[1] Bin R, Wang X X, Zeng C N. The Bonnesen-type inequalities for plane closed curves. Acta Math Sci, 2022, 42B(6): 1601-1609 [2] Chavel I. Isoperimetric Inequalities.Differential Geometric and Analytic Perspectives, Cambridge Tracts in Math, 145. Cambridge: Cambridge University Press, 2001 [3] Chernoff P R. An area-width inequality for convex curves. Amer Math Monthly, 1969, 76: 34-35 [4] Dergiades N. An elementary proof of the isoperimetric inequality. Forum Geom, 2002, 2: 129-130 [5] Fang J B. A reverse isoperimetric inequality for embedded starshaped plane curves. Arch Math (Basel), 2017, 108(6): 621-624 [6] Fang J B, Yang Y L. Chernoff type inequalities involving k-order width and their stability properties. Results Math, 2023, 78(3): 101-114 [7] Figalli A, Maggi F, Pratelli A. A mass transportation approach to quantitative isoperimetric inequalities. Invent Math, 2010, 182(1): 167-211 [8] Fusco N, Maggi F, Pratelli A. The sharp quantitative isoperimetric inequality. Ann of Math, 2008, 168(3): 941-980 [9] Hall R R. A quantitative isoperimetric inequality in n-dimensional space. J Reine Angew Math, 1992, 428: 161-176 [10] Lutwak E. Mixed width-integrals of convex bodies. Israel J Math, 1977, 28(3): 249-253 [11] Lutwak E. Intersection bodies and dual mixed volumes. Adv in Math, 1988, 71(2): 232-261 [12] Lutwak E. Dual mixed volumes. Pacific J Math, 1975, 58(2): 531-538 [13] Mao Y Y, Yang Y L. A generalized mixed width inequality and a generalized dual mixed radial inequality. Results Math, 2019, 74(3): 123-134 [14] Ou K, Pan S L. Some remarks about closed convex curves. Pacific J Math, 2010, 248(2): 393-401 [15] Osserman R. The isoperimetric inequalities. Bull Amer Math Soc, 1978, 84(6): 1182-1238 [16] Pan S L, Xu H P. Stability of a reverse isoperimetric inequality. J Math Anal Appl, 2009, 350(1): 348-353 [17] Pan S L, Zhang H. A reverse isoperimetric inequality for convex plane curves. Beiträge Algebra Geom, 2007, 48(1): 303-308 [18] Steiner J. Sur le maximum et le minimum des figures dans le plan, sur la sphère, et dans l'espace en général, I and II. J Reine Angew Math (Crelle), 1842, 24: 93-152 and 189-250 [19] Xu W X, Zhou J Z, Zhu B C.Bonnesen-style symmetric mixed isoperimetric inequality// Suh Y J, Berndt J, Ohnita Y, et al. Real and Complex Submanifolds. Tokyo: Springer, 2014: 97-107 [20] Zeng C N, Ma L, Zhou J Z, Chen F W. The Bonnesen isoperimetric inequality in a surface of constant curvature. Sci China Math, 2012, 55(9): 1913-1919 [21] Zeng C N, Wang Y L, Ma L. The log-Minkowski inequality of curvature entropy for convex bodies. Sci Sin Math, 2024, 54(6): 823-838 [22] Zeng C N, Zhou J Z, Yue S S. A symmetric mixed isoperimetric inequality for two planar convex domains. Acta Math Sinica (Chinese Ser), 2012, 55(2): 355-362 [23] Zhang D Y. A mixed symmetric Chernoff type inequality and its stability properties. J Geom Anal, 2021, 31(5): 5418-5436 [24] Zhang D Y, Yang Y L. The dual generalized Chernoff inequality for star-shaped curves. Turkish J Math, 2016, 40(2): 272-282 [25] Zhu B C, Li N, Zhou J Z. Isoperimetric inequalities for Lp geominimal surface area. Glasg Math J, 2011, 53(3): 717-726 [26] Zhu B C, Xu W X. Reverse Bonnesen-style inequalities on surfaces of constant curvature. Internat J Math, 2018, 29(6): 1850040 |