[1] SELS B, VOS D D, BUNTINX M, et al. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination[J]. Nature, 1999, 400(6747):855-857. [2] LEROUX F, BESSE J P. Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites[J]. Chem Mater, 2001, 13(10):3507-3515. [3] KHAN A I, O'HARE D. Intercalation chemistry of layered double hydroxides:Recent developments and applications[J]. J Mater Chem, 2002, 12(11):3191-3198. [4] SELS B F, DE VOS D E, BUNTINX M, et al. Transition metal anion exchanged layered double hydroxides as a bioinspired model of vanadium bromoperoxidase[J]. J Catal, 2003, 216(1):288-297. [5] LIANG J B, MA R Z, SASAKI T. Layered rare earth hydroxides (LREHs):Synthesis and structure characterization towards multifunctionality[J]. Dalton Trans, 2014, 43(27):10355-10364. [6] ZHU Q, WANG X J, LI J G. Recent progress in layered rare-earth hydroxide (LRH) and its application in luminescence[J]. J Adv Ceram, 2017, 6(3):177-186. [7] XU J, CHEN X Y, XU Y S, et al. Ultrathin 2D rare-earth nanomaterials:Compositions, syntheses, and applications[J]. Adv Mater, 2019:e1806461. doi:10.1002/adma.201806461. [8] NEWMAN S P, JONES W. Comparative study of some layered hydroxide salts containing exchangeable interlayer anions[J]. J Solid State Chem, 1999, 148(1):26-40. [9] SONG Y X, LUO M, LIN C S, et al. Structural modulation of nitrate group with cations to affect SHG responses in RE(OH)2NO3 (RE=La, Y, and Gd):New polar materials with large NLO effect after adjusting pH values of reaction systems[J]. Chem Mater, 2017, 29(2):896-903. [10] HASCHKE J M. Preparation, phase equilibriums, crystal chemistry, and some properties of lanthanide hydroxide nitrates[J]. Inorg Chem, 1974, 13(8):1812-1818. [11] LOUER M, LOUER D, LOPEZ DELGADO A, et al. The structures of lanthanum hydroxide nitrates investigated by the Rietveld profile refinement technique[J]. Eur J Solid State Inorg Chem, 1989, 20(50):241-253. [12] ALBA M D, CHAIN P, FLORIAN P, et al. 45Sc spectroscopy of solids:Interpretation of quadrupole interaction parameters and chemical shifts[J]. J Phys Chem C, 2010, 114(28):12125-12132. [13] BR UNIGER T, HOFMANN A J, MOUDRAKOVSKI I L, et al. A 45Sc-NMR and DFT calculation study of crystalline scandium compounds[J]. Solid State Sci, 2016, 511-7. [14] PATERSON A L, HANSON M A, WERNER-ZWANZIGER U, et al. Relating 139La quadrupolar coupling constants to polyhedral distortion in crystalline structures[J]. J Phys Chem C, 2015, 119(45):25508-25517. [15] LI D B, XU S, YU Z W. Application of solid-state NMR to bone and bone biomaterials[J]. Chinese J Magn Reson, 2017, 34(1):115-129. 李东北, 许帅, 喻志武. 固体核磁共振技术在骨基生物材料研究中的应用[J]. 波谱学杂志, 2017, 34(1):115-129. [16] XU J, TERSKIKH V V, HUANG Y. Resolving multiple non-equivalent metal sites in magnesium-containing metal-organic frameworks by natural abundance 25Mg solid-state NMR spectroscopy[J]. Chem Eur J, 2013, 19(14):4432-4436. [17] XU J, TERSKIKH V V, CHU Y, et al. Mapping out chemically similar, crystallographically nonequivalent hydrogen sites in metal-organic frameworks by 1H solid-state NMR spectroscopy[J]. Chem Mater, 2015, 27(9):3306-3316. [18] JIANG T T, FU X B, WU J Z, et al. Structure and dynamics of polymer-ceramic interface in Li1.5Al0.5Ge1.5P3O12/polyether solid electrolyte:A solid-state NMR study[J]. Chinese J Magn Reson, 2017, 34(4):429-438. 姜婷婷, 付晓彬, 吴金泽, 等. Li1.5Al0.5Ge1.5P3O12高分子固体电解质表界面结构与分子运动的固体NMR研究[J]. 波谱学杂志, 2017, 34(4):429-438. [19] HARRIS R K, BECKER E D, CABRAL DE MENEZES S M, et al. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001)[J]. Pure Appl Chem, 2001, 73(11):1795-1818. [20] PYYKK P. Year-2017 nuclear quadrupole moments[J]. Mol Phys, 2018, 116(10):1328-1338. [21] LARSEN F H, JAKOBSEN H J, ELLIS P D, et al. Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors[J]. J Phys Chem A, 1997, 101(46):8597-8606. [22] LEFORT R, WIENCH J W, PRUSKI M, et al. Optimization of data acquisition and processing in Carr-Purcell-Meiboom-Gill multiple quantum magic angle spinning nuclear magnetic resonance[J]. J Chem Phys, 2002, 116(6):2493-2501. [23] HUNG I, GAN Z H. On the practical aspects of recording wideline QCPMG NMR spectra[J]. J Magn Reson, 2010, 204(2):256-265. [24] MASSIOT D, FARNAN I, GAUTIER N, et al. 71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3:Resolution of four-and six-fold coordinated Ga sites in static conditions[J]. Solid State Nucl Magn Reson, 1995, 4(4):241-248. [25] BENNETT A E, RIENSTRA C M, AUGER M, et al. Heteronuclear decoupling in rotating solids[J]. J Chem Phys, 1995, 103(16):6951-6958. [26] PERRAS F A, WIDDIFIELD C M, BRYCE D L. QUEST-QUadrupolar Exact SofTware:A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei[J]. Solid State Nucl Magn Reson, 2012, 45-4636-44. [27] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Z Kristallogr, 2005, 220(5-6):567-570. [28] GROSZEWICZ P B, BREITZKE H, DITTMER R, et al. Nanoscale phase quantification in Lead-free (Bi1/2Na1/2)TiO3-BaTiO3 relaxor ferroelectrics by means of 23Na NMR[J]. Phys Rev B, 2014, 90(22):220104. [29] DI BITETTO A, ANDR E, CARTERET C, et al. Probing the dynamics of layered double hydroxides by solid-state 27Al NMR spectroscopy[J]. J Phys Chem C, 2017, 121(13):7276-7281. [30] DAWSON D M, GRIFFIN J M, SEYMOUR V R, et al. A multinuclear NMR study of six forms of AlPO-34:Structure and motional broadening[J]. J Phys Chem C, 2017, 121(3):1781-1793. [31] BONHOMME C, GERVAIS C, BABONNEAU F, et al. First-principles calculation of NMR parameters using the Gauge Including Projector Augmented Wave Method:A chemist's point of view[J]. Chem Rev, 2012, 112(11):5733-5779. |