[1] Yu Kai-chao(俞开潮), Wang Guo-ping(王国平), Ding Shang-wu(丁尚武), et al. Recent progress in the development of contrast agents used in magnetic resonance imaging(用于磁共振成像对比增强的造影剂研发进展)[J]. Chinese J Magn Reson(波谱学杂志), 2004, 21(4): 505-525.[2] Yang Li-qin(杨丽琴), Lin Fu-chun(林富春), Lei Hao(雷皓). Resting state functional connectivity in brain studies by fMRI approach(静息状态下脑功能连接的磁共振成像研究)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(3): 326-340.[3] Verma R, Zacharaki E I, Ou Y, et al. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images[J]. Acad Radiol, 2008, 15: 966-977.[4] Heiss W D, Raab P, Lanfermann H. Multimodality assessment of brain tumors and tumor recurrence[J]. J Nucl Med, 2011, 52(10): 1 585-1 600.[5] Baird A E, Warach S. Magnetic resonance imaging of acute stroke[J]. J Cereb Blood Flow Metab, 1998, 18: 583-609.[6] Wang Xiao-hong(王小红), Zhang Qin-ta(张钦塔), Lin Yan-qin(林雁勤), et al. Twodimensional localized magnetic resonance spectroscopy and its in vivo application(二维核磁共振定域谱及其在活体中的应用)\[J\]. Chinese J Magn Reson(波谱学杂志), 2011, 28(3): 419-436.[7] Wang Qian-feng(王前锋), Li Jian-qi(李建奇), Wu Dong-mei(吴东梅), et al. High-resolution diffusion-weighted imaging on small animals ona clinical 3 T MRI scanner(小动物高分辨扩散加权成像在临床MRI上的实现)[J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(3): 372-378.[8] Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression[J]. Nature Med, 2000, 6: 351-354.[9] Yu Kai-chao(俞开潮), Lv Zhi-yong(吕志勇), Yao Yao(姚遥), et al. Recent progress in development of bio-active MRI contrast agents(生物激活磁共振成像造影剂的研究进展)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(3): 355-368.[10] Hobbs S K, Shi G, Homer R, et al. Magnetic resonance imaging-guided proteomics of human glioblastoma multiforme[J]. J Magn Reson Imag, 2003, 18: 530-536.[11] Li J, Zhuang Z, Okamoto H, et al. Proteomic profiling distinguishes astrocytomas and identifies differential tumor markers[J]. Neurology, 2006, 66: 733-736.[12] Wolff S D, Balaban R S. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo[J\]. Magn Reson Med, 1989, 10: 135-144.[13] Behar K L, Ogino T. Assignment of resonances in the 1H spectrum of rat brain by two dimensional shift correlated and J-resolved NMR spectroscopy[J]. Magn Reson Med, 1991, 17: 285-303.[14] Behar K L, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain[J]. Magn Reson Med, 1993, 30: 38-44.[15] Kauppinen R A, Kokko H, Williams S R. Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification[J]. J Neurochem, 1992, 58: 967-974.[16] Pfeuffer J, Tkac I, Provencher S W, et al. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain[J]. J Magn Reson, 1999, 141: 104-120.[17] Wolff S D, Balaban R S. NMR imaging of labile proton exchange[J]. J Magn Reson, 1990, 86: 164-169.[18] Guivel-Scharen V, Sinnwell T, Wolff S D, et al. Detection of proton chemical exchange between metabolites and water in biological tissues[J]. J Magn Reson, 1998, 133: 36-45.[19] Ward K M, Aletras A H, Balaban R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143: 79-87.[20] Forsen S, Hoffman R A. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance[J]. J Chem Phys, 1963, 39: 2 892-2 901.[21] Zhou J, Payen J, Wilson D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nature Med, 2003, 9: 1 085-1 090.[22] Zhou J, van Zijl P C. Chemical exchange saturation transfer imaging and spectroscopy[J]. Progr NMR Spectr, 2006, 48: 109-136.[23] Aime S, Crich S G, Gianolio E, et al. High sensitivity lanthanide(III) based probes for MR-medical imaging[J]. Coord Chem Rev, 2006, 250: 1 562-1 579.[24] Sherry A D, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging[J]. Annu Rev Biomed Eng, 2008, 10: 391-411.[25] Goffeney N, Bulte J W M, Duyn J, et al. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange[J]. J Am Chem Soc, 2001, 123: 8 628-8 629.[26] Zhang S, Winter P, Wu K, et al. A novel europium(III)-based MRI contrast agent[J]. J Am Chem Soc, 2001, 123(7): 1 517-1 578.[27] Aime S, Barge A, Delli Castelli D, et al. Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications[J]. Magn Reson Med, 2002, 47: 639-648.[28] Schroder L, Lowery T J, Hilty C, et al. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor[J]. Science, 2006, 314: 446-449.[29] Vinogradov E, Zhang S, Lubag A, et al. On-resonance low B1 pulses for imaging of the effects of PARACEST agents[J]. J Magn Reson, 2005, 176: 54-63.[30] Zhang S, Zhu X, Chen Z, et al. Improvement in the contrast of CEST MRI via intermolecular double quantum coherences[J]. Phys Med Biol, 2008, 53: N287-N296.[31] Kogan F, Singh A, Cai K, et al. Investigation of chemical exchange at intermediate exchange rates using a combination of chemical exchange saturation transfer (CEST) and spin-locking methods (CESTrho)[J]. Magn Reson Med, 2012, 68(1): 107-119.[32] Jin T, Autio J, Obata T, et al. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons\[J\]. Magn Reson Med, 2011, 65(5): 1 448-1 460.[33] Ward K M, Balaban R S. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST)[J]. Magn Reson Med, 2000, 44: 799-802.[34] Dagher A P, Aletras A, Choyke P, et al. Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T[J]. J Magn Reson Imaging, 2000, 12: 745-748.[35] Aime S, Delli Castelli D, Fedeli F, et al. A paramagnetic MRI-CEST agent responsive to lactate concentration[J]. J Am Chem Soc, 2002, 124: 9 364-9 365.[36] Zhou J, Lal B, Wilson D A, et al. Amide proton transfer (APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50: 1 120-1 126.[37] Zhou J, Blakeley J O, Hua J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging\[J\]. Magn Reson Med, 2008, 60: 842-849.[38] Cai KJ, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate\[J\]. Nature Med, 2012, 18(2): 302-306.[39] Zhang S, Trokowski R, Sherry A D. A paramagnetic CEST agent for imaging glucose by MRI[J]. J Am Chem Soc, 2003, 125: 15 288-15 289.[40] van Zijl P C M, Jones C K, Ren J, et al. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST)[J]. Proc Natl Acad Sci (USA), 2007, 104: 4 359-4 364.[41] Ling W, Regatte R R, Navon G, et al. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-ependent saturation transfer (gagCEST)[J]. Proc Natl Acad Sci (USA), 2008, 105: 2 266-2 270.[42] Aime S, Carrera C, Delli Castelli D, et al. Tunable imaging of cells labelled with MRI-PARACEST agents[J]. Angew Chem Int Ed, 2005, 44: 1 813-1 815.[43] Yoo B, Pagel M D. A PARACEST MRI contrast agent to detect enzyme activity\[J\]. J Am Chem Soc, 2006, 128: 14 032-14 033.[44] Gilad A A, McMahon M T, Walczak P, et al. Artificial reporter gene providing MRI contrast based on proton exchange\[J\]. Nature Biot, 2007, 25: 217-219.[45] Wuthrich K. NMR of proteins and nucleic acids (2nd ed)[M]. New York: John Wiley & Sons, 1986.[46] Englander S W, Downer N W, Teitelbaum H. Hydrogen exchange\[J\]. Annu Rev Biochem, 1972, 41: 903-924.[47] Hua J, Jones C K, Blakeley J, et al. Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain[J]. Magn Reson Med, 2007, 58: 786-793.[48] Zhou J, Wilson D A, Sun P Z, et al. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments[J]. Magn Reson Med, 2004, 51: 945-952.[49] Kintner D B, Anderson M E, Sailor K A, et al. In vivo microdialysis of 2-deoxyglucose 6-phosphate into brain: a novel method for the measurement of interstitial pH using 31P NMR[J]. J Neurochem, 1999, 72: 405-412.[50] Griffiths J R. Are cancer cells acidic? [J]. Br J Cancer, 1991, 64: 425-427.[51] Sun P Z, Zhou J, Sun W, et al. Detection of the ischemic penumbra using pH-weighted MRI[J]. J Cereb Blood Flow Metab, 2007, 27: 1 129-1 136.[52] Jokivarsi K T, Grohn H I, Grohn O H, et al. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia[J]. Magn Reson Med, 2007, 57: 647-653.[53] Jokivarsi K T, Hiltunen Y, Tuunanen P I, et al. Correlating tissue outcome with quantitative multiparametric MRI of acute cerebral ischemia in rats[J]. J Cereb Blood Metab, 2010, 30: 415-427.[54] Wei Mao-bin(韦茂彬), Shen Zhi-wei(沈智威), Xiao Gang(肖刚), et al. Study of magnetic resonance imaging at 1.5 Tesla based on pH-sensitive magnetization transfer technology(基于pH值敏感的磁化传递技术在1.5 T磁共振成像上的研究)[J]. Chinese J Magn Reson Imag(磁共振成像), 2012, 3: 40-43.[55] Zhao X, Wen Z, Huang F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T[J]. Magn Reson Med, 2011, 66: 1 033-1 041.[56] Salhotra A, Lal B, Laterra J, et al. Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts[J]. NMR Biomed, 2008, 21: 489-497.[57] Jones C K, Schlosser M J, van Zijl P C, et al. Amide proton transfer imaging of human brain tumors at 3 T[J]. Magn Reson Med, 2006, 56: 585-592.[58] Wen Z, Hu S, Huang F, et al. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast[J]. Neuroimage, 2010, 51: 616-622.[59] Segall H D, Destian S, Nelson M D. CT and MR imaging in malignant gliomas. In: Apuzzo MLJ, editor. Malignant cerebral glioma[M]. Park Ridge, IL: American Association of Neurological Surgeons, 1990. 63-78.[60] Scott J N, Brasher P M, Sevick R J, et al. How often are nonenhancing supratentorial gliomas malignant? A population study[J]. Neurology, 2002, 59: 947-949.[61] Knopp E A, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T*2-weighted MR imaging[J]. Radiology, 1999, 211: 791-798.[62] Howe F A, Barton S J, Cudlip S A, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy[J]. Magn Reson Med, 2003, 49: 223-232.[63] Sun P Z, Murata Y, Lu J, et al. Relaxation-compensated fast multislice amide proton transfer (APT) imaging of acute ischemic stroke[J]. Magn Reson Med, 2008, 59: 1 175-1 182.[64] Zhu H, Jones C K, van Zijl P C M, et al. Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain[J]. Magn Reson Med, 2010, 64: 638-644.[65] Jones C K, Polders D, Hua J, et al. In vivo 3D whole-brain pulsed steady state chemical exchange saturation transfer at 7T [J]. Magn Reson Med, 2012, 67: 1 579-1 589.[66] Zhou J, Zhu H, Lim M, et al. Assessment of brain tumors at the protein level with amide proton transfer MRI[C]. Chicago: Proc 97th Ann Meeting RSNA, 2011, MSVN31-11.[67] Keupp J, Baltes C, Harvey P R, et al. Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain[C]. Montreal: Proc 19th Annual Meeting ISMRM, 2011, 710.[68] Wen P Y, Macdonald D R, Reardon D A, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group[J]. J Clin Oncol, 2010, 28: 1 963-1 972.[69] Kumar A J, Leeds N E, Fuller G N, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment[J]. Radiology, 2000, 217: 377-384.[70] Stupp R, Mason W P, van den Bent M J, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352: 987-996.[71] Brandes A A, Tosoni A, Spagnolli F, et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: Pitfalls in neurooncology[J]. NeuroOncology, 2008, 10: 361-367.[72]Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J]. Nature Med, 2011, 17: 130-134. |