1 |
SIEGEL R L , MILLE R K D , JEMAL A . Cancer statistics, 2018[J]. CA: A Cancer Journal for Clinicians, 2018, 68 (1): 7- 30.
doi: 10.3322/caac.21442
|
2 |
FOROUZANFAR M H , FOREMAN K J , DELOSSANTOS A M , et al. Breast and cervical cancer in 187 countries betweem 1980 and 2010: a systematic analysis[J]. Lancet, 2011, 378 (9801): 1461- 1484.
doi: 10.1016/S0140-6736(11)61351-2
|
3 |
WILD C P, WEIDERPASS E, STEWART B W. World cancer report: cancer research for cancer prevention[M]//Lyon: International Agency for Research on Cancer, 2020: 23-33.
|
4 |
FANG Z Y , QIU X G . Distribution and risk factors of breast cancer[J]. Chinese General Practice, 2002, 5 (6): 429- 430.
doi: 10.3969/j.issn.1007-9572.2002.06.004
|
|
方志沂, 邱晓光. 乳腺癌的分布规律及其危险因素[J]. 中国全科医学, 2002, 5 (6): 429- 430.
doi: 10.3969/j.issn.1007-9572.2002.06.004
|
5 |
SMITH R A , COKKINDES V , BROOKS D , et al. Cancer screening in the United States, 2011[J]. CA-Cancer J Clin, 2011, 61 (1): 8- 30.
doi: 10.3322/caac.20096
|
6 |
DIDKOWSKA J , WOJCIECHOWSKA U . WHO position paper on mammography screening[J]. Oncology in Clinical Practice, 2014,
|
7 |
HEYWANG S H , HAHN D , SCHMIDT H , et al. MR imaging of the breast using gadolinium-DTPA[J]. J Comput Assist Tomogr, 1986, 10 (2): 199- 204.
doi: 10.1097/00004728-198603000-00005
|
8 |
MORRIS E A . Breast cancer imaging with MRI[J]. Radiol Clin N Am, 2002, 40 (3): 443- 466.
doi: 10.1016/S0033-8389(01)00005-7
|
9 |
BHOOSHAN N , GIGER M L , JANSEN S A , et al. Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers[J]. Radiology, 2010, 254 (3): 680- 690.
doi: 10.1148/radiol.09090838
|
10 |
杨骞. 基于DCE-MRI影像的乳腺癌早期诊断研究[D]. 杭州: 杭州电子科技大学, 2014.
|
11 |
EADIE L H , TAYLOR P , GIBSON A P . A systematic review of computer-assisted diagnosis in diagnostic cancer imaging[J]. Eur J Radiol, 2011, 81 (1): e70- e76.
|
12 |
REIG B , HEACOCK L , GERAS K J , et al. Machine learning in breast MRI[J]. J Magn Reson Imaging, 2020, 52 (4): 998- 1018.
doi: 10.1002/jmri.26852
|
13 |
TAN Z , HONG R R , YE S Z . A method to extract the region of interest in dynamic contrast-enhanced MR imaging of breast cancer[J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44 (1): 33- 39.
|
|
檀哲, 洪容容, 叶少珍. 一种提取乳腺癌DCE-MRI感兴趣区域的分割方法[J]. 福州大学学报(自然科学版), 2016, 44 (1): 33- 39.
|
14 |
QIAO M Y , SUO S T , CHENG F , et al. Three-dimensional breast tumor segmentation on DCE-MRI with a multilabel attention-guided joint-phase-learning network[J]. Comput Med Imag Grap, 2021, 90, 101909.
doi: 10.1016/j.compmedimag.2021.101909
|
15 |
LIU T T , XU H Y , JIN W , et al. Medical image segmentation based on a hybrid region-based active contour model[J]. Comput Math Methods Med, 2014, 890725.
|
16 |
AL-FARIS A Q , NGAH U K , ISA N A M , et al. Computer-aided segmentation system for breast MRI tumour using modified automatic seeded region growing (BMRI-MASRG)[J]. J Digit Imaging, 2014, 27 (1): 133- 144.
doi: 10.1007/s10278-013-9640-5
|
17 |
CHEN X, WILLIAMS B M, VALLABHANENI S R, et al. Learning active contour models for medical image segmentation[C]//CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019.
|
18 |
KANNAN S R , RAMATHILAGAM S , DEVI P , et al. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI[J]. J Med Syst, 2012, 36 (1): 321- 333.
doi: 10.1007/s10916-010-9478-z
|
19 |
BAI P R , LIU Q Y , LEI L , et al. A novel region-based level set method initialized with mean shift clustering for automated medical image segmentation[J]. Comput Biol Med, 2013, 43 (11): 1827- 1832.
doi: 10.1016/j.compbiomed.2013.08.024
|
20 |
PEREIRA S , PINTO A , ALVES V , et al. Brain tumor segmentation using convolutional neural networks in MRI images[J]. IEEE T Med Imaging, 2016, 35 (5): 1240- 1251.
doi: 10.1109/TMI.2016.2538465
|
21 |
DOLZ J, AYED I B, DESROSIERS C. Dense multi-path U-Net for ischemic stroke lesion segmentation in multiple image modalities[C]//International MICCAI Brainlesion Workshop. Springer, Cham, 2018.
|
22 |
LEE P Q , GUIDA A , PATTERSON S , et al. Model-free prostate cancer segmentation from dynamic contrast-enhanced MRI with recurrent convolutional networks: A feasibility study[J]. Comput Med Imag Grap, 2019, 75, 14- 23.
doi: 10.1016/j.compmedimag.2019.04.006
|
23 |
AMIT G, HADAD O, ALPERT S, et al. Hybrid mass detection in breast MRI combining unsupervised saliency analysis and deep learning[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017.
|
24 |
BENJELLOUN M, ADOUI M E, LARHMAM M A, et al. Automated breast tumor segmentation in DCE-MRI using deep learning[C]//International Conference on Cloud Computing Technologies and Applications, 2018.
|
25 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015: 3431-3440.
|
26 |
ZHANG J, SAHA A, ZHU Z, et al. Breast tumor segmentation in DCE-MRI using fully convolutional networks with an application in radiogenomics[C]//Computer-aided Diagnosis, 2018.
|
27 |
ZHANG J , SAHA A , ZHU Z , et al. Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics[J]. IEEE T Med Imaging, 2019, 38 (2): 435- 447.
doi: 10.1109/TMI.2018.2865671
|
28 |
ADOUI M E , MAHMOUDI S A , LARHMAM M A , et al. MRI breast tumor segmentation using different encoder and decoder CNN architectures[J]. Computers, 2019, 8 (3): 52.
doi: 10.3390/computers8030052
|
29 |
LOFFE S , SZEGEDY C . Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint, 2015, 1502.03167.
|
30 |
RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation[M]. Spring Internation Publishing, 2015, 234- 241.
|
31 |
JIN Q G , MENG Z P , SUN C M , et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Front Bioeng Biotechnol, 2020, 8, 605132.
doi: 10.3389/fbioe.2020.605132
|
32 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
33 |
HU J , SHEN L , SUN G , et al. Squeeze-and-excitation networks[J]. arXiv preprint, 2017, 1709.01507.
|
34 |
SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2014, 15 (1): 1929- 1958.
|
35 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE T Pattern Anal, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
36 |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Anylysis and Multimodal Learning for Clinical Decision Support, 2018: 3-11.
|