[1] NIU L, ZHOU X M, DUAN C F, et al. Differentiation researches on the meningioma subtypes by radiomics from contrast enhanced MRI, a preliminary study[J]. World Neurosurg, 2019, 126:e646-e652. [2] YE D S, XU S H, HUANG Y C, et al. MRI diagnostic value of cerebellopontine angle tumors[J]. Chinese and Foreign Medical Research, 2017, 15(1):50-51.叶德湫,许淑惠,黄永础,等.桥小脑角区肿瘤的MRI诊断价值[J].中外医学研究, 2017, 15(1):50-51. [3] MA Y, GUO H, WANG Q S, et al. Correlations between morphological characteristics and expression levels of specific molecular biomarkers in glioblastoma[J]. Chinese J Magn Reson, 2018, 35(1):22-30.马芸,郭虹,王秋实,等.基于影像的形态学特征与胶质母细胞瘤特征分子表达的相关性研究[J].波谱学杂志, 2018, 35(1):22-30. [4] ZHANG Q. CT and MRI imaging analysis of occupying lesions in the cerebellar horn region[J]. Journal of Medical Imaging, 2019, 29(6):913-916.张芹.桥小脑角区占位性病变CT和MRI影像学分析[J].医学影像学杂志, 2019, 29(6):913-916. [5] MA Y T, CHEN X Y, TIAN G S, et al. MRI characteristics of space-occupying lesions in the cerebellopontine angle region[J]. Chinese Clinical Research, 2017, 30(6):838-840.马云涛,陈秀艳,田贵森,等.桥小脑角区占位性病变核磁共振影像学特征[J].中国临床研究, 2017, 30(6):838-840. [6] ZHANG M, ZHANG H Q. The application of MRI in the diagnosis of cerebellopontine angle tumor patients and its clinical value analysis[J]. China Medical Innovation, 2018, 15(34):25-29.张敏,张海青. MRI在桥小脑角区肿瘤患者病情诊断中的应用及其临床价值分析[J].中国医学创新, 2018, 15(34):25-29. [7] XU N N, GE Y R, WANG J Y. Medical image recognition of brain MRI based on NSCT and SVM[J]. Modern Electronic Technology, 2014, 37(12):63-66+69.徐楠楠,葛玉荣,王佳奕.基于NSCT和SVM的脑MRI医学图像识别[J].现代电子技术, 2014, 37(12):63-66+69. [8] LAVANYADEVI R, MACHAKOWSALYA M, NIVETHITHA J, et al. Brain tumor classification and segmentation in MRI images using PNN[C]. IEEE International Conference on Electrical. IEEE, 2017. [9] LI Z N, DONG M H, WEN S P, et al. CLU-CNNs:Object detection for medical images[J]. Neurocomputing, 2019, 350:53-59. [10] YANG X, LIU C Y, WANG Z W, et al. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI[J]. Med Image Anal, 2017, 42:212-227. [11] FELDMAN A M, DAI Z, CARVER E, et al. Utilizing a deep learning-based object detection and instance segmentation algorithm for the delineation of prostate and prostate cancer segmentation[J]. Int J Radiat Oncol, 2019, 105(1):S197-S198. [12] OU P, LU K, ZHANG Z, et al. Object recognition and spatial localization based on Mask RCNN[J]. Computer Measurement & Control, 2019, 27(6):172-176.欧攀,路奎,张正,等.基于Mask RCNN的目标识别与空间定位[J].计算机测量与控制, 2019, 27(6):172-176. [13] ZHANG B, ZHOU J, WANG F, et al. Detection and recognition of touch screen glass defects based on Mask R-CNN[J]. Software Guide, 2019, 18(2):64-67, 71.张博,周军,王芳,等.基于Mask R-CNN的触摸屏玻璃疵病检测与识别[J].软件导刊, 2019, 18(2):64-67, 71. [14] WANG F, LU J D, SHEN G R, et al. Image segmentation of green apple based on CLAHE and open-close operation[J]. Computer Measurement and Control, 2017, 25(2):141-145.王帆,吕继东,申根荣,等.基于CLAHE和开闭运算的绿色苹果图像分割[J].计算机测量与控制, 2017, 25(2):141-145. [15] LI L, LI W J, WU Y Z. Underwater image enhancement algorithm based on red dark channel prior theory and CLAHE algorithm[J]. China Ship Research, 2019, 14(S1):175-182.李炼,李维嘉,吴耀中.基于红色暗通道先验理论与CLAHE算法的水下图像增强算法[J].中国舰船研究, 2019, 14(S1):175-182. [16] BAI T, PANG Y, WANG J C, et al. An optimized faster R-CNN method based on DRNet and ROI align for building detection in remote sensing images[J]. Remote Sens, 2020, 12(5):762. [17] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. Proceedings of the IEEE international conference on computer vision. 2017:2961-2969. [18] MALHOTR K R, DAVOUDI A, SIEGEL S, et al. Autonomous detection of disruptions in the intensive care unit using deep mask R-CNN[C]. IEEE/CVF Conference on Computer Vision & Pattern Recognition Workshops. IEEE Computer Society, 2018. [19] REN Z J, YUN S Z, LI D W, et al. Mask R-CNN target detection method based on improved feature pyramid[J]. Laser & Optoelectronics Progress, 2019, 56(4):174-179.任之俊,蔺素珍,李大威,等.基于改进特征金字塔的Mask R-CNN目标检测方法[J].激光与光电子学进展, 2019, 56(4):174-179. [20] CHANG S, ZHANG F, HUANG S, et al. Siamese feature pyramid network for visual tracking[C]. 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). IEEE, 2019. [21] 黄泽桑.基于深度学习的目标检测技术研究[D].北京:北京邮电大学, 2019. [22] WANG H Z, ZHAO D, YANG L Q, et al. An approach for training data enrichment and batch labeling in AI+MRI aided diagnosis[J]. Chinese J Magn Reson, 2018, 35(4):50-59.汪红志,赵地,杨丽琴,等.基于AI+MRI的影像诊断的样本增广与批量标注方法[J].波谱学杂志, 2018, 35(4):50-59. |