[1] Reichenbach J R, Venkatesan R, Schillinger D J, et al. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent[J]. Radiology, 1997, 204(1): 272-277. [2] Haacke E M, Xu Y B, Cheng Y C N, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med, 2004, 52(3): 612-618. [3] Li L, Leigh J S. Quantifying arbitrary magnetic susceptibility distributions with MR[J]. Magn Reson Med, 2004, 51(5): 1 077-1 082. [4] Port J D, Pomper M G. Quantification and minimization of magnetic susceptibility artifacts on GRE images[J]. J Comput Assist Tomogr, 2000, 24(6): 958-964. [5] Salomir R, De Senneville B D, Moonen C T W. A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility[J]. Concepts Magn Reson Part B- Magn Reson Eng, 2003, 19B(1): 26-34. [6] Liu C L. Susceptibility Tensor Imaging[J]. Magn Reson Med, 2010, 63(6): 1 471-1 477. [7] de Rochefort L, Brown R, Prince M R, et al. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field[J]. Magn Reson Med, 2008, 60(4): 1 003-1 009. [8] de Rochefort L, Nguyen T, Brown R, et al. In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI[J]. Med Phys, 2008, 35(12): 5 328-5 339. [9] Liu T A, Spincemaille P, de Rochefort L, et al. Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields[J]. Magn Reson Imaging, 2010, 28(9): 1 383-1 389. [10] Li W, Wu B, Liu C L. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J]. Neuroimage, 2011, 55(4): 1 645-1 656. [11] Wu B, Li W, Guidon A, et al. Whole brain susceptibility mapping using compressed sensing[J]. Magn Reson Med, 2012, 67(1): 137-147. [12] Shmueli K, de Zwart J A, van Gelderen P, et al. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data[J]. Magn Reson Med, 2009, 62(6): 1 510-1 522. [13] Haacke E M, Tang J, Neelavalli J, et al. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation[J]. J Magn Reson Imaging, 2010, 32(3): 663-676. [14] Liu T, Liu J, de Rochefort L, et al. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging[J]. Magn Reson Med, 2011, 66(3): 777-783. [15] Liu T, Spincemaille P, de Rochefort L, et al. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI[J]. Magn Reson Med, 2009, 61(1): 196-204. [16] Schweser F, Deistung A, Lehr B W, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism[J]. Neuroimage, 2011, 54(4): 2 789-2 807. [17] Wharton S, Schafer A, Bowtell R. Susceptibility mapping in the human brain using threshold-based k-space division[J]. Magn Reson Med, 2010, 63(5): 1 292-1 304. [18] Wharton S, Bowtell R. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods[J]. Neuroimage, 2010, 53(2): 515-525. [19] de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[J]. Magn Reson Med, 2010, 63(1): 194-206. [20] Liu T, Khalidov I, de Rochefort L, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF)[J]. NMR Biomed, 2011, 24(9): 1 129-1 136. [21] Li L. Magnetic susceptibility quantification for arbitrarily shaped objects in inhomogeneous fields[J]. Magn Reson Med, 2001, 46(5): 907-916. [22] Li L, Leigh J S. High-precision mapping of the magnetic field utilizing the harmonic function mean value property[J]. J Magn Reson, 2001, 148(2): 442-448. [23] Bilgic B, Pfefferbaum A, Rohlfing T, et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J]. Neuroimage, 2012, 59(3): 2 625-2 635. [24] Chen Hua-li(陈华莉), Zhang Xiu-cheng(张秀成), Xi Wei(奚伟), et al. Spike noise removal for magnetic resonance imaging based on the information in the background region(基于背景信息的磁共振成像尖峰噪声消除)[J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(4): 537-545. [25] Yan Xu(严序), Zhou Min-xiong(周敏雄), Xu Ling(徐凌), et al. An edge enhancing scheme for non-local means denoised MR images(用于MR 图像非局域均值去噪的边缘增强策略)[J]. Chinese J Magn Reson(波谱学杂志), 2013, 30(2): 183-193. [26] Rauscher A, Sedlacik J, Barth M, et al. Magnetic susceptibility-weighted MR phase imaging of the human brain[J]. Am J Neurora diol, 2005, 26(4): 736-742. [27] Paige C C, Saunders M A. LSQR - an algorithm for sparse linear-equations and sparse least-squares[J]. Acm Trans Math Softw, 1982, 8(1): 43-71. [28] Bitsch A, Schuchardt J, Bunkowski S, et al. Acute axonal injury in multiple sclerosis - correlation with demyelination and inflammation[J]. Brain, 2000, 123: 1 174-1 183. [29] Fukunaga M, Li T Q, van Gelderen P, et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast[J]. Proc Natl Acad Sci USA, 2010, 107(8): 3 834-3 839. [30] Haacke E M, Ayaz M, Khan A, et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain[J]. J Magn Reson Imaging, 2007, 26(2): 256-264. [31] Liu C L, Li W, Johnson G A, et al. High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility[J]. Neuroimage, 2011, 56(3): 930-938. [32] Lee J, Shmueli K, Fukunaga M, et al. Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure[J]. Proc Natl Acad Sci USA, 2010, 107(11): 5 130-5 135. [33] Haacke E M, Chengb N Y C, House M J, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005, 23(1): 1-25. |