[1] Dorfer L, Moser M, Spindler K, et al. A medical report from the stone age?[J]. Lancet, 1999, 354: 1 023-1 025.
[2] Lewith G T, White P J, Pariente J. Investigating acupuncture using brain imaging techniques: The current state of play[J]. eCAM, 2005, 2: 315-319.
[3] Cho Z H, Chung S C, Jones J P, et al. New findings of the correlation between acupoints and corresponding brain cortices using functional MRI[J]. Proc Natl Acad Sci USA, 1998, 95: 2 670-2 673.
[4] Hui K K S, Liu J, Makris N , et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: Evidence from fMRI studies in normal subjects[J]. Hum Brain Mapp, 2000, 9: 13-25.
[5] Wu M T, Sheen J M, Chuang K H S, et al. Neuronal specificity of acupuncture response: A fMRI study with electroacupuncture\[J\]. Neuroimage, 2002, 16: 1 028-1 037.
[6] Siedentopf C M, Golaszewski S M, Mottaghy F M, et al. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans[J]. Neurosci Lett, 2002, 327: 53-56.
[7] Kong J A, Ma L, Gollub R L, et al. A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods[J]. J Altern Complement Med, 2002, 8: 411-419.
[8] Yoo S S, Teh E K, Blinder R A, et al. Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study[J]. Neuroimage, 2004, 22: 932-940.
[9] Hui K K S, Liu J, Marina O, et al. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI[J]. Neuroimage, 2005, 27: 479-496.
[10] Kong J, Gollub R L, Rosman I S, et al. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance Imaging[J]. J Neurosc, 2006, 26: 381-388.
[11] Napadow V, Makris N, Liu J, et al. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI[J]. Hum Brain Mapp, 2005, 24: 193-205.
[12] Whittaker P. Laser acupuncture: past, present, and future[J]. Lasers Med Sci, 2004, 19: 69-80.
[13] Siedentopf C M, Golaszewski S M, Mottaghy F M, et al. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans[J]. Neurosci Lett, 2002, 327: 53-56.
[14] Litscher G, Rachbauer D, Ropele S, et al. Acupuncture using laser needles modulates brain function: first evidence from functional transcranial Doppler sonography and functional magnetic resonance imaging[J]. Lasers Med Sci, 2004, 19: 6-11.
[15] Siedentopf C M, Koppelstaetter F, Haala I A, et al. Laser acupuncture induced specific cerebral cortical and subcortical activations in humans[J]. Lasers Med Sci, 2005, 20: 68-73.
[16] Siedentopf C M, Ischebeck A, Haala I A, et al. Neural correlates of transmeatal cochlear laser (TCL) stimulation in healthy human subjects[J]. Neurosci Lett, 2007, 411: 189-193.
[17] Shang C. Prospective Tests on Biological Models of Acupuncture[J]. eCAM, 2009, 6: 31-39.
[18] Dhond R P, Yeh C, Park K, et al. Acupuncture modulates resting state connectivity in default and sensorimotor brain networks[J]. Pain, 2008, 136: 407-418.
[19] Wu C W W, Hong Gu H, Lu H B, et al. Frequency specificity of functional connectivity in brain networks[J]. NeuroImage, 2008, 42: 1 047-1 055.
[20] Ulett G A, Han S, Han J S. Electroacupuncture: Mechanisms and clinical application[J]. Biol Psychiatry, 1998, 44: 129-138.
[21] Han J S. Acupuncture: neuropetide release produced by electrical stimulation of different frequencies[J]. Trends Neurosci, 2003, 26: 17-22.
[22] Zhang W T, Jin Z, Cui G H, et al. Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study[J]. Brain Res, 2003, 982: 168-178.
[23] Komori M, Takada K, Tomizawa Y, et al. Microcirculatory responses to acupuncture stimulation and phototherapy[J]. Anesth Analg, 2009, 108: 635-40.
[24] Kong J A, Ma L, Gollub R L, et al. A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods[J]. J Altern Complement Med, 2002, 8: 411-419.
[25] Rushworth M F S, Walton1 M E, Kennerley S W, et al. Action sets and decisions in the medial frontal cortex[J]. Trends Cogn Sci, 2004, 8: 410-417.
[26] Pardo J V, Fox P T, Raichle M E. Localization of a human system for sustained attention by positron emission tomography[J]. Nature, 1991, 349: 61-4.
[27] Jenkins I H, Brooks D J, Nixon P D, et al. Motor sequence learning: a study with positron emission tomography[J]. J Neurosci, 1994, 14: 3775-90.
[28] Vickery T J, Jiang Y V. Inferior parietal lobule supports decision making under uncertainty in humans[J]. Cerebral Cortex, 2009, 19: 916-925.
[29] Eichenbaum H, Yonelinas A P, Ranganath C. The medial temporal lobe and recognition Memory[J]. Annu Rev Neurosci, 2007, 30: 123-52.
[30] Wagner A D, Shannon B J, Kahn I, et al. Parietal lobe contributions to episodic memory retrieval[J]. Trends Cogn Sci, 2005, 9: 445-453.
[31] McCarthy G, Puce A, Constable R T, et al. Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI[J]. Cereb Cortex, 1996, 6: 600-611.
[32] Cavanna A E, Trimble M R. The precuneus: a review of its functional anatomy and behavioural correlates[J]. Brain, 2006, 129: 564-583.
[33] Maciocia G. The channels of acupuncture: Clinical use of the secondary channels and eight extraordinary vessels[M]. Churchill Livingstone: Elsevier, 2006.
[34] Kuperberg G, Heckers S. Schizophrenia and cognitive function[J]. Curr Opin Neurobiol, 2000, 10: 205-210.
[35] Shenton M E, Dickey C C, Frumin M, et al. A review of MRI findings in schizophrenia[J]. Schizophr Res, 2001, 49: 1-52.
[36] Kindermanna S S, Brown G G, Zorrillac L E, et al. Spatial working memory among middle-aged and older patients with schizophrenia and volunteers using fMRI[J]. Schizophr Res, 2004, 68: 203-216.
[37] Hof P R, Haroutunian V, Friedrich V L Jr, et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia[J]. Biol Psychiatry, 2003, 53: 1 075-1 085.
[38] Garrity A G, Pearlson G D, McKiernan K, et al. Aberrant 'Default Mode' functional connectivity in schizophrenia[J]. Am J Psychiat, 2007, 164: 450-457.
[39] Litscher G. Ten years evidence-based high-tech acupuncture -A short review of peripherally measured effects (Part I) [J]. eCAM, 2009, 6: 153-158.
[40] Litscher G. Ten years evidence-based high-tech acupuncture -A short review of centrally measured effects (Part II)[J]. eCAM, 2009, 6: 305-314.
[41] Wang Lin Y Y, Chan S L, Wu Y E, et al. Resonance- the missing phenomenon in hemodynamics[J]. Circ Res, 1991, 69: 246-249.
[42] Wang W K, Hsu T L, Cheng H C, et al. Effect of acupuncture at Tsu San Li(St-36) on the pulse spectrum[J]. Am J Chin Med, 1995, 23: 121-130.
[43] Wang W K, Hsu T L, Cheng H C, et al. Effect of acupuncture at Tai Tsih (K-3) on the pulse spectrum[J]. Am J Chin Med, 1996, 24: 305-313. |