[1] Wang Yi-qiu(王义遒), Wang Qing-ji(王庆吉), Fu Ji-shi(傅济时),et al. The Theory of Frequency Standards (量子频标原理)[M] . Beijing(北京): Science Press(科学出版社), 1986. 366-395.
[2] Mileti G, Deng J Q, Walls F L, et al. Recent progress in laser-pumped rubidium gas cell frequency standards[C]. International frequency control symposium, IEEE, 1996.
[3] Besedina A, Gevirkyan A, Zholnerov V. The efficiency investigation of 87Rb atomic beam laser pumping for designing a quantum discriminator for high-performance space-borne atomic beam frequency standard[C]. France: Proc of the 19th EFTF, Besancon, 2005. 324-330.
[4] Deng J Q, Mileti G, Jennings D A. Improving the short term stability of laser pumped Rb clock by reducing the effects of the interrogation oscillator[C]. International frequency control symposium, IEEE, 1997. 438-445.
[5] Xu Ke-zun(徐克尊). The Advanced of atomic and molecule Physics(高等原子分子物理学)[M]. Beijing(北京): Science Press(科学出版社), 2006. 275.
[6] Pearman C P, Adams C S, Cox S G, et al. Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking
[J]. J Phys B: At Mol Opt Phys, 2002, 35: 5 141-5 151.
[7] Mei G H, Zhong D, An S F, et al. 2001 Miniaturized microwave caviey for atomic frequency patend No.6 225 870 B1[C]. 2001.
[8] Mileti G, Thomann P. Study of the S/N performance of passive atomic clocks using a laser pumped vapor[C]. Proc 9th European Frequency and Time Fortum, 1995. 271-276.
[9] Vanier J, Mandache C. The passive optically pumped Rb frequency standard: the laser approach[J]. Appl Phys B, 2007, 87: 565-593. |