[1] Alves C O, Corrêa F, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput Math Appl, 2005, 49(1): 85-93 [2] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14(4): 349-381 [3] Berestycki H, Lions P L. Nonlinear scalar field equations, I: Existence of a ground state. Arch Rational Mech Anal, 1983, 82(4): 313-345 [4] Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(4): 437-477 [5] Cheng B, Wu X. Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal, 2009, 71(10): 4883-4892 [6] Cui L, Guo J, Li G. The existence and local uniqueness of multi-peak solutions to a class of Kirchhoff type equations. Acta Math Sci, 2023, 43B(3): 1131-1160 [7] Figueiredo G M, Ikoma N, Santos Júnior J R. Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch Ration Mech Anal, 2014, 213: 931-979 [8] Guo H, Zhang Y, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Commun Pure Appl Anal, 2018, 17(5), 1875-1897 [9] Guo H, Zhou H S. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete Contin Dyn Syst, 2021, 41(3): 1023-1050 [10] Guo Z. Ground states for Kirchhoff equations without compact condition. J Differential Equations, 2015, 259(7): 2884-2902 [11] He F, Qin D, Tang X. Existence of ground states for Kirchhoff-type problems with general potentials. J Geom Anal, 2021, 31: 7709-7725 [12] He X, Zou W. Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal, 2009, 70(3): 1407-1414 [13] He X, Zou W. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J Differential Equations, 2012, 252(2): 1813-1834 [14] He Y, Li G. Standing waves for a class of Kirchhoff type problems in R3 involving critical Sobolev exponents. Calc Var Partial Differential Equations, 2015, 54: 3067-3106 [15] He Y, Li G, Peng S. Concentrating bound states for Kirchhoff type problems in R3 involving critical Sobolev exponents. Adv Nonlinear Stud, 2014, 54(2): 483-510 [16] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN. Proc Roy Soc Edinburgh Sect A, 1999, 129(4): 787-809 [17] Jia H, Li G. Multiplicity and concentration behaviour of positive solutions for Schrödinger-Kirchhoff type equations involving the p-Laplacian in RN. Acta Math Sci, 2018, 38(2): 391-418 [18] Kirchhoff G.Mechanik. Leipzig: Teubner, 1883 [19] Li A, Su J. Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in R3. Z Angew Math Phys, 2015, 66(6): 3147-3158 [20] Li G, Niu Y, The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation. Acta Math Sci, 2020, 40B(1): 90-112 [21] Li G, Ye H. Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J Differential Equations, 2014, 257(2): 566-600 [22] Li Y, Li F, Shi J. Existence of a positive solution to Kirchhoff type problems without compactness conditions. J Differential Equations, 2012, 253(7): 2285-2294 [23] Liu Z, Guo S. Existence of positive ground state solutions for Kirchhoff type problems. Nonlinear Anal, 2015, 120: 1-13 [24] Luo L P, Tang C L. Existence and concentration of ground state solutions for critical Kirchhoff-type equation with steep potential well. Complex Var Elliptic Equ, 2022, 67(7): 1756-1771 [25] Mao A, Zhang Z. Sign-changing and multiple solutions of Kirchhoff type problems without the PS condition. Nonlinear Anal, 2009, 70(3): 1275-1287 [26] Perera K, Zhang Z. Nontrivial solutions of Kirchhoff-type problems via the Yang index. J Differential Equations, 2006, 221(1): 246-255 [27] Sun J, Liu S. Nontrivial solutions of Kirchhoff type problems. Appl Math Lett, 2012, 25(3): 500-504 [28] Xu H. Existence of positive solutions for the nonlinear Kirchhoff type equations in RN. J Math Anal Appl, 2020, 482(2): 123593 [29] Wu M, Tang C. The existence and concentration of ground state sign-changing solutions for Kirchhoff-type equations with a steep potential well. Acta Math Sci, 2023, 43B(4): 1781-1799 [30] Wu X. Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN. Nonlinear Anal Real World Appl, 2011, 12(2): 1278-1287 [31] Wang J, Tian L, Xu J, et al. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253(7): 2314-2351 [32] Ye H. Positive high energy solution for Kirchhoff equation in R3 with superlinear nonlinearities via Nehari-Pohozaev manifold. Discrete Contin Dynam Systems, 2015, 35(8): 3857-3877 [33] Zhang F, Du M. Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well. J Differential Equations, 2020, 269(11): 10085-10106 |