波谱学杂志 ›› 2012, Vol. 29 ›› Issue (3): 393-400.

• 研究论文 • 上一篇    下一篇

一种改进的微弱NQR信号检测算法

朱凯然*,吴惠阳,郑纪彬,苏涛   

  1. 西安电子科技大学 雷达信号处理重点实验室,  陕西 西安 710071
  • 收稿日期:2011-11-21 修回日期:2012-03-20 出版日期:2012-09-05 发布日期:2012-09-05
  • 基金资助:

    国家自然科学基金青年科学基金资助项目(61001204), 中央高校基本科研业务费专项资金资助项目(JY0000902020), 陕西省“13115”科技创新工程资助项目(2009ZDKG-26).

An Improved Detection Algorithm for Detection of Weak NQR Signals

 ZHU Kai-Ran*, Wu Hui-Yang, ZHENG Ji-Bin, SU Tao   

  1. National Lab of Radar Signal Processing, Xidian University, Xi′an 710071, China
  • Received:2011-11-21 Revised:2012-03-20 Online:2012-09-05 Published:2012-09-05
  • Supported by:

    国家自然科学基金青年科学基金资助项目(61001204), 中央高校基本科研业务费专项资金资助项目(JY0000902020), 陕西省“13115”科技创新工程资助项目(2009ZDKG-26).

摘要:

核四极矩共振(NQR)是一种固态射频谱分析技术,可用于检测高危险爆炸物. 然而NQR信号本身非常弱,并且易受线圈的热噪声和外部射频干扰的影响,低信噪比限制了NQR的实际应用. 该文提出一种改进的微弱NQR信号检测算法. 首先利用Hankel矩阵方式下奇异值分解的方法,有效地抑制射频干扰和噪声,并将NQR信号分离出来. 然后提出了一种基于MUSIC谱估计的非线性最小二乘检测器,它既保证了高的频率分辨率,又大大降低了运算量. 仿真数据和实测数据结果表明该算法的有效性.

关键词: 核四极矩共振(NQR), 非线性最小二乘检测器, MUSIC, 奇异值分解

Abstract:

Nuclear quadrupole resonance (NQR) is a solid-state radio frequency (RF) spectroscopic technique allowing the detection of many high explosives. However, the NQR signals are intrinsically weak, and the practical use of NQR is hindered by low signal-to-noise ratio (SNR), and artifacts arising from the thermal noise of the coil and external radio frequency interference (RFI). In this paper, we described an improved detection algorithm for detection of weak NQR signals. First, singular value decomposition using the Hankel matrix was utilized to restrain RFI and filter noise. A non-linear least squares detector based on the (multiple signal classification) MUSIC spectral estimation was applied, which not only guaranteed a high resolution in the frequency domain, but also led to significant reduction in the amount of computation. The effectiveness of this algorithm was demonstrated with the simulated and experimental results.

Key words: nuclear quadrupole resonance (NQR), non-linear least squares detector, MUSIC, singular value decomposition (SVD)

中图分类号: