[1] Lehn J M. Supramolecular chemistry[J]. Science, 1993, 260: 1 762-1 763.
[2] Lindsey J S. Self-assembly in synthetic routes to molecular devices-biological principles and chemical perspectives-a review[J]. New J Chem, 1991, 15: 153-180.
[3] Stoddart J F. in Host-Guest Molecular Interactions: From Chemistry to Biology[M]. Chichester: CIBA Foundation Symposium 158. Wiley; 1991, 5.
[4] Lu Q, Motekaitis R J, Reibenspies J J, et al. Molecular recognition by the protonated hexaaza macrocyclic ligand 3,6,9,16,19,22-hexaaza-27,28-dioxatricyclo [22.2.1.1(11,14)]octacosa-1(26),11,13,24-tetraene[J]. Inorg Chem, 1995, 34: 4 958-4 964.
[5] Sauvage J P, Mosseini M W. Comprehensive Supramolecular Chemistry[M]. Pergamon: U K, 1996, Vol.9, and the references therein.
[6] Kimizuka N, Kawasak T, Hirata K, et al. Supramolecular membranes. Spontaneous assembly of aqueous bilayer membrane via formation of hydrogen bonded pairs of melamine and cyanuric acid derivatives[J], J Am Chem Soc, 1998, 120: 4 094-4 104.
[7] Tadokoro M, Nakasuji K. Hydrogen bonded 2,2'-iimidazolate transition metal complexes as a tool of crystal engineering[J]. Coord Chem Rev, 2000, 198: 205-218.
[8] Bong D T, Ghadiri M R. Self-assembling cyclic peptide cylinders as nuclei for crystal engineering[J]. Angew Chem Int Ed Engl, 2001, 40: 2 163-2 166.
[9] Jeffrey G A. An Introduction to Hydrogen Bonding[M]. Oxford: Oxford University Press, 1997.
[10] Scheiner S. Hydrogen Bonding-A Theoretical Perspective[M]. Oxford: Oxford University Press, 1997.
[11] Liddel U, Ramsey N F. Temperature dependent magnetic shielding in ethylalcohol[J]. J Chem Phys, 1951, 19: 1 608-1 608.
[12] Etter M C, Reutzel S M, Vojta G M. Analysis of isotropic chemical-shift data from high-resolution solid-state nmr-studies of hydrogenbonded organic-compounds[J]. J Molec Struc, 1990, 237: 165-185.
[13] Delville A, Laszlo P, Stockis A. Cobalt-59 nmr as a sensitive probe into hydrophobic effects[J]. J Am Chem Soc, 1981, 103: 5 991-5 998.
[14] Eaton D R, Rogerson C V, Sandercock A C. Hydrogen-bonding involving the hexacyanocobaltate(iii) anion.1. Cobalt-59 nuclear magnetic-resonance studies[J]. J Phys Chem, 1982, 86: 1 365-1 371.
[15] Yamasaki A. Cobalt-59 nuclear-magnetic-resonance spectroscopy in coordination chemistry[J]. J Coord Chem, 1991, 24: 211-260.
[16] Zhou P, Au-Yeung S C F, Xu X P. A DFT and Co-59 solid-state NMR study of the second-sphere interaction in polyammonium macrocycles cobalt cyanide supercomplexes[J]. J Am Chem Soc, 1999, 121: 1 030-1 036.
[17] Harris R K. in Nuclear Magnetic Resonance Spectroscopy: A Physicochemical View[M]. Pitman: London, 1983.
[18] Peter F, Gross M, Hosseini M W, et al. Redox properties and stability-constants of anion complexes-an electrochemical study of the complexation of metal hexacyanide anions by polyammonium macrocyclic receptor molecules[J]. J Chem Soc, Chem Commun, 1981, 20: 1 067-1 069.
[19] Hosseini M W, Mertes P M L, Lehn J M. Synthesis and protonation features of 24-membered, 27-membered and 32-membered macrocyclic polyamines[J]. Helv Chim Acta, 1983, 66: 1 262-1 278.
[20] Zhou P, Xue F, Au-Yeung S C F, et al. Crystal structures of [18] aneN6H2K[Co(CN)6].4H2O, [16] aneN4H2K[Co(CN)6] and [12] aneN4H
3[Co(CN)6].2H2O. Insight into the electrostatic and hydrogen-bonding interaction in self-assembling supercomplexes[J]. Acta Cryst B, 1999, 55: 389-395.
[21] The elemental analysis for all the studied supramolecular complexes are reported as: [12] aneN4 [Co(CN)6], formula: C8H20N4H3[Co(CN)6]2H2O, found: C 39.29 %, H 6.34 %, N 32.74 %, calc.: C 39.41 %, H 6.40 %, N 32.86 %; [18] aneN6[Co(CN)6], formula: C-12-H-30N6H2K[Co(CN)6]4H2O, found: C 37.06 %, H 6.83 %, N 29.05 %, calc: C 36.85%, H 6.87%, N 28.65%; [24] aneN8[Co(CN)6], formula, C16H40N8H6K2 [Co(CN)6]2Cl26H2O, found, C 32.22 %, H 5.71 %, N 27.25 %, calc. C 32.59 %, H 5.65 %, N 27.15 %; [16] aneN4[Co(CN)6], formula, C12H28N4H2K[Co(CN)6], found, C 44.33 %, H 6.12 %, N 29.07 %, calc. C 44.63 %, H 6.20 %, N 28.93 %; [24]aneN6[Co(CN)6], formula, C18H42N6H6[Co(CN)6]25.5H2O, found, C 41.23 %, H 6.64 %, N 28.42 %, calc. C 41.05 %, H 6.72 %, N 28.73 %; [32] aneN8[Co(CN)6], formula, C24H56N8H8[Co(CN)6]2Cl26H2O, found, C 40.26 %, H 7.08 %, N26.10 %, calc. C 40.11 %, H 7.05 %, N 26.10%.
[22] Zhou P, Xue F, Au-Yeung S C F. Potassium hexacyanocobaltate, a redetermination[J]. Acta Cryst C, 1998, 54: IUC9800062.
[23] Chan C C, Au-Yeung S C F. Interpretation of Co-59 NMR shielding using the hard and soft acid-base concept-Insight into the relative magnitude of the nephelauxetic and the spectrochemical effect [J]. J Chem Soc, Faraday Trans, 1996, 92: 1 121-1 128.
[24] Laszlo P, Stockis A. Accurate and sensitive determination, by a new cobalt-59 nuclear magnetic resonance method, of electron acceptance and hydrogen bond donation by protic solvents[J]. J Am Chem Soc, 1980, 102: 7 818-7 820.
[25] Chan J C C, Au-Yeung S C F, Wilson P J, et al. SOS-DFPT-IGLO calculations of Co-59 NMR shielding parameters of hexacoordinated diamagnetic Co(Ⅲ) complexes[J]. J Mol Struct (ThoeChem), 1996, 365: 125-130.
[26] Hancock R D. Molecular mechanics calculations and metal-ion recognition[J]. Acc Chem Res, 1990, 23: 253-257.
[27] Manfrin M F, Moggi L, Caselvetro V, et al. Control of the photochemical reactivity of coordination-compounds by formation of supramolecular structures the case of the hexacyanocobaltate(iii) anion associated with polyammonium macrocyclic receptors[J]. J Am Chem Soc, 1985, 107: 6 888-6 892.
[28] Zhou P, Au-Yeung S C F. Determination of rotational reorientation correlation time and 59Co nuclear quadrupolar coupling constant of polyammonium macrocyclic cobalticyanide supercomplexes in dilute aqueous solutions—an application of dynamic laser light scattering method[J]. Chinese J Magn Res(波谱学杂志), 2003, 20(4): 319-328.
[29] Kodama M, Kimura E. Thermodynamic and kinetic effects of 12-membered macrocycles-polarographic studies of 1,4,7,10-tetraazacyclododecanecopper(Ⅱ)[J]. J Chem Soc Dalton, 1976, 2: 116-120.
[30] (a) Rablen P R, Lockman J W, Jorgensen W L. Ab initio study of hydrogen-bonded complexes of small organic molecules with water [J]. J Phys Chem A, 1998, 102: 3 782-3 797; (b) Kumar G A, McAllister M A. Characterization of low-barrier hydrogen bonds. 8. Substituent effects on the strength and geometry of the formic acid formate anion model system. An ab initio and DFT investigation[J]. J Am Chem Soc, 1998, 120: {3 159}-3 165.
[31] Craighead K L, Bryant G R. The insignificance of second coordination sphere interactions in cobalt-59 nuclear magnetic resonance relaxation[J]. J Phys Chem, 1975, 79: 1 602-1 603.
[32] Russell J G, Bryant R G. Nuclear magnetic-relaxation in symmetrical cobalt complexes-ion-pairing effects[J], J Phys Chem, 1984, 88: 4 298-4 302.
[33] Iida M, Nakamori T, Mizuno Y, Masuda Y. Appreciable effects of ion pairings on the Co-59 electricfield gradient in the NMR relaxation of [Co(CHXN)3]3+[J]. J Phys Chem, 1995, 99: 4 347-4 352.
[34] Kirby C W, Puranda C M, Power W P. Cobalt-59 Nuclear Magnetic Relaxation Studies of Aqueous Octahedral Cobalt(Ⅲ) Complexes [J]. J Phys Chem, 1996, 100: 14 618-14 624.
[35] Spiess H S. in Dynamic NMR Spectroscopy[M]. Diehl P, Fluck E, Kosfeld R Eds. Springer-Verlag: New York, 1978, 91. |