波谱学杂志

• •    

基于虚拟线圈和GRAPPA增强网络的PMRI方法

高照耀1,2,张展1*,胡亮亮3,许光宇2,周胜4,胡雨欣1,2,林子捷5,周超1,5   

  1. 1. 合肥综合性国家科学中心能源研究院(安徽能源实验室),超导技术应用研究中心,安徽 合肥 230031;2. 安徽理工大学,计算机科学与工程学院,安徽 淮南 232001;3. 合肥工业大学,仪器科学与光电工程学院,安徽 合肥 230000;4. 合肥曦合超导科技有限公司,安徽 合肥 230031;5. 中国科学院等离子体物理研究所,安徽 合肥 230031
  • 收稿日期:2025-02-24 修回日期:2025-04-23 出版日期:2025-04-24 在线发表日期:2025-04-24
  • 通讯作者: 张展 E-mail:zhanzhang@ie.ah.cn

PMRI Method Based on Virtual Coils and GRAPPA-Enhanced Network

GAO Zhaoyao1,2,ZHANG Zhan1*,HU Liangliang3,XU Guangyu2,ZHOU Sheng4,HU Yuxin2,LIN Zijie5,ZHOU Chao1,5   

  1. 1. Institute of Energy,Hefei Comprehensive National Science Center(Anhui Energy Laboratory),Hefei 230031,China; 2. School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; 3. School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230000, China; 4. Hefei Xihe Superconducting Technology Company, Hefei 230000, China; 5. Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China
  • Received:2025-02-24 Revised:2025-04-23 Published:2025-04-24 Online:2025-04-24
  • Contact: ZHANG Zhan E-mail:zhanzhang@ie.ah.cn

摘要:

并行磁共振成像(PMRI)是一种通过多个接收线圈进行欠采样的成像技术,它利用空间信息补充梯度相位编码不足,通过特定算法重建无混叠图像,从而加速成像过程. 针对基于特定扫描的PMRI算法在只有有限数量的自动校准信号(ACS)下使用较高的加速因子会出现过拟合或泛化能力差的问题,提出一种基于虚拟线圈和GRAPPA增强网络的重建方法. 该方法通过使用虚拟共轭线圈扩充样本,并利用GRAPPA算法获得增强的ACS进行非线性的深度学习网络训练. 实验结果表明,提出的PMRI方法在较少ACS数量与较高加速因子的情况下,能够有效减少由于参考数据不足引起的混叠伪影,从而显著提高图像重建质量.

关键词: 并行磁共振成像, 虚拟线圈概念, 欠采样图像, 深度学习, 图像重建

Abstract: Parallel magnetic resonance imaging (PMRI) is an imaging technique that uses multiple receiver coils for undersampling. It utilizes spatial information to supplement the insufficient gradient phase encoding and reconstructs aliasing-free images with specific algorithms to accelerate the imaging process. To address the issue of overfitting or poor generalization when using high acceleration factors with a limited number of auto calibration signals (ACS) in PMRI algorithms based on specific scans, a reconstruction method based on virtual coils and GRAPPA-enhanced networks is proposed. This method expands the sample by using virtual conjugate coils and enhances the ACS using the GRAPPA algorithm for training a nonlinear deep learning network. Experimental results show that the proposed PMRI method can effectively reduce aliasing artifacts caused by insufficient reference data, significantly improving image reconstruction quality with fewer ACS and higher acceleration factors.

Key words: Parallel Magnetic Resonance Imaging, Virtual Coil Concept, Undersampled Images, Deep Learning, Image Reconstruction