[1] |
ORMONDROYD G, SPEAR M, CURLING S. Modified wood: review of efficacy and service life testing[J]. Constr Mater, 2015, 168(4): 187-203.
|
[2] |
BI X Q, ZHANG Y, LI P, et al. Poplar impregnation modification and research progress in furniture application[J]. Mater Rep, 2022, 36(21): 21050166-11.
|
|
毕小茜, 张源, 李萍, 等. 杨木浸渍改性及在家具应用中的研究进展[J]. 材料导报, 2022, 36(21): 21050166-11.
|
[3] |
KAMPERIDOU V. Chemical and structural characterization of poplar and black pine wood exposed to short thermal modification[J]. Drvna Ind, 2021, 72(2): 155-167.
doi: 10.5552/drvind
|
[4] |
LIU S M, CAO J Z. Changes in chemical composition of thermally modified wood and their influen3cing factors[J]. World Forestry Research, 2022, 35 (6): 56-62.
|
|
刘淑敏, 曹金珍. 热改性木材化学成分变化及其影响因素[J]. 世界林业研究, 2022, 35(6): 56-62.
|
[5] |
RADABUTRA S, KHEMTHONG P, SAENGSUWAN S, et al. Preparation and characterization of natural rubber biobased wood adhesive: effect of total solid content, viscosity, and storage time[J]. Polym Bull, 2020, 77(5): 2737-2747.
doi: 10.1007/s00289-019-02881-1
|
[6] |
GUO D K, SHEN X S, YANG S, et al. Mechanism of improving dimensional stability of water-soluble vinyl monomer modified wood[J]. Sci Silvae Sin, 2021, 57(7): 158-165.
|
|
郭登康, 沈晓双, 杨昇, 等. 水溶性乙烯基单体改性木材尺寸稳定性提高机制[J]. 林业科学, 2021, 57(7): 158-165.
|
[7] |
HU X, LI D, LUO B, et al. Weathering characteristics of wood plastic composites compatibilized with ethylene vinyl acetate[J]. BioResources, 2020, 15(2): 3930-3944.
doi: 10.15376/biores
|
[8] |
QIU H B, YANG S, HAN Y, et al. Improvement of the performance of plantation wood by grafting water soluble vinyl monomers onto cell walls[J]. ACS Sustainable Chem Eng, 2018, 6(11): 14450-14459
doi: 10.1021/acssuschemeng.8b03112
|
[9] |
CHEN P, LI Y, NISHIYAMA Y, et al. Small angle neutron scattering shows nanoscale PMMA distribution in transparent wood biocomposites[J]. Nano Letters, 2021, 21(7): 2883-2890.
doi: 10.1021/acs.nanolett.0c05038
pmid: 33734720
|
[10] |
ZHANG C, MA Y, LIN T, et al. Transparent photochromic wood composites incorporating AgBr nanoparticles for UV-shielding applications[J]. Pap Biomater, 2021, 6(4): 21-29.
|
[11] |
ALQAHTANI S, ALJUHANI E, FELALY R, et al. Development of photoluminescent translucent wood toward photochromic smart window applications[J]. Ind Eng Chem Res, 2021, 60(23): 8340-8350.
doi: 10.1021/acs.iecr.1c01603
|
[12] |
YUE D, FU G, JIN Z. Transparent wood prepared by polymer impregnation of rubber wood (Hevea brasiliensis Muell. Arg)[J]. BioResources, 2021, 16(2): 2491-2502.
doi: 10.15376/biores
|
[13] |
吴佳敏. 透明木材的合成及微观机理研究[D]. 南京林业大学, 2019.
|
[14] |
DEFOIRDT N, GARDIN S, VAN DEN BULCKE J, et al. Moisture dynamics of WPC and the impact on fungal testing[J]. Int Biodeter Biodegr, 2010, 64(1): 65-72.
doi: 10.1016/j.ibiod.2009.07.010
|
[15] |
WU X, LIN Y, GUO J Q, et al. Differentiating Pu-erh raw tea from different geographical origins by 1H NMR and U-HPLC/Q-TOF-MS combined with chemometrics[J]. J Food Sci, 2021, 86(3): 779-791.
doi: 10.1111/jfds.v86.3
|
[16] |
ZHAN J H, HU Q, ZHU Q J, et al. Marker-free yeast cytochrome c conformational change tracking in cytoplasm based on magnetic resonance[J]. Chinses J Magn Reson, 2023, 40 (1): 22-29.
|
|
占建华, 胡琴, 朱勤俊, 等. 基于磁共振的胞浆中无标记酵母细胞色素c构象变化追踪[J]. 波谱学杂志, 2023, 40(1): 22-29.
|
[17] |
ZHANG W, WU Y M, CUI W P, et al. Nuclear magnetic resonance porosity correction method for heavy oil reservoirs[J]. Chinese J Magn Reson, 2021, 38 (2): 204-214.
|
|
张伟, 吴意明, 崔维平, 等. 稠油储层核磁共振孔隙度校正方法[J]. 波谱学杂志, 2021, 38(2): 204-214.
|
[18] |
ZHANG R, WANG W, GAO Y, et al. Sensitivity analysis of T2-T1 two-dimensional nuclear magnetic resonance measurement parameters in shale oil reservoirs[J]. Chinese J Magn Reson, 2023, 40(2): 122-135.
|
|
张融, 王伟, 高怡, 等. 页岩油储层T2-T1二维核磁共振测量参数敏感性分析[J]. 波谱学杂志, 2023, 40(2): 122-135.
|
[19] |
NIU X X, BAI Z J, YANG Y, et al. Quantitative monitoring of photocatalytic Cr (VI) reduction reaction by in-situ low-field nuclear magnetic resonance relaxation method[J]. Chinese J Magn Reson, 2021, 38 (3): 403-413.
|
|
牛星星, 白志杰, 杨翼, 等. 原位低场核磁共振弛豫法定量监测光催化Cr(VI)还原反应[J]. 波谱学杂志, 2021, 38(3): 403-413.
|
[20] |
HU Y F, JIN C W. Conformational dynamics in GPCR signaling by NMR[J]. Magn Reson Lett, 2022, 2(3):139-146.
|
[21] |
LI J Y. MA ER N. Characterization of water in wood by time-domain nuclear magnetic resonance spectroscopy (TD-NMR): A Review[J]. Forests, 2021, 12 (7):886.
doi: 10.3390/f12070886
|
[22] |
ROSTOM L, COUYTIER-MURIAS D, RODTS S, et al. Investigation of the effect of aging on wood hygroscopicity by 2D 1H NMR relaxometry[J]. Holzforschung, 2020, 74(4): 400-411.
doi: 10.1515/hf-2019-0052
|
[23] |
LI J Y, MA ER N. Effects of heat treatment and delignification on the hygroscopic limit and cell wall saturation of southern pine wood[J]. Journal of Forestry Engineering, 2021, 6(03): 61-68.
|
|
李京予, 马尔妮. 热处理及脱木质素对南方松木材吸湿极限与细胞壁饱和状态的影响[J]. 林业工程学报, 2021, 6(03): 61-68.
|
[24] |
LI J Y, MA ER N, 2D time-domain nuclear magnetic resonance (2D TD-NMR) characterization of cell wall water of Fagus sylvatica and Pinus taeda L[J]. Cellulose, 2022, 29(16): 8491-8508.
doi: 10.1007/s10570-022-04789-y
|
[25] |
PASSARINI L, MALVEAU C, HERNANDEZ R E. Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance microimaging[J]. Wood Sci and Technol, 2015(49-6): 1251-1218.
|
[26] |
FREDRIKSSON, MARIA, THYAESEN, et al. The states of water in norway spruce (picea abies (l.) karst.) studied by low field nuclear magnetic resonance (LFNMR) relaxometry: Assignment of free water populations based on quantitative wood anatomy[J]. Holzforschung 2017, 71(1): 77-90.
doi: 10.1515/hf-2016-0044
|
[27] |
ZHOU F, FU Z Y, ZHOU Y D, et al. Moisture transfer and stress development during high temperature drying of Chinese fir[J]. Dry Technol, 2019, 38(4): 545-554.
doi: 10.1080/07373937.2019.1588900
|
[28] |
XU K, YUAN S F, GAO Y L, et al. Characterization of moisture states and transport in MUF resin-impregnated poplar wood using low field nuclear magnetic resonance[J]. Dry Technol, 2020, 39(6): 1-12
doi: 10.1080/07373937.2021.1860312
|
[29] |
JIN Q, ZHU L, HU D, et al. Nuclear magnetic resonance analysis of water absorption characteristics and dynamic changes in pore size distribution of wood-plastic composites[J]. BioResources, 2021, 16(2): 4064-4080.
doi: 10.15376/biores
|
[30] |
GAO J S, WANG X, TONG J W, et al. Large size translucent wood fiber reinforced PMMA porous composites with excellent thermal, acoustic and energy absorption properties[J]. Compos Commun, 2022, 30(12):101059
doi: 10.1016/j.coco.2022.101059
|
[31] |
PROVENCHER S W. A constrained regularization method for inverting data represented by linear algebraic or integral equations[J]. Comput Phys Commun, 1982, 27(3): 213-227.
doi: 10.1016/0010-4655(82)90173-4
|
[32] |
曹金珍. 木材保护与改性[M]. 北京: 中国林业出版社, 2018.
|
[33] |
WANG X A, ZHU W, DING K L, et al. Preliminary study on the preparation of poplar plastic woodII. Preparation of Poplar Esterified Plywood[J]. Journal of Northwest Forestry University, 2001, (03): 61-63.
|
|
王新爱, 朱玮, 丁克廉, 等. 杨木塑合木制备初探—II. 杨木酯化塑合木的制备[J]. 西北林学院学报, 2001, (03): 61-63.
|
[34] |
LI C F, WANG Q W, LIU M L, et al. Effect of preparation process on dimensional stability of larch plywood[J]. China Forest Products Industry, 2015, 42(01): 43-46.
|
|
李春风, 王清文, 刘明利, 等. 制备工艺对落叶松单板塑合木尺寸稳定性的影响[J]. 林产工业, 2015, 42(01): 43-46.
|
[35] |
ISLAM S, HAMDAN S, JUSON I, et al. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites[J]. Mater Design, 2012, 33(1): 419-424.
doi: 10.1016/j.matdes.2011.04.044
|
[36] |
WU J M WUY, HUANG Q T, et al. Effect of silane coupling agent modification on properties of transparent wood[J]. China Forest Products Industry, 2019, 46 (08): 22-25 + 29.
|
|
吴佳敏, 吴燕, 黄琼涛, 等. 硅烷偶联剂改性对透明木材性能的影响[J]. 林产工业, 2019, 46(08): 22-25+29.
|
[37] |
GAO X, ZHUANG S Z. Bound water content in saturated wood cell wall determined by nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2015, 32(4): 671-676.
|
|
高鑫, 庄寿增. 利用核磁共振测木材吸着水饱和含量[J]. 波谱学杂志, 2015, 32(4): 671-676.
|
[38] |
李新宇. 利用时域核磁共振技术研究木材孔隙分布及水分运动[D]. 内蒙古农业大学, 2017.
|
[39] |
LIN Y S, ZHANG M H, GUAN M J. Nuclear magnetic resonance analysis of moisture absorption of wood[J]. Journal of Forestry Engineering, 2016, 1(2): 5.
|
|
刘源松, 张明辉, 关明杰. 木材吸湿水分变化的核磁共振分析[J]. 林业工程学报, 2016, 1(2):5.
|
[40] |
BLOEMBERGEN N, PURCELL E M., POUND R V. Relaxation effects in nuclear magnetic resonance absorption[J]. Phys Rev, 1948, 73: 679-712.
doi: 10.1103/PhysRev.73.679
|
[41] |
LI C, ZHANG M H, YU J F. Determination of wood moisture content by NMR free induction decay curve[J]. Journal of Beijing Forestry University, 2012, 34(4): 142-145.
|
|
李超, 张明辉, 于建芳. 利用核磁共振自由感应衰减曲线测定木材含水率[J]. 北京林业大学学报, 2012, 34(4): 142-145.
|
[42] |
PASSARINI L, MALVEAU C, HERNANDEZ R E. Water state study of wood structure of four hardwoods below fiber saturation point with nuclear magnetic resonance[J]. Wood Fiber Sci, 2014, 46(4): 480-488.
|
[43] |
THYGEAEN L G, ELDER T. Moisture in untreated, acetylated, and furfurylated norway spruce studied during drying using time domain NMR[J]. Wood Fiber Sci, 2009, 41(2): 194-200.
|
[44] |
MICHALSKA-POZOGA I, SZCZEPANEK M. Analysis of particles’ size and degree of distribution of a wooden filler in wood-polymer composites[J]. Materials, 2021, 14(21): 6251.
doi: 10.3390/ma14216251
|
[45] |
ČREŠNAR K P, BEK M, LUXBACHER T, BRUNCKO M, et al. Insight into the surface properties of wood fiber-polymer composites[J]. Polymers-Basel, 2021, 13(10): 1535.
|