[1] PIEVANI M, HAAN W D, WU T, et al. Functional network disruption in the degenerative dementias[J]. The Lancet Neurology, 2011, 10(9):829-843. [2] SUN J W, YAN S J, HAN Y S, et al. Classifying the course of Alzheimer's disease with brain MR images and a method based on three-dimensional local pattern transformation[J]. Chinese J Magn Reson, 2019, 36(3):268-277.孙京文,闫士举,韩勇森,等.基于脑部磁共振图像三维局部模式变换特征提取进行阿尔茨海默病病程预测分类[J].波谱学杂志, 2019, 36(3):268-277. [3] HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity:promise, issues, and interpretations[J]. Neuroimage, 2013, 80:360-378. [4] CALHOUN V D, ADALI T. Time-varying brain connectivity in fMRI data:whole-brain data-driven approaches for capturing and characterizing dynamic states[J]. IEEE Signal Proc Mag, 2016, 33(3):52-66. [5] PRETI M G, BOLTON T A W, VAN DE VILLE D. The dynamic functional connectome:State-of-the-art and perspectives[J]. Neuroimage, 2017, 160:41-54. [6] SHEN K, HUTCHISON R M, BEZGIN G, et al. Network structure shapes spontaneous functional connectivity dynamics[J]. J Neurosci, 2015, 35(14):5579-5588. [7] WANG J H, ZUO X N, DAI Z J, et al. Disrupted functional brain connectome in individuals at risk for Alzheimer's disease[J]. Biol Psychia, 2013, 73(5):472-481. [8] SCHUMACHER J, PERAZA L R, FIRBANK M, et al. Dynamic functional connectivity changes in dementia with Lewy bodies and Alzheimer's disease[J]. NeuroImage Clin, 2019, 22:101812. [9] DE VOS F, KOINI M, SCHOUTEN T M, et al. A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease[J]. Neuroimage, 2017, 167:62-72. [10] KUANG L Q, HAN X, CHEN K W, et al. A concise and persistent feature to study brain resting-state network dynamics:Findings from the Alzheimer's Disease Neuroimaging Initiative[J]. Hum Brain Mapp, 2019, 40(4):1062-1081. [11] 况立群.持久同调与共形映射下三维点云的特征表示研究[D].太原:中北大学, 2018. [12] KUANG L Q, LI L, XING J C, et al. 3D model retrieval method based on persistent homology[J]. Computer Engineering and Design, 2020, 41(6):1773-1778.况立群,李丽,幸嘉诚,等.基于持久同调的三维模型检索方法[J].计算机工程与设计, 2020, 41(6):1773-1778. [13] PENNY W D, FRISTON K J, ASHBURNER J T, et al. Statistical parametric mapping:the analysis of functional brain images[M]. Elsevier, 2011. [14] YAN C G, ZANG Y F. DPARSF:a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI[J]. Front Syst Neurosci, 2010, 4:13. [15] FOX M D, ZHANG D, SNYDER A Z, et al. The global signal and observed anticorrelated resting state brain networks[J]. J Neurophysiol, 2009, 101(6):3270-3283. [16] ZHUO Z Z, MO X, MA X Y, et al. Identifying aMCI with functional connectivity network characteristics based on subtle AAL atlas[J]. Brain Res, 2018, 1696:81-90. [17] KHAZAEE A, EBRAHIMZADEH A, BABAJANI-FEREMI A. Application of pattern recognition and graph theoretical approaches to analysis of brain network in Alzheimer's disease[J]. J Med Imag Health In, 2015, 5(6):1145-1155. [18] TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1):273-289. [19] CHOI H, KIM Y K, KANG H, et al. Abnormal metabolic connectivity in the pilocarpine-induced epilepsy rat model:a multiscale network analysis based on persistent homology.[J]. Neuroimage, 2014, 99:226-236. [20] LEE H, KANG H, CHUNG M K, et al. Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology[J]. Hum Brain Mapp, 2017, 38(3):1387-1402. [21] WANG J J, WANG Y, HUANG H Y, et al. Abnormal intrinsic brain functional network dynamics in unmedicated depressed bipolar II disorder[J]. J Affect Disorders, 2019, 253:402-409. [22] PRETI M G, BOLTON T A W, VAN DE VILLE D. The dynamic functional connectome:State-of-the-art and perspectives[J]. Neuroimage, 2017, 160:41-54. [23] SMITH S M, NICHOLS T E. Threshold-free cluster enhancement:addressing problems of smoothing, threshold dependence and localisation in cluster inference[J]. Neuroimage, 2009, 44(1):83-98. [24] RUBINOV M, SPORNS O. Complex network measures of brain connectivity:uses and interpretations[J]. Neuroimage, 2010, 52(3):1059-1069. [25] CHUNG M K, HANSON J L, YE J P, et al. Persistent homology in sparse regression and its application to brain morphometry[J]. IEEE T Med Imaging, 2015, 34(9):1928-1939. [26] LIAO W, WU G R, XU Q, et al. DynamicBC:a MATLAB toolbox for dynamic brain connectome analysis[J]. Brain Connect, 2014, 4(10):780-790. [27] KUANG L Q, JIA J Y, ZHAO D Y, et al. Default mode network analysis of APOE genotype in cognitively unimpaired subjects based on persistent homology[J]. Front Aging Neurosci, 2020, 12:188. [28] LIU K W, LIU Z L, WANG X Y, et al. Prostate cancer diagnosis based on cascaded convolutional neural networks[J]. Chinese J Magn Reson, 2020, 37(2):152-161.刘可文,刘紫龙,汪香玉,等.基于级联卷积神经网络的前列腺磁共振图像分类[J].波谱学杂志, 2020, 37(2):152-161. |