波谱学杂志 ›› 1999, Vol. 16 ›› Issue (6): 553-558.

• 研究论文 • 上一篇    下一篇

氨基酸原子电距矢量表达与核磁共振碳谱模拟

李志良1, 彭海蛟1, 夏之宁1, 刘树深2, 周丽平1, 余般梅3   

  1. 1. 重庆大学环境与化学化工学院, 重庆 40004;
    2. 重庆大学生物工程学院, 重庆 40004;
    3. 国防科学技术大学应用物理系, 长沙 410073
  • 收稿日期:1999-07-14 修回日期:1999-09-21 出版日期:1999-12-05 发布日期:2018-01-13
  • 作者简介:李志良,男,1962年出生,博士,教授
  • 基金资助:
    国家教委霍英东基金和机械部优秀人才专项基金及国家"春晖计划"教育部启动基金资助项目

ON VAED CHARACTERIZATION AND 13C NMR SIMULATION FOR AMINO ACIDS

LI Zhiliang1, PENG Haijiao1, XIA Zhining1, LIU Shushen2, ZHOU Liping1, YU Banmei3   

  1. 1. College of Environmental and Chemical Engineering, Chongqing University, Chongqing 400044;
    2. Collop of Biological Engineering, Chongqing University, Chongqing 400044;
    3. Changsha Institute of Technology, Changsha 410073
  • Received:1999-07-14 Revised:1999-09-21 Online:1999-12-05 Published:2018-01-13

摘要: 提出以原子电性距离矢量(VAED)描述20种天然氨基酸中不同等价碳原子的化学环境,结合γ效应校正与碳原子类型,建立核磁共振碳谱(13CNMR)化学位移(CS)的五参数线性模型.用于氨基酸分子中4类不同的等价碳原子化学位移的估计,复相关系数分别为R=0.9864,0.9513,0.9463,0.9567;均方根误差分别为RMS=0.5544,2.5232,11.3096,4.9098ppm经交互校验,模型稳定性较好.并综合几种处理方法,找到一种较好的建模方法,将它用于4个外部样本化学位移的定量预测,结果良好.

关键词: 原子电性距离矢量(VAED), 13CNMR波谱模拟, γ效应校正, π效应, 氨基酸

Abstract: In bioorganic analysis, abundant structural information can be provided by 13C NMR,and more and more attentions have recently been paid on its molecular modelling and quantitative prediction on the basis of the relationship of chemical shift of carbon nuclear magneticresonance with descriptor variables of chemical structure. By using multiple linear regression(MLR) and factor analysis (FA) techniques, quantitative 13C NMR models are achieved toaccurately express correlation of 13C NMR chemical shifts with structural parameters and tosucessfully predict the chemical shift (CS) of any other compounds optimally. First, the history and progress in quantitative-strycture-spectra relationship (QSSR) were critically reviewed. MLR and FA were simply introduced. Next, Matlab and True Basic programs forquantitative molecular modelling (QMM) were designed by ourselves. Then, investigation ofNMR CS for all 20 natural amino acids was estimated and predicted with the atom distanceedge vector (ADEV) and γ calibration, the result indicated that there exists a simply multiple linear relationship between CS and ADEV.

Key words: NMR, Multiple linear regression, Factor analysis, Atom distance-edge vector, γ calibration, π-efect, Chemical shift, Quantitative structure-spectra relationship, Amino acids