[1] Abdallah T. Conditions suffisantes de sous-ellipticité pour ¯∂ C R Acad Sci Paris Sér I Math, 1983, 296(10):427-429 [2] Baouendi S, Ebenfelt P, Rothschild L. Real Submanifolds in Complex Space and Their Mappings. Princeton:Princeton University Press, 1999 [3] Bloom T, Graham I. A geometric characterization of points of type m on real submanifolds of Cn J Differ Geom, 1977, 12:171-182 [4] Bloom T. Remarks on type conditions for real hypersurfaces in Cn//Several Complex Variables-Proceedings of International Conferences, Cortona, Italy 1976-1977. Scuola Norm Sup Pisa, 1978:14-24. [5] Bloom T. On the contact between complex manifolds and real hypersurfaces in C3 Trans Amer Math Soc, 1981, 263(2):515-529 [6] Catlin D. Subelliptic estimates for the ¯∂-Neumann problem on pseudoconvex domains. Ann Math, 1987, 126(1):131-191 [7] Chen Y, Yin W, Yuan P. The commutator type and the Levi form type in C3 J Math, 2020, 40(4):389-394 [8] Cho S, You Y. On sharp Hölder estimates of the Cauchy-Riemann equation on pseudoconvex domains in Cn with one degenerate eigenvalue. Abstr Appl Anal, 2015, 2015:1-6 [9] D'Angelo J. Real hypersurfaces, orders of contact, and applications. Ann of Math, 1982, 115(3):615-637 [10] D'Angelo J. Iterated commutators and derivatives of the Levi form//Complex analysis. Berlin-Heidelberg:Springer, 1987:103-110 [11] D'Angelo J. Several Complex Variables and the Geometry of Real Hypersurfaces. Boca Raton:CRC Press, 1993 [12] D'Angelo J, Kohn J. Subelliptic estimates and finite type, several complex variables//Math Sci Res Inst Publ 37. Cambridge:Cambridge Univ Press, 1999:199-232 [13] Diederich K, Fornaess J. Pseudoconvex domains with real analytic boundary. Ann of Math, 1978, 107(3):371-384 [14] Freeman M. The Levi form and local complex foliations. Proc Am Math Soc, 1976, 57(2):369-370 [15] Huang X, Yin W. Regular multi-types and the Bloom conjecture. J Math Pures Appl, 2021, 146(9):69-98 [16] Kohn J. Harmonic integrals on strongly pseudoconvex manifolds I. Ann of Math, 1964, 79(3):450-472 [17] Kohn J. Boundary behaviour of ¯∂ on weakly pseudoconvex manifolds of dimension two. J Differ Geom, 1972, 6(4):523-542 [18] Kohn J. Subellipticity of the ¯∂-Neumann problem on pseudoconvex domains:sufficient conditions. Acta Math, 1979, 142(1/2):79-122 |