[1] Bouchiat M A, Carver T R, Varnum C M. Nuclear polarization in He gas induced by optical pumping and dipolar exchange[J]. Phys Rev Lett, 1960, 5(8): 373-375.
[2] Rich D R, Gentile T R, Smith T B, et al. Spin exchange optical pumping at pressures near 1 bar for neutron spin filters[J]. Appl Phys Lett, 2002, 80(12): 2 210-2 212.
[3] Albert M S, Cates D G, Driebuys B, et al. Biological magnetic resonance imaging using laser-polarized 129Xe[J]. Nature, 1994, 370: 199-201.
[4] Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei[J]. Rev Mod Phys, 1997, 69(2): 629-642.
[5] Happer W. Optical Pumping[J]. Rev Mod Phys, 1972, 44(2): 169-249.
[6] ller H E, Chen X J, Saam B, et al. MRI of the lungs using hyperpolarized noble gases[J]. Magn Res Med, 2002, 47(6): 1 029-1 052.
[7] Tseng C H, Wong G P, Pomeroy V P, et al. Low-field MRI of laser polarized noble gas[J]. Phys Rev Lett, 1998, 81(17): 3 785-3 788.
[8] Chen H H, Yang H C, Horng H E, et al. Enhanced polarization and mechanisms in optically pumped hyperpolarized 3He in the presence of 4He[J]. Phys Rev A, 2010, 81(3): 033 422-1-033 422-6.
[9] Liang Z P, Lauterbur P C. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective[M]. Wiley-IEEE Press, 1999.
[10] Kumar S, Mathews R, Haupt S G, et al. Nuclear magnetic resonance using a high temperature superconducting quantum interference device[J]. Appl Phys Lett, 1997, 70(8): 1 037-1 039.
[11] Augustine M P, Wong F A, Yarger J L, et al. Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device[J]. Appl Phys Lett, 1998, 72(15): 1 908-1 910.
[12] Seton H C, Hutchison J M S, Bussel D M. A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm[J]. Meas Sci Technol, 1997, 8(2): 198-207.
[13] Burghoff M, Hartwig S, Trams L, et al. Nuclear magnetic resonance in the nanoTesla range[J] Appl Phys Lett, 2005, 87(5): 054 103-1-054 103-3.
[14] McDermott R, Trabesinger A H, Mück M, et al. Liquid-State NMR and scalar couplings in microtesla magnetic fields[J]. Science, 2002, 295(5563), 2 247-2 249.
[15] Koch R H, Sun J Z, Foglietti V, et al. Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field[J]. Appl Phys Lett, 1995, 67(5): 709-781.
[16] Schlenga K, McDermott R, Clarke J, et al. Low-field magnetic resonance imaging with a high-Tc dc superconducting quantum interference device[J]. Appl Phys Lett, 1999, 75(23): 3 695-3 697.
[17] Jacob R E, Morgan S W, Saam B, et al. Wall relaxation of 3He in spinexchange cells[J]. Phys Rev Lett, 2001, 87(14): 143 004-1-143 004-4.
[18] TonThat D M, Ziegeweid M, Song Y -Q, et al. SQUID detected NMR of laser-polarized xenon at 4.2 K and at frequencies down to 200 Hz[J]. Chem Phys Lett, 1997, 272(3-4): 245-249.
[19] Ledbetter M P, Romalis M V. Nonlinear effects from dipolar interactions in hyperpolarized liquid 129Xe[J]. Phys Rev Lett, 2002, 89(28): 287 601-1-287 601-4.
[20] Yang H C, Liao S H, Horng H E, et al. Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high Tc superconducting quantum interference device[J]. Appl Phys Lett, 2006, 88(25): 252 505-1-252 505-3
[21] Wong F A, Saxena S, Moulé A J, et al. Laser-polarized 129Xe NMR and MRI at ultralow magnetic fields[J]. J Magn Reson, 2002, 157(2): 235-241.
[22] Sassier E, Monfort, Gunther Y C, et al. A H Tc superconducting quantum interference device preamplifier stage to detect 3He nuclear precession[J]. Rev Sci Instrum, 1999, 70(7): 3 040-3 045.
[23] Liao S H, Yang H C, Horng H H, et al. Sensitive J-coupling spectroscopy using high Tc superconducting quantum interference devices in magnetic fields as low as microteslas[J]. Supercon Sci Technol, 2009, 22(4): 045 008-1-045 008-4. |