波谱学杂志 ›› 2018, Vol. 35 ›› Issue (4): 407-416.doi: 10.11938/cjmr20182642

• 研究论文 • 上一篇    下一篇

基于COLLATE融合多图谱的心脏电影MRI右心室分割

王丽嘉1, 苏新宇1, 李亚1, 胡立伟2, 聂生东1   

  1. 1. 上海理工大学 医疗器械与食品学院, 上海 200093;
    2. 上海交通大学医学院附属上海儿童医学中心 影像诊断中心, 上海 200127
  • 收稿日期:2018-04-27 出版日期:2018-12-05 发布日期:2018-06-25
  • 通讯作者: 聂生东,Tel:021-55271116,E-mail:nsd4647@163.com. E-mail:nsd4647@163.com
  • 基金资助:
    上海市卫生和计划生育委员会科研课题(20164Y0150).

Segmentation of Right Ventricle in Cardiac Cine MRI Using COLLATE Fusion-Based Multi-Atlas

WANG Li-jia1, SU Xin-yu1, LI Ya1, HU Li-wei2, NIE Sheng-dong1   

  1. 1. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. Department of Diagnostic Imaging Center, Shanghai Children's Medical Center(Shanghai Jiao Tong University School of Medicine), Shanghai 200127, China
  • Received:2018-04-27 Online:2018-12-05 Published:2018-06-25

摘要: 右心室分割对肺动脉高压等疾病的心功能分析具有重要的临床意义.然而,右心室心肌薄、易变且不规则,其传统的医学图像分割方法仍然未能取得突破性进展.本文提出基于COLLATE(Consensus Level,Labeler Accuracy and Truth Estimation)的多图谱分割方法,首先以归一化互信息为相似测度对目标图像和图谱集进行B样条配准以获取粗分割结果;然后利用COLLATE对粗分割结果进行融合;最后采用基于形状约束的区域生长算法修正出现错误的数据.10例临床心脏磁共振短轴电影图像被用于算法验证.本文还将使用基于COLLATE的多图谱分割方法得到的结果与深度学习算法及手动分割进行了比较.结果显示与深度学习算法比较,使用本文算法得到的射血分数(Ejection Fraction,EF)与手动分割更加一致和相关,表明该算法的分割结果有望辅助临床心脏功能诊断.

关键词: 右心室, 心脏磁共振电影成像, 多图谱分割, COLLATE融合

Abstract: Cardiac right ventricle (RV) segmentation plays an essential role in the functional analysis of heart diseases, such as pulmonary hypertension. The myocardium of RV is thin and irregular-shaped, making the traditional segmentation methods less effective. To improve RV segmentation, a COLLATE (Consensus Level, Labeler Accuracy and Truth Estimation) fusion-based multi-atlas method was developed. The preprocessed target image was first registered to atlas images with a B-spline algorithm optimizing normalized mutual information. The registration coefficients obtained were then used to get a rough RV segmentation for COLLATE fusion. Shape-constrained region growing algorithm was used to correct the segmentation errors. Ten cardiac magnetic resonance datasets were blindly selected to compare the performance of RV segmentation between the method developed and a method based on deep learning. The results of manual segmentation were used as the golden standard. Ejection fraction (EF) calculated with the proposed segmentation method showed better correlation and consistency with the golden standard, relative to the results calculated with the deep learning method.

Key words: cardiac right ventricle, cardiac cine magnetic resonance imaging, multi-atlas segmentation, COLLATE fusion

中图分类号: