. 缝洞型油藏致密基质灰岩的压力敏感性规律的NMR研究[J]. 波谱学杂志, 2017, 34(2):206-213. [33] ZHOU S W, XUE H Q, GUO W, et al. Measuring movable oil saturation in reservoirs with low-field NMR technology[J]. Chinese J Magn Reson, 2015, 32(3):489-498. 周尚文, 薛华庆, 郭伟, 等. 基于低场核磁共振技术的储层可动油饱和度测试新方法[J]. 波谱学杂志, 2015, 32(03):489-498. [34] OU-YANG Z Q, LIU D M, CAI Y D, et al. Investigating the fractal characteristics of pore-fractures in bituminous coals and anthracites through fluid flow behavior[J]. Energy & Fuels, 2016, 30(12):10348-10357. [35] KENYON W E. Petrophysical principles of applications of NMR logging[J]. Log Analyst, 1997, 38(2):21-40. [36] RAMIA M E, MARTIN C A. Sedimentary rock porosity studied by electromagnetic techniques:nuclear magnetic resonance and dielectric permittivity[J]. Appl Phys A-Mater, 2015, 118(2):769-777. [37] LIU Z J, YANG D, HU Y Q, et al. Low temperature nitrogen adsorption analysis of pore structure evolution in in-situ pyrolysis of oil shale[J]. Journal of Xi'an University of Science and Technology, 2018, 38(5):737-742. 刘志军, 杨栋, 胡耀青, 等. 油页岩原位热解孔隙结构演化的低温氮吸附分析[J]. 西安科技大学学报, 2018, 38(5):737-742. [38] 姚艳斌, 刘大锰. 煤储层精细定量表征与综合评价模型[M]. 武汉:地质出版社, 2013. [39] 赵静. 高温及三维应力下油页岩细观特征及力学特性试验研究[D]. 太原:太原理工大学, 2014. |