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Abstract This paper deals with a class of porous medium equation

ut = ∆um + f(u)

with homogeneous Dirichlet boundary conditions. The blow-up criteria is established by

using the method of energy under the suitable condition on the function f(u).
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1 Introduction

In this paper, we consider the following porous equation with sources















ut = ∆um + f(u), (x, t) ∈ Ω × [0, T );

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T );

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain of RN , N > 2, with a smooth boundary ∂Ω, m > 1 and f(u) is a

continuous function satisfying some conditions to be given later, u0(x) is a nonnegative function

and u0 ∈ L∞(Ω)∩W 1,p
0 (Ω). Problem (1.1) arises from nonlinear fluid dynamics, see [1]. When

m = 1, the blow-up properties of the semi-linear heat equation (1.1) were investigated by many

researchers, see the survey [2]. The cases of fast diffusion were extensively studied for (1.1), we

refer the readers to [3–7].

The problems on blow-up to nonlinear parabolic equations were intensively studied (see

[8, 16]). The works mentioned above, the authors discussed Fujita exponents to ensure the
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properties of blowing up by applying upper-lower solutions. To the best of our knowledge,

there are a fewer works deals with blow-up solutions when the initial energy is positive. We

can refer to [9–11]. Motivated by the above works, in this paper we establish a blow-up result

for certain solution with positive initial energy. For the sake of simplicity, we assume that

inf

{
∫

Ω

F (u)dx : |u| = 1

}

> 0, (1.2)

where F (u) =
∫ u

0
msm−1f(s)ds and B is the optimal constants of the embedding inequality

(
∫

Ω

rF (u)dx

)
1
r

≤ B‖∇um‖2, u
m ∈ H1

0 (Ω). (1.3)

That is

B−1 = inf
um∈H1

0
(Ω),u6=0

‖∇um‖2

(
∫

Ω
rF (u)dx)

1
r

,

where r ∈ (2, 2N
N−2 ] is a fixed positive constant. In this paper, the norm ‖ · ‖p denotes ‖ · ‖Lp(Ω).

Let

α1 = B− r
r−2 , E1 =

(

1

2
− 1

r

)

B− 2r
r−2 , (1.4)

and

E(t) =
1

2

∫

Ω

|∇um|2dx −
∫

Ω

F (u)dx. (1.5)

It is easy to verify that the following conclusion holds

E′(t) = −
∫

Ω

mum−1u2
t dx = − 4m

(m + 1)2

∫

Ω

(u
m+1

2 )2t , t > 0. (1.6)

The rest of this paper is organized as follows. In Section 2, we give the definition of

weak solutions to problem (1.1) and some preliminaries. The proofs of the main results will be

presented in Section 3.

2 Preliminaries

It is well known that the equation in (1.1) is degenerate if m > 1, and therefore there is

no classical solution in general. We begin with the definition of a weak solution of (1.1).

Definition 2.1 A function u with um ∈ L∞(Ω × (0, T )) ∩ L2(0, T ; H1
0(Ω)), (u

m+1

2 )t ∈
L2(Ω × (0, T )) is called a solution of problem (1.1) in QT , if the following holds

∫

Ω

u0(x)ϕ(x, 0)dx +

∫ ∫

QT

[uϕt −∇um · ∇ϕ + fϕ]dxdt = 0 (2.1)

for any ϕ ∈ Φ, and u satisfies the initial condition u(x, 0) = u0(x) ∈ L∞(Ω), where

Φ = {ϕ|ϕ ∈ H1(QT ), ϕ(x, T ) = 0, ϕ(x, t)|∂Ω = 0}.

We have the following lemma with a similar method in [12].

Lemma 2.1 Let h(s) ∈ C1(R), f(s) ∈ C(R) satisfy

h(s) > 0, |msm−1f(s)| ≤ h(sm), (2.2)
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then for any u0 ∈ L∞(Ω) ∩ W 1,p
0 (Ω), there exists a T ′ ∈ (0, T ) such that problem (1.1) has a

solution u with

um ∈ L∞(Ω × (0, T ′)) ∩ L2((0, T ′); H1
0 (Ω)), (u

m+1

2 )t ∈ L2(Ω × (0, T ′)).

Proof We consider the following regularization problem

ut = △um + f(u), x ∈ Ω, 0 < t < T, (2.3)

u(x, t) = ε, x ∈ ∂Ω, 0 < t < T, (2.4)

u(x, 0) = u0(x) + ε, x ∈ Ω, (2.5)

where 0 < ε < 1, u0ε(x) satisfies

|(u0ε + ε)m|L∞(Ω) ≤ |(u0(x) + 1)m|L∞(Ω),

|∇um
0ε|L2(Ω) ≤ |∇um

0 |L2(Ω),

(u0ε)
m → um

0 in H1(Ω).

By [13] we know that problem (2.3)–(2.5) has a classical solution uε(x, t) and uε(x, t) ≥ ε

in Ω × [0, T ).

First, we can claim that there exists a T ′ ∈ (0, T ) and a constant M such that

|um
ε |L∞(Ω×(0,T ′)) ≤ M for all 0 < ε < 1. (2.6)

To prove this, let w(t) be the solution of the ordinary differential equation

dw

dt
= h(w), (2.7)

w(0) = |(u0(x) + 1)m|L∞(Ω). (2.8)

By standard theory, Chapter one in [14], there exists a T1 ∈ (0, T ), which depends on the

initial value |(u0(x) + 1)m|L∞(Ω), such that the problem (2.7) and (2.8) has a solution w on

[0, T1]. Let φ(x, t) = um
ε − w, by (2.2) it follows that

mum−1
ε f(uε) − h(w) ≤ h(um

ε ) − h(w) = (um
ε − w)

∫ 1

0

h′(θum
ε + (1 − θ)w)dθ = Cε(x, t)φ.

Then φ satisfies the following inequalities















φt − m(φ + w)
m−1

m ∆φ − Cε(x, t)φ ≤ 0 in Ω × [0, T1],

φ(x, t) ≤ εm − |(u0(x) + 1)m|L∞(Ω) ≤ 0 in ∂Ω × [0, T1],

φ(x, 0) = (u0ε(x) + ε)m − |(u0(x) + 1)m|L∞(Ω) ≤ 0 in Ω̄.

By comparison theorem, we can have φ ≤ 0 on (Ω × (0, T1)). Furthermore, it follows that

|um|L∞(Ω×(0,T1)) ≤ max
t∈[0,T1]

w(t).

Let T ′ = T1

2 , M = w(T ′), we derive that

|um
ε |L∞(Ω×(0,T ′)) ≤ M.
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Second, we may derive that

∫ T ′

0

∫

Ω

|∇um
ε |2dxdt ≤ C1, (2.9)

∫ T ′

0

∫

Ω

∣

∣

∣

∣

∂u
m+1

2
ε

∂t

∣

∣

∣

∣

2

dxdt ≤ C2, (2.10)

where C1, and C2 only depend on T ′. Multiplying (2.3) by um
ε and integrating in Ω × (0, T ′),

we have

1

m + 1

∫

Ω

um+1
ε (x, T ′)dx − 1

m + 1

∫

Ω

(u0ε + ε)m+1dx

= −
∫ T ′

0

∫

Ω

|∇um
ε |2dxdt +

∫ T ′

0

∫

Ω

fum
ε dxdt.

By (2.6), it follows that

∫ T ′

0

∫

Ω

|∇um
ε |2dxdt ≤ 1

m + 1

∫

Ω

(u0(x) + ε)m+1dx − 1

m + 1

∫

Ω

um+1
ε (x, T ′)dx

+M

∫ T ′

0

∫

Ω

f(x, t)dxdt = C1.

Multiplying (2.3) by mum−1
ε uεt and integrating over Ω × (0, T ′), we obtain that

∫ T ′

0

∫

Ω

mum−1
ε |uεt|2dxdt = −1

2

∂

∂t

∫ T ′

0

∫

Ω

|∇um
ε |2dxdt + m

∫ T ′

0

∫

Ω

fum−1
ε uεtdxdt

= −1

2

∫

Ω

|∇um
ε (x, T ′)|2dx +

1

2

∫

Ω

|∇um
ε (x, 0)|2dx

+

∫ T ′

0

∫

Ω

√
m

√

um−1
ε uεt

√
m

√

um−1
ε fdxdt.

By Cauchy inequality, we have

∫ T ′

0

∫

Ω

mum−1
ε |uεt|2dxdt ≤ m

∫ T ′

0

∫

Ω

um−1
ε |f |2dxdt + |∇um

0 |L2(Ω).

Furthermore, we can conclude from the above inequality that

∫ T ′

0

∫

Ω

∣

∣

∣

∣

∂u
m+1

2
ε

∂t

∣

∣

∣

∣

2

dxdt =
(m + 1)2

4m

∫ T ′

0

∫

Ω

mum−1
ε |uεt|2dxdt ≤ C2.

Finally, inequalities (2.6), (2.9), and (2.10) imply that there is a subsequence {uεk
} ⊂ {uε}

and a function u ∈ L∞(Ω × (0, T ′)) such that as εk → 0

uεk
→ u a.e. on Ω × (0, T ′),

∂u
m+1

2
εk

∂t
⇀

∂u
m+1

2

∂t
in L2(Ω × (0, T ′)),

∇um
εk

⇀ ∇um in L2(Ω × (0, T ′)).
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By Definition 2.1 and equation (2.1)–(2.3), Lemma 2.1 follows by a standard limiting

process.

By the idea of Vitillaro in [15], we can have the following two lemmas. 2

Lemma 2.2 Let u be a solution of problem (1.1). Assume that E(0) < E1 and ‖∇um
0 ‖2 >

α1. Then there exists a positive constant α2 > α1 such that

‖∇um‖2 > α2, ∀t ≥ 0, (2.11)

and
(

r

∫

Ω

F (u)dx

)
1
r

≥ Bα2, ∀t ≥ 0. (2.12)

Proof By (1.3) and (1.5), we have

E(t) ≥ 1

2
‖∇um‖2

2 −
Br

r
‖∇um‖r

2 :=
1

2
α2 − 1

r
Brαr := g(α), (2.13)

where α = ‖∇um‖2. It is easy to verify that the function g is increasing for 0 < α < α1;

decreasing for α > α1; g(α) → −∞ as α → +∞, and g(α1) = E1, where α1 is given in (1.4).

Since E(0) < E1, there exists an α2 > α1 such that g(α2) = E(0). Let α0 = ‖∇um
0 ‖p > α1,

then by (1.6), we have g(α0) ≤ E(0) = g(α2), which implies that α0 ≥ α2. To establish

(2.11), we argue by contradiction that ‖∇u(·, t0)‖2 < α2 for some t0 > 0. By the continuity of

‖∇um(·, t0)‖2, we can choose t0 such that ‖∇um(·, t0)‖p > α1. It follows from (2.13) that

E(t0) ≥ g(‖∇um(·, t0)‖2) > g(α2) = E(0).

This is impossible since E(t) ≤ E(0) for all t ≥ 0. Hence (2.11) is established.

To prove (2.12), we exploit (1.5) to see that

1

2
‖∇um‖2 ≤ E(0) +

∫

Ω

F (u)dx. (2.14)

Consequently,

∫

Ω

F (u)dx ≥ 1

2
‖∇um‖2 − E(0) ≥ 1

2
α2

2 − g(α2) =
1

r
Brαr

2.

This completes the proof of Lemma 2.2. 2

In the remainder of this section, we consider the case that E(0) < E1 and ‖∇um
0 ‖2 > α1,

we set

H(t) = E1 − E(t), t ≥ 0. (2.15)

Then we have

Lemma 2.3 For all t > 0,

0 < H(0) ≤ H(t) ≤
∫

Ω

F (u)dx. (2.16)

Proof By (1.6), we can see that H ′ ≥ 0. Thus

H(t) ≥ H(0) = E1 − E(0) > 0. (2.17)
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From (1.5), (2.15) we obtain

H(t) = E1 −
1

2
‖∇um‖2

2 +

∫

Ω

F (u)dx.

Exploiting (1.4) and (2.11), we have

E1 −
1

2
‖∇um‖2

2 ≤ E1 −
1

2
α2

1 = −1

r
Brαr

1 < 0, ∀t ≥ 0.

Hence

H(t) ≤
∫

Ω

F (u)dx, ∀t ≥ 0. 2

3 Main Result and Proof

In this section, we prove the main result by the energy method.

Theorem 3.1 Assume that N > 2, 2 < r ≤ 2N
N−2 , let f(s) satisfy (1.2), (1.3), (2.2) and

smf(s) ≥ rF (s) ≥| s |mr . (3.1)

Furthermore, assume that um
0 ≥ 0 and

E(0) < E1. (3.2)

Then the solution u(x, t) of problem (1.1) blows up in finite time.

Proof Define

G(t) =
1

m + 1

∫

Ω

um+1(x, t)dx, (3.3)

then

G′(t) =

∫

Ω

umf(u)dx −
∫

Ω

| ∇um |2 dx. (3.4)

We replace
∫

Ω | ∇um |2 dx by (1.5) and (2.15), then (3.4) is equivalent to

G′(t) =

∫

Ω

umf(u)dx − 2E(t) − 2

∫

Ω

F (u)dx

=

∫

Ω

umf(u)dx − 2

∫

Ω

F (u)dx + 2H(t) − 2E1. (3.5)

By using (1.4) and (2.12), we have

2E1 = (r − 2)
1

r
α2

1 = (r − 2)
1

r
Brαr

1

=
αr

1

αr
2

(r − 2)
1

r
Brαr

2 ≤ αr
1

αr
2

(r − 2)

∫

Ω

F (u)dx. (3.6)

It follows from (3.1) (3.5) and (3.6) that

G′(t) ≥
∫

Ω

umf(u)dx −
[

αr
1

αr
2

(r − 2) + 2

]
∫

Ω

F (u)dx + 2H(t)

≥
∫

Ω

rF (u)dx −
[

αr
1

αr
2

(r − 2) + 2

]
∫

Ω

F (u)dx + 2H(t)

= C

∫

Ω

F (u)dx + 2H(t) ≥ 0, (3.7)
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where C =
(

1 − αr
1

αr
2

)

(r − 2) > 0.

Next we estimate G
mr

m+1 (t). By Hölder′s inequality, we get

G
mr

m+1 ≤ k‖um‖r
r ≤ rk

∫

Ω

F (u)dx, (3.8)

where k = ( 1
m+1 )

mr
m+1 | Ω | mr

m+1
−1. By (3.7) and (3.8), we have

G′(t) ≥ γG
mr

m+1 (t), (3.9)

where γ = C/rk. Integrating (3.9) then yields

G
mr

m+1
−1(t) ≥ 1

G1− mr
m+1 (0) − ( mr

m+1 − 1)γt
.

Therefore G(t) blows up in a time T ∗ ≤ G
1− mr

m+1 (0)
( mr

m+1
−1)γ , so does u(x, t). 2
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