[1] |
SORIANO J B, ABAJOBIR A A, ABATE K H, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the global burden of disease study 2015[J]. Lancet Respir Med, 2017, 5(9): 691-706.
doi: 10.1016/S2213-2600(17)30293-X
pmid: 28822787
|
[2] |
DIAZ-GUZMAN E, MANNINO D M. Epidemiology and prevalence of chronic obstructive pulmonary disease[J]. Clin Chest Med, 2014, 35(1): 7-16.
|
[3] |
MARCHIONI A, CASTANIERE I, TONELLI R, et al. Ultrasound-assessed diaphragmatic impairment is a predictor of outcomes in patients with acute exacerbation of chronic obstructive pulmonary disease undergoing noninvasive ventilation[J]. Crit Care, 2018, 22(1): 109.
|
[4] |
RANGELOV B A, YOUNG A L, JACOB J, et al. Thoracic imaging at exacerbation of chronic obstructive pulmonary disease: a systematic review[J]. Int J Chron Obstruct Pulmon Dis, 2020, 15: 1751-1787.
|
[5] |
WEI S S, LU R, ZHANG Z P, et al. MRI-assessed diaphragmatic function can predict frequent acute exacerbation of COPD: a prospective observational study based on telehealth-based monitoring system[J]. BMC Pulm Med, 2022, 22(1): 438.
doi: 10.1186/s12890-022-02254-x
pmid: 36424599
|
[6] |
LI H D, ZHANG Z Y, HAN Y Q, et al. Hyperpolarized gas magnetic resonance imaging of the lung[J]. Chinese J Magn Reson, 2014, 31(3): 307-320.
|
|
李海东, 张智颖, 韩叶清, 等. 超极化气体肺部磁共振成像[J]. 波谱学杂志, 2014, 31(3): 307-320.
|
[7] |
ZHANG M, LI H D, LI H C, et al. Quantitative evaluation of lung injury caused by PM2.5 using hyperpolarized gas magnetic resonance[J]. Magn Reson Med, 2020, 84(2): 569-578.
|
[8] |
LI H D, ZHANG Z Y, ZHAO X C, et al. Quantitative evaluation of pulmonary gas-exchange function using hyperpolarized 129Xe CEST MRS and MRI[J]. NMR Biomed, 2018, 31(9): e3961.
|
[9] |
GUAN S, TUSTISON N, QING K, et al. 3D Single-breath chemical shift imaging hyperpolarized 129Xe MRI of healthy, CF, IPF, and COPD subjects[J]. Tomography, 2022, 8(5): 2574-2587.
|
[10] |
RANKINE L J, LU J L, WANG Z Y, et al. Quantifying regional radiation-induced lung injury in patients using hyperpolarized 129Xe gas exchange magnetic resonance imaging[J]. Int J Radiat Oncol Biol Phys, 2024, 120(1): 216-228.
|
[11] |
BOUDREAU M, XU X J, SANTYR G E. Measurement of 129Xe gas apparent diffusion coefficient anisotropy in an elastase-instilled rat model of emphysema[J]. Magn Reson Med, 2013, 69(1): 211-220.
|
[12] |
MATA J F, ALTES T A, CAI J, et al. Evaluation of emphysema severity and progression in a rabbit model: comparison of hyperpolarized 3He and 129Xe diffusion MRI with lung morphometry[J]. J Appl Physiol (1985), 2007, 102(3): 1273-1280.
|
[13] |
RUAN W W, ZHONG J P, WANG K, et al. Detection of the mild emphysema by quantification of lung respiratory airways with hyperpolarized xenon diffusion MRI[J]. J Magn Reson Imaging, 2017, 45(3): 879-888.
doi: 10.1002/jmri.25408
pmid: 27472552
|
[14] |
STEWART N J, CHAN H F, HUGHES P J C, et al. Comparison of 3He and 129Xe MRI for evaluation of lung microstructure and ventilation at 1.5 T[J]. J Magn Reson Imaging, 2018, 48(3): 632-642.
|
[15] |
KAUSHIK S S, CLEVELAND Z I, COFER G P, et al. Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease[J]. Magn Reson Med, 2011, 65(4): 1154-1165.
|
[16] |
SAKAI K, BILEK A M, OTEIZA E, et al. Temporal dynamics of hyperpolarized 129Xe resonances in living rats[J]. J Magn Reson B, 1996, 111(3): 300-304.
|
[17] |
CHANG Y V. MOXE: A model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung[J]. Magn Reson Med, 2013, 69(3): 884-890.
|
[18] |
KERN A L, GUTBERLET M, QING K, et al. Regional investigation of lung function and microstructure parameters by localized 129Xe chemical shift saturation recovery and dissolved-phase imaging: A reproducibility study[J]. Magn Reson Med, 2019, 81(1): 13-24.
|
[19] |
MUMMY D G, COLEMAN E M, WANG Z Y, et al. Regional gas exchange measured by 129Xe magnetic resonance imaging before and after combination bronchodilators treatment in chronic obstructive pulmonary disease[J]. J Magn Reson Imaging, 2021, 54(3): 964-974.
|
[20] |
KIRBY M, EDDY R L, PIKE D, et al. MRI ventilation abnormalities predict quality-of-life and lung function changes in mild-to-moderate COPD: longitudinal TINCan study[J]. Thorax, 2017, 72(5): 475-477.
doi: 10.1136/thoraxjnl-2016-209770
pmid: 28258250
|
[21] |
TAFTI S, GARRISON W J, MUGLER J P 3rd, et al. Emphysema index based on hyperpolarized 3He or 129Xe diffusion MRI: performance and comparison with quantitative CT and pulmonary function tests[J]. Radiology, 2020, 297(1): 201-210.
|
[22] |
QING K, MUGLER J P 3rd, ALTES T A, et al. Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI[J]. NMR Biomed, 2014, 27(12): 1490-1501.
|
[23] |
STEWART N J, HORN F C, NORQUAY G, et al. Reproducibility of quantitative indices of lung function and microstructure from 129Xe chemical shift saturation recovery (CSSR) MR spectroscopy[J]. Magn Reson Med, 2017, 77(6): 2107-2113.
|
[24] |
CHEN X M, ZHAO X C, SUN X P, et al. Study on the automatic accumulation-thawing device of hyperpolarized 129Xe[J]. Chinese J Magn Reson, 2022, 39(3): 316-326.
|
|
陈小明, 赵修超, 孙献平, 等. 超极化129Xe自动收集-升华装置研究[J]. 波谱学杂志, 2022, 39(3): 316-326.
doi: 10.11938/cjmr20222998
|
[25] |
WOODS J C, CHOONG C K, YABLONSKIY D A, et al. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema[J]. Magn Reson Med, 2006, 56(6): 1293-1300.
|
[26] |
SOHRABI F, DIANAT M, BADAVI M, et al. Gallic acid suppresses inflammation and oxidative stress through modulating Nrf2-HO-1-NF-κB signaling pathways in elastase-induced emphysema in rats[J]. Environ Sci Pollut Res Int, 2021, 28(40): 56822-56834.
|
[27] |
DE OLIVEIRA M V, ROCHA N N, SANTOS R S, et al. Endotoxin-induced emphysema exacerbation: a novel model of chronic obstructive pulmonary disease exacerbations causing cardiopulmonary impairment and diaphragm dysfunction[J]. Front Physiol, 2019, 10: 664.
doi: 10.3389/fphys.2019.00664
pmid: 31191356
|
[28] |
KOBAYASHI S, FUJINAWA R, OTA F, et al. A single dose of lipopolysaccharide into mice with emphysema mimics human chronic obstructive pulmonary disease exacerbation as assessed by micro-computed tomography[J]. Am J Respir Cell Mol Biol, 2013, 49(6): 971-977.
|
[29] |
ZHANG M, LI H D, LI H C, et al. Dynamic evaluation of acute lung injury using hyperpolarized 129Xe magnetic resonance[J]. NMR Biomed, 2024, 37(4): e5078.
|
[30] |
TOLNAI J, SZABARI M V, ALBU G, et al. Functional and morphological assessment of early impairment of airway function in a rat model of emphysema[J]. J Appl Physiol (1985), 2012, 112(11): 1932-1939.
|
[31] |
KIRBY M, PIKE D, COXSON H O, et al. Hyperpolarized 3He ventilation defects used to predict pulmonary exacerbations in mild to moderate chronic obstructive pulmonary disease[J]. Radiology, 2014, 273(3): 887-896.
|
[32] |
ZINELLU A, MANGONI A A. The emerging clinical significance of the red cell distribution width as a biomarker in chronic obstructive pulmonary disease: a systematic review[J]. J Clin Med, 2022, 11(19): 5642.
|