[1] Schmaljohann D. Thermo- and ph-responsive polymers in drug delivery[J]. Adv Drug Deliver Rev, 2006, 58(15): 1 655-1 670. [2] Rzaev Z M O, Dinçer S, Piskin E. Functional copolymers of n-isopropylacrylamide for bioengineering applications[J]. Prog Polym Sci, 2007, 32(5): 534-595. [3] Rowley J A, Madlambayan G, Mooney D J. Alginate hydrogels as synthetic extracellular matrix materials[J]. Biomaterials, 1999, 20(1): 45-53. [4] Suh J K F, Matthew H W T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review[J]. Biomaterials, 2000, 21(24): 2 589-2 598. [5] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery[J]. Adv Drug Deliver Rev, 2001, 53(3): 321-339. [6] Peppas N A, Hilt J Z, Khademhosseini A, et al. Hydrogels in biology and medicine: From molecular principles to bionanotechnology[J]. Adv Mater, 2006, 18(11): 1 345-1 360. [7] Gong J P. Why are double network hydrogels so tough?[J]. Soft Matter, 2010, 6(12): 2 583-2 590. [8] Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Adv Mater, 2003, 15(14): 1 155-1 158. [9] Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links[J]. Adv Mater, 2001, 13(7): 485-487. [10] Huang T, Xu H G, Jiao K X, et al. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel[J]. Adv Mater, 2007, 19(12): 1 622-1 626. [11] Haraguchi K, Takehisa T. Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties[J]. Adv Mater, 2002, 14(16): 1 120-1 124. [12] Haraguchi K, Ebato M, Takehisa T. Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency[J]. Adv Mater, 2006, 18(17): 2 250-2 254. [13] Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(n-isopropylacrylamide) and clay[J]. Macromolecules, 2002, 35(27): 10 162-10 171. [14] Haraguchi K, Takada T. Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organic-inorganic network structure[J]. Macromol Chem Phys, 2005, 206(15): 1 530-1 540. [15] Haraguchi K, Li H J. Control of the coil-to-globule transition and ultrahigh mechanical properties of pnipa in nanocomposite hydrogels[J]. Angew Chem-Int Edit, 2005, 44(40): 6 500-6 504. [16] Shibayama M, Karino T, Miyazaki S, et al. Small-angle neutron scattering study on uniaxially stretched poly(n-isopropylacrylamide)-clay nanocomposite gels[J]. Macromolecules, 2005, 38(26): 10 772-10 781. [17] Endo H, Miyazaki S, Haraguchi K, et al. Structure of nanocomposite hydrogel investigated by means of contrast variation small-angle neutron scattering[J]. Macromolecules, 2008, 41(14): 5 406-5 411. [18] Mauri M, Thomann Y, Schneider H, et al. Spin-diffusion nmr at low field for the study of multiphase solids[J]. Solid State Nucl Magn Reson, 2008, 34(1/2): 125-141. [19] Saalwächter K. Proton multiple-quantum nmr for the study of chain dynamics and structural constraints in polymeric soft materials[J]. Prog Nucl Magn Reson Spectrosc, 2007, 51(1): 1-35. [20] Valenti?n J L, Lo?pez D, Herna?ndez R, et al. Structure of poly(vinyl alcohol) cryo-hydrogels as studied by proton low-field nmr spectroscopy[J]. Macromolecules, 2008, 42(1): 263-272. [21] Litvinov V M, Orza R A, Klu?ppel M, et al. Rubber-filler interactions and network structure in relation to stress–strain behavior of vulcanized, carbon black filled epdm[J]. Macromolecules, 2011, 44(12): 4 887-4 900. [22] Zhang R, Yan T, Lechner B D, et al. Heterogeneity, segmental and hydrogen bond dynamics, and aging of supramolecular self-healing rubber[J]. Macromolecules, 2013, 46(5): 1 841-1 850. [23] Papon A, Saalwächter K, Schaler K, et al. Low-field nmr investigations of nanocomposites: Polymer dynamics and network effects[J]. Macromolecules, 2011, 44 (4): 913-922. [24] Litvinov V M, Penning J P. Phase composition and molecular mobility in nylon 6 fibers as studied by proton nmr transverse magnetization relaxation[J]. Macromol Chem Phys, 2004, 205(13): 1 721-1 734. [25] Sturniolo S, Saalwächter K. Breakdown in the efficiency factor of the mixed magic sandwich echo: A novel nmr probe for slow motions[J]. Chem Phys Lett, 2011, 516(1-3): 106-110. [26] Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures[J]. Polym J, 2011, 43(3): 223-241. [27] Haraguchi K, Li H J, Matsuda K, et al. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in pnipa-clay nanocomposite hydrogels[J]. Macromolecules, 2005, 38(8): 3 482-3 490. [28] Saalwächter K, Ziegler P, Spyckerelle O, et al. H-1 multiple-quantum nuclear magnetic resonance investigations of molecular order distributions in poly(dimethylsiloxane) networks: Evidence for a linear mixing law in bimodal systems[J]. J Chem Phys, 2003, 119(6): 3 468-3 482. [29] Saalwächter K, Sommer J U. Nmr reveals non-distributed and uniform character of network chain dynamics[J]. Macromol Rapid Comm, 2007, 28(14): 1 455-1 465. [30] Chasse W, Valentin J L, Genesky G D, et al. Precise dipolar coupling constant distribution analysis in proton multiple-quantum nmr of elastomers[J]. J Chem Phys, 2011, 134(4): 044907. [31] Cohen Addad J. Nmr and fractal properties of polymeric liquids and gels[J]. Prog Nucl Magn Reson Spectrosc, 1993, 25(1-3): 1-316. [32] Saalwächter K, Herrero B, Lopez-Manchado M A. Chain order and cross-link density of elastomers as investigated by proton multiple-quantum nmr[J]. Macromolecules, 2005, 38(23): 9 650-9 660. |