1 |
ZHANG K M , WEN Z G . Review and challenges of policies of environmental protection and sustainable development in China[J]. J Environ Manage, 2008, 88 (4): 1249- 1261.
doi: 10.1016/j.jenvman.2007.06.019
|
2 |
WANG H , YUAN X , WU Y , et al. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(Ⅵ) reduction[J]. J Hazard Mater, 2015, 286, 187- 194.
doi: 10.1016/j.jhazmat.2014.11.039
|
3 |
ZHAO Z , AN H , LIN J , et al. Progress on the photocatalytic reduction removal of chromium contamination[J]. Chem Rec, 2019, 19 (5): 873- 882.
doi: 10.1002/tcr.201800153
|
4 |
HAYASHI H , KATAYAMA S , KOMURA T , et al. Discovery of a novel Sn(Ⅱ)-based oxide β-SnMoO4 for daylight-driven photocatalysis[J]. Adv Sci, 2017, 4 (1): 1600246.
doi: 10.1002/advs.201600246
|
5 |
YUAN Y , ZHANG L , XING J , et al. High-yield synthesis and optical properties of g-C3N4[J]. Nanoscale, 2015, 7 (29): 12343- 12350.
doi: 10.1039/C5NR02905H
|
6 |
ZHANG J , ZHANG M , YANG C , et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Adv Mater, 2014, 26 (24): 4121- 4126.
doi: 10.1002/adma.201400573
|
7 |
RAN J , MA T Y , GAO G , et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production[J]. Energ Environ Sci, 2015, 8 (12): 3708- 3717.
doi: 10.1039/C5EE02650D
|
8 |
SHI F , CHEN L , CHEN M , et al. A g-C3N4/nanocarbon/ZnIn2S4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator[J]. Chem Commun, 2015, 51 (96): 17144- 17147.
doi: 10.1039/C5CC05323D
|
9 |
ZHANG P , WANG T , GONG J . Mechanistic understanding of the plasmonic enhancement for solar water splitting[J]. Adv Mater, 2015, 27 (36): 5328- 5342.
doi: 10.1002/adma.201500888
|
10 |
LIU X , PANG F , HE M , et al. Confined reaction inside nanotubes: New approach to mesoporous g-C3N4 photocatalysts[J]. Nano Res, 2017, 10 (11): 3638- 3647.
doi: 10.1007/s12274-017-1574-7
|
11 |
TEIXEIRA I F , BARBOSA E C M , TSANG S C E , et al. Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis[J]. Chem Soc Rev, 2018, 47 (20): 7783- 7817.
doi: 10.1039/C8CS00479J
|
12 |
XING J , CHEN J F , LI Y H , et al. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution[J]. Chem Eur J, 2014, 20 (8): 2138- 2144.
doi: 10.1002/chem.201303366
|
13 |
CHOI Y , KIM H I , MOON G H , et al. Boosting up the low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst: thiocyanate as a selective modifier[J]. ACS Catal, 2016, 6 (2): 821- 828.
doi: 10.1021/acscatal.5b02376
|
14 |
LIU W , JIN L , XU J , et al. Insight into pH dependent Cr(Ⅵ) removal with magnetic Fe3S4[J]. Chem Eng J, 2019, 359, 564- 571.
doi: 10.1016/j.cej.2018.11.192
|
15 |
LIU X , LIU B , LI L , et al. Cu2In2ZnS5/Gd2O2S: Tb for full solar spectrum photoreduction of Cr(Ⅵ) and CO2 from UV/vis to near-infrared light[J]. Appl Catal Environ, 2019, 249, 82- 90.
doi: 10.1016/j.apcatb.2019.02.061
|
16 |
GOMES B F , BURATO J S , SILVA LOBO C M , et al. Use of the relaxometry technique for quantification of paramagnetic ions in aqueous solutions and a comparison with other analytical methods[J]. Int J Anal Chem, 2016, 2016, 8256437.
|
17 |
HUA L , CHAN Y C , WU Y P , et al. The determination of hexavalent chromium (Cr6+) in electronic and electrical components and products to comply with RoHS regulations[J]. J Hazard Mater, 2009, 163 (2): 1360- 1368.
|
18 |
KOCK F V C , MACHADO M P , ATHAYDE G P B , et al. Quantification of paramagnetic ions in solution using time domain NMR. PROS and CONS to optical emission spectrometry method[J]. Microchem J, 2018, 137, 204- 207.
doi: 10.1016/j.microc.2017.10.013
|
19 |
CHENG S , WANG X , LIU B L . Low field-NMR relaxation characteristics of glyceryl oleate system[J]. Chinese J Magn Reson, 2018, 35 (2): 243- 254.
|
|
成实, 王欣, 刘宝林. 油酸甘油酯体系的低场核磁共振弛豫特性研究[J]. 波谱学杂志, 2018, 35 (2): 243- 254.
|
20 |
LIU Z J , YANG D , SHAO J X , et al. Evolution of pore connectivity in the fushun oil shale by low-field nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2019, 36 (3): 309- 318.
|
|
刘志军, 杨栋, 邵继喜, 等. 基于低场核磁共振的抚顺油页岩孔隙连通性演化研究[J]. 波谱学杂志, 2019, 36 (3): 309- 318.
|
21 |
BERNHEIM R A , BROWN T H , GUTOWSKY H S , et al. Temperature dependence of proton relaxation times in aqueous solutions of paramagnetic ions[J]. J Chem Phys, 1959, 30 (4): 950- 956.
doi: 10.1063/1.1730133
|
22 |
BLOEMBERGEN N , PURCELL E M , POUND R V . Relaxation effects in nuclear magnetic resonance absorption[J]. Phys Rev, 1948, 73 (7): 679- 712.
doi: 10.1103/PhysRev.73.679
|
23 |
ZHAO C , WANG Z , LI X , et al. Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(Ⅵ) reduction under white light[J]. Chem Eng J, 2020, 389 (123431)
|
24 |
FU Y , ZHU J , HU C , et al. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode[J]. Nanoscale, 2014, 6 (21): 12555- 12564.
doi: 10.1039/C4NR03145H
|
25 |
MA S , ZHAN S , JIA Y , et al. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light[J]. Appl Catal Environ, 2016, 186, 77- 87.
doi: 10.1016/j.apcatb.2015.12.051
|
26 |
QIN J , HUO J , ZHANG P , et al. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation[J]. Nanoscale, 2016, 8 (4): 2249- 59.
doi: 10.1039/C5NR06346A
|
27 |
YI J , SHE X , SONG Y , et al. A silver on 2D white-C3N4 support photocatalyst for mechanistic insights: synergetic utilization of plasmonic effect for solar hydrogen evolution[J]. RSC Adv, 2016, 6 (113): 112420- 112428.
doi: 10.1039/C6RA23964A
|
28 |
JIN J , LIANG Q , DING C , et al. Simultaneous synthesis-immobilization of Ag nanoparticles functionalized 2D g-C3N4 nanosheets with improved photocatalytic activity[J]. J Alloys Comp, 2017, 691, 763- 771.
doi: 10.1016/j.jallcom.2016.08.302
|
29 |
FAISAL M , ISMAIL A A , HARRAZ F A , et al. Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity[J]. Mater Des, 2016, 98, 223- 230.
doi: 10.1016/j.matdes.2016.03.019
|
30 |
ZHANG Y , WU J , DENG Y , et al. Synthesis and visible-light photocatalytic property of Ag/GO/g-C3N4 ternary composite[J]. Mater Sci Eng: B, 2017, 221, 1- 9.
doi: 10.1016/j.mseb.2017.03.013
|
31 |
COBRA P F , GOMES B F , MITRE C I N , et al. Measuring the solubility product constant of paramagnetic cations using time-domain nuclear magnetic resonance relaxometry[J]. Microchem J, 2015, 121, 14- 17.
doi: 10.1016/j.microc.2015.02.002
|
32 |
KOCK F V C , COLNAGO L A . Rapid and simultaneous relaxometric methods to study paramagnetic ion complexes in solution: An alternative to spectrophotometry[J]. Microchem J, 2015, 122, 144- 148.
doi: 10.1016/j.microc.2015.05.003
|
33 |
KOCK F V , MONARETTO T , COLNAGO L A . Time-domain NMR relaxometry as an alternative method for analysis of chitosan-paramagnetic ion interactions in solution[J]. Int J Biol Macromol, 2017, 98, 228- 232.
doi: 10.1016/j.ijbiomac.2017.01.083
|
34 |
GOMEZ V , LARRECHI M S , CALLAO M P . Chromium speciation using sequential injection analysis and multivariate curve resolution[J]. Anal Chim Acta, 2006, 571 (1): 129- 35.
doi: 10.1016/j.aca.2006.04.065
|
35 |
SOARES R , CASTRO CARNEIROA M , IN S COUTO MONTEIRO M , et al. Simultaneous speciation of chromium by spectrophotometry and multicomponent analysis[J]. Chem Spec Bioavailab, 2015, 21 (3): 153- 160.
|