Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

数学物理学报, 2025, 45(3): 665-686

基于小波基的乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的 Plancherel-Pôlya 型刻画

李子燕,, 陶祥兴,*

浙江科技大学理学院 杭州 310023

Plancherel-Pôlya Type Characterization of Product Weighted Besov and Product Weighted Triebel-Lizorkin Spaces Based on Wavelet Basis

Li Ziyan,, Tao Xiangxing,*

School of Science, Zhejiang University of Science and Technology, Hangzhou 310023

通讯作者: *E-mail: xxtao@zust.edu.cn

收稿日期: 2024-05-20   修回日期: 2025-01-26  

基金资助: 国家自然科学基金(12271483)
浙江科技大学研究生科研创新基金(2023yjskc23)

Received: 2024-05-20   Revised: 2025-01-26  

Fund supported: NSFC(12271483)
Postgraduate Research Innovation Fund of Zhejiang University of Science and Technology(2023yjskc23)

作者简介 About authors

E-mail:liziyan0918@163.com

摘要

在 Coifman 与 Weiss 意义下的乘积齐型空间上, 该文利用小波基引入乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间, 通过乘积 Calderón 再生公式和几乎正交估计建立乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的 Plancherel-Pôlya 型等价刻画, 函数空间及其范数独立于正交小波基的选取.

关键词: 加权 Besov 空间; 加权 Triebel-lizorkin 空间; 齐型空间; Plancherel-Pôlya 型刻画

Abstract

On the product spaces of homogeneous type in the sense of Coifman and Weiss, this paper introduces the product weighted Besov space and product weighted Triebel-Lizorkin space based on wavelet basis, and establishes the Plancherel-Pôlya type characterizations of product weighted Besov spaces and product Triebel-Lizorkin spaces via the wavelet reproducing formula and the almost orthogonal estimation, which means that the space are independent of the choice of the orthonormal wavelet basis.

Keywords: weighted Besov space; weighted Triebel-Lizorkin space; spaces of homogeneous type; Plancherel-Pôlya type characterization

PDF (651KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李子燕, 陶祥兴. 基于小波基的乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的 Plancherel-Pôlya 型刻画[J]. 数学物理学报, 2025, 45(3): 665-686

Li Ziyan, Tao Xiangxing. Plancherel-Pôlya Type Characterization of Product Weighted Besov and Product Weighted Triebel-Lizorkin Spaces Based on Wavelet Basis[J]. Acta Mathematica Scientia, 2025, 45(3): 665-686

1 引言

近年来, 齐型空间上 Besov 和 Triebel-Lizorkin 函数空间的相关研究得到了很大的发展, 因为这两个函数空间提供了统一的框架去研究一些经典的函数空间, 如 Lebesgue 空间, Hardy 空间等. 我们首先回顾一下 Coifman 与 Weiss 意义下的齐型空间 (X,d,μ) 的定义 (参见文献 [1,2]). 设 X 是一个非空集合, 集合 X 上的拟度量 d 满足: 对于任意的 x,y,zX, (i) d(x,y)=0 当且仅当 x=y; (ii) d(x,y)=d(y,x); (iii) 存在常数 A0[1,), 使得

d(x,z)A0[d(x,y)+d(y,z)].
(1.1)

我们定义拟度量球 B(x,r):={yX:d(y,x)<r}, 其中 xX, r>0. 注意到, 拟度量 d 可能不具有 Hölder 正则性, 且拟度量球可能不是开集. 集合 X 上的测度 μ 满足双倍条件, 即: 如果存在一个常数 C(μ), 使得对于任意的 xX, r>0,

μ(B(x,2r))C(μ)μ(B(x,r))<.
(1.2)

特别地, 由双倍条件 (1.2) 式可以得到, 存在正常数 C(μ), 使得对任意的 xX, λ[1,), r>0, 有

μ(B(x,λr))C(μ)λωμ(B(x,r)),
(1.3)

其中 ω:=log2C(μ)X 的上维数. 为了建立 Coifman 与 Weiss 引入的 Hardy 空间的极大函数刻画, 通常需要对 Coifman 与 Weiss 意义下的齐型空间增加额外的假设. Macías 和 Segovia[3] 证明了, 对任意拟度量空间 (X,d), 存在一个与 d 几何等价的拟度量 dd 满足以下正则性

|d(x,y)d(x,y)|Cd(x,x)ϑ[d(x,y)+d(x,y)]1ϑ,
(1.4)

其中 C 为正常数, ϑ(0,1), 均与 x,x,yX 无关. 此外, 由这个新的拟度量 d 定义的球记为 B, 即 B(x,r):={yX:d(y,x)<r}, 如果测度 μ 满足以下性质

μ(B(x,r))r,
(1.5)

此时称满足 (1.4) 式 和 (1.5) 式 的齐型空间 (X,d,μ) 为 Ahlfors 正规齐型空间. 显然, 测度条件 (1.5) 式比 (1.2) 式强. Han, Müller 和 Yang[4] 引入了另一类齐型空间, 称为 RD 空间, 其中拟度量 d 满足 (1.4) 式, 测度 μ 满足: 存在常数 0<κω 以及 c(0,1], 使得对任意的 xX, 0<r<supx,yXd(x,y)/2 以及 1λ<supx,yXd(x,y)/2, 有

cλκμ(B(x,r))μ(B(x,λr))Cλωμ(B(x,r)).
(1.6)

此时测度条件 (1.6) 式虽弱于 (1.5)式但仍强于 (1.2) 式. 相关空间的定义可以参见文献 [4-10].

关于齐型空间上的函数空间理论, 1994 年 Han 和 Sawyer[11] 在 Ahlfors 正规齐型空间上引入了齐次 Besov 空间和齐次 Triebel-Lizorkin 空间. 关于 Besov 和 Triebel-Lizorkin 空间在 Ahlfors 正则齐型空间上的更多应用, 可以参见文献 [9,12,13]. 另一方面, Han, Müller 和 Yang[4,14] 在 RD 空间上引入并研究了 Besov 空间和 Triebel-Lizorkin 空间. Grafakos 等[15]系统地建立了 RD 空间上的 Besov 空间和 Triebel-Lizorkin 空间的多线性分析理论. 而在测度仅满足双倍条件的 Coifman 与 Weiss 意义下的齐型空间上, Besov 空间和 Triebel-Lizorkin 空间的研究也获得了很多发展.

另一方面, 多参数函数空间的研究也是现代调和分析理论发展的一个重要方向 (参见文献 [7,8,10,16-23]). 多参数理论始于 Zygmund 研究的强极大函数 (参见文献 [16]). 基于此, Müller, Ricci 和 Stein[21,22] 研究了 Heisenberg 群 Hn 上多参数结构的 Lp 理论 (1<p<). Han 等[19]构造了乘积小波再生公式, 该公式在试验函数的分布意义下成立. 对于加权的有界性, Fefferman[18] 证明了如果 wAp(Rn×Rm), 1<p<, 则乘积奇异积分算子在 Lpw(Rn+m) 上有界. 对 wA, Ding 等[17]人得到了 Hpw(Rn×Rm) 上奇异积分算子的有界性. Lu 和 Zhu[24] 将卷积算子的有界性扩展到加权的 Triebel-lizorkin 空间和加权的 Besov 空间. Zheng, Xiao 和 Tao[8] 在欧氏空间上建立了乘积 Besov 空间和乘积 Triebel-Lizorkin 空间的刻画以及 Journé 类乘积奇异积分算子在这类空间上的有界性. Zheng, Xiao 和 Tao[23] 在乘积 RD 空间上给出了乘积加权 Triebel-Lizorkin 空间和乘积加权 Besov 空间的 Plancherel-Pôlya 刻画及相关估计.

鉴于上述研究工作的基础, 我们自然可以问:以上工作在没有逆双倍条件的假设下是否也成立?即能否将 Ahlfors 正规齐型空间及 RD 空间上的相关研究推广到测度 μ 仅满足双倍条件及 d 仅为原始拟度量的 Coifman 与 Weiss 意义下的齐型空间 (X,d,μ) 上? 受文献 [24] 在加权 Besov 空间和加权 Triebel-Lizorkin 空间上结果和文献 [8,10,23] 中关于乘积函数空间的结果的启发, 本文研究 Coifman 与 Weiss 意义下的齐型空间的乘积空间 (X1×X2,d1×d2,μ1×μ2), 建立该乘积空间上的乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的 Plancherel-Pôlya 型刻画. 为此, 需给出Coifman 与 Weiss 意义下的齐型空间 (X,d,μ) 上的试验函数及乘积试验函数的相关定义, 下文中设 x,yX, r>0, γ>0, s(1,1) 和 \ ϵ(0,1], 简记 \ Vr(x)=μ(B(x,r)), V(x,y)=μ(B(x,d(x,y))),

Pγ(x,y;r):=1Vr(x)+V(x,y)[rr+d(x,y)]γ
(1.7)
p(s,ϵ):=max{ωω+ϵ,ωω+s+ϵ}.
(1.8)

定义 1.1 试验函数[4] 给定 x0X, β(0,1], γ(0,), 称定义于 X 上的函数 f 是中心在 x0 且宽度为 r(β,γ) 型试验函数, 如果函数 f 满足以下两个条件

(1) (尺寸条件)

|f(x)|CPγ(x0,x;r);
(1.9)

(2) (光滑条件) 当 d(x,y)(2A0)1[r+d(x0,x)],

|f(x)f(y)|C[d(x,y)r+d(x0,x)]βPγ(x0,x;r).
(1.10)

将中心在 x0X 带有宽度 r>0(β,γ) 型试验函数的集记为 G(x0,r,β,γ).fG(x0,r,β,γ), 则其 G(x0,r,β,γ) 范数定义为

也定义

\mathring{\mathcal{G}}(x_0,r,\beta,\gamma) :=\bigg\{f\in \mathcal{G}(x_0,r,\beta,\gamma): \int_X f(x){\rm d} \mu (x)=0\bigg\},

则其相应的范数定义为

\|\cdot\|_{\mathring{\mathcal{G}}(x_0,r,\beta,\gamma)} :=\| \cdot \|_{\mathcal{G}(x_0,r,\beta,\gamma)}.

固定 x_0 \in X, r=1 简记 \mathring{\mathcal{G}}(x_0,1,\beta,\gamma)\mathring{\mathcal{G}}(\beta,\gamma).

命题 1.1 对所有的 x\in X, \beta \in(0,1], \gamma \in(0,\infty)r>0, 在范数等价的意义下有 \mathring{\mathcal{G}}(x,r,\beta,\gamma)=\mathring{\mathcal{G}}(\beta,\gamma), 且 \mathring{\mathcal{G}}(\beta,\gamma) 是 Banach 空间.

首先验证 \mathring{\mathcal{G}}(x,r_1,\beta,\gamma)=\mathring{\mathcal{G}}(x,r_2,\beta,\gamma), 其中 x\in X, r_1>0,r_2>0 , 0< \beta \leq 1, \gamma >0. 事实上, 若f\in \mathring{\mathcal{G}}(x,r_1,\beta,\gamma), 我们有

\|f\|_{\mathring{\mathcal{G}}(x,r_2,\beta,\gamma)} \lesssim \Big(\max\{\frac{r_1}{r_2},\frac{r_2}{r_1}\}\Big)^{\omega+\beta+\gamma} \|f\|_{\mathring{\mathcal{G}}(x,r_1,\beta,\gamma)}.
(1.11)

这是因为对于任意的 y, y'\in X

\begin{align*} |f(y)| \leq & \|f\|_{\mathring{\mathcal{G}}(x,r_1,\beta,\gamma)}\frac{1} {V_{r_1}(x)+V(x,y)} \Big[ \frac{r_1}{r_1+d(x,y)} \Big] ^{\gamma}\\ \lesssim & \left\{ \begin{array}{ll} \displaystyle \|f\|_{\mathring{\mathcal{G}}(x,r_1,\beta,\gamma)} (\frac{r_2}{r_1})^{\omega} \frac{1} {V_{r_2}(x)+V(x,y)} \Big[ \frac{r_2}{r_2+d(x,y)} \Big] ^{\gamma}, & \hbox{ if } r_1\leq r_2 \\ \displaystyle \|f\|_{\mathring{\mathcal{G}}(x,r_1,\beta,\gamma)} (\frac{r_1}{r_2})^{\gamma} \frac{1} {V_{r_2}(x)+V(x,y)} \Big[ \frac{r_2}{r_2+d(x,y)} \Big] ^{\gamma}, & \hbox{ if } r_2\leq r_1 \end{array} \right. \end{align*}

再估计|f(y)-f(y')|, 对于 d(y,y') 可以再进行分类. 若 d(y,y')\leq (2A_0)^{-1}[r_1+d(x,y)], 则可直接利用试验函数的光滑性估计; 若 (2A_0)^{-1}[r_1+d(x,y)] \leq d(y,y')\leq (2A_0)^{-1}[r_2+d(x,y)], 则使用试验函数的尺寸条件, 由 f\mathring{\mathcal{G}}(x,r_2,\beta,\gamma) 范数的定义, 不难证得不等式 (1.11).

类似我们可以验证 \mathring{\mathcal{G}}(x,1,\beta,\gamma)=\mathring{\mathcal{G}}(x_0,1,\beta,\gamma), 其中 x,x_0\in X. 先考虑尺寸条件, 有

\begin{align*} |f(y)| \leq & \|f\|_{\mathring{\mathcal{G}}(x,1,\beta,\gamma)}\frac{1} {V_{1}(x)+V(x,y)} \Big[ \frac{1}{1+d(x,y)} \Big] ^{\gamma}\\ \leq & \|f\|_{\mathring{\mathcal{G}}(x,1,\beta,\gamma)} \Big[ 1+d(x,x_0) \Big] ^{\omega+\gamma} \frac{1} {V_{1}(x_0)+V(x_0,y)} \Big[ \frac{1}{1+d(x_0,y)} \Big] ^{\gamma}. \end{align*}

对于光滑性条件, 需要用类似的办法分类讨论. 综上证得, 对所有的 x\in Xr>0, 在范数等价的意义下有 \mathring{\mathcal{G}}(x,r,\beta,\gamma)=\mathring{\mathcal{G}}(\beta,\gamma).

其次证明 \mathring{\mathcal{G}}(\beta,\gamma) 是 Banach 空间. 假定 \{f_n(x)\}\mathring{\mathcal{G}}(\beta,\gamma) 中的 Cauchy 列, 则对固定的 x, \forall \varepsilon >0, \exists N \in N^{+}, 当 n,m >N 时, 有

\|(f_n(x)-f_m(x))\|_{\mathring{\mathcal{G}}(\beta,\gamma)} \leq \varepsilon,

因此

\begin{align*} | f_n(x) -f_m(x)| \leq & \frac{\varepsilon} {V_{1}(x_0)+V(x_0,x)} \Big[ \frac{1}{1+d(x_0,x)} \Big] ^{\gamma} \leq \frac{\varepsilon} {V_{1}(x_0)}, \end{align*}

所以我们可以找到极限函数 f(x) := \lim\limits_{n \rightarrow \infty} f_n(x) . 进一步, 对任意 x\in X

\begin{align*} | f(x)| \leq & |f(x)- f_n(x)|+| f_n(x)|\\ \lesssim & \frac{1} {V_{1}(x_0)+V(x_0,x)} \Big[ \frac{1}{1+d(x_0,x)} \Big] ^{\gamma}, \end{align*}

以及对 x,y\in X, 当 d(x,y)\leq (2A_0)^{-1}[r+d(x_0,x)] 时, 有

\begin{align*} | f(x)-f(y)| \leq & |f(x)- f_n(x)|+| f_n(x)-f_n(y)|+|f_n(y)-f(y)|\\ \lesssim & \varepsilon P_{\gamma} ( x_0,x;1) + \bigg[ \frac{d(x,y)} {r+d(x_0,x)} \bigg] ^{\beta} P_{\gamma} ( x_0,x;r )+ \varepsilon P_{\gamma} ( x_0,y;1)\\ \lesssim & \bigg[ \frac{d(x,y)} {r+d(x_0,x)} \bigg] ^{\beta} P_{\gamma} ( x_0,x;r ), \end{align*}

只要选取充分小的 \varepsilon 及相应的函数f_n. 这样即可得极限函数 f(x) 满足试验函数的条件 (1.9) 和 (1.10), 因此 f(x) 属于 \mathring{\mathcal{G}}(\beta,\gamma), 而且 Cauchy 列 \{f_n(x)\} 收敛于 f(x). 从而证得 \mathring{\mathcal{G}}(\beta,\gamma) 是 Banach 空间.

综上, 容易证得, 对所有的 x\in Xr>0, 在范数等价的意义下有 \mathring{\mathcal{G}}(x,r,\beta,\gamma)=\mathring{\mathcal{G}}(\beta,\gamma)\mathring{\mathcal{G}}(\beta,\gamma) 是 Banach 空间.

如果存在常数 C, 使得对任意的 f\in \mathring{\mathcal{G}}(\beta,\gamma)|\mathcal{L}(f)| \leq C\|f\|_{\mathring{\mathcal{G}}(\beta,\gamma)}, 则称 \mathring{\mathcal{G}}(\beta,\gamma) 的线性泛函 \mathcal{L} 是有界的.

\mathring{\mathcal{G}}(\beta,\gamma) 的对偶空间 (\mathring{\mathcal{G}}(\beta,\gamma))' 是从 \mathring{\mathcal{G}}(\beta,\gamma)\mathbb{C} 的全体有界线性泛函.

定义 1.2 (乘积试验函数[19]) 设 f(x,y) 是乘积空间 X_1 \times X_2 上的函数, 设 x_0 \in X_1 , y_0 \in X_2 , \gamma_i >0, r_i >0, \beta_i \in(0,1](i=1,2). 若固定 y\in X_2, f(x,y) 作为变量 x 的函数, 是 \mathcal{G}_1(x_0,r_1,\beta_1,\gamma_1) 中的一个试验函数. 固定 x\in X_1,f(x,y) 作为变量 y 的函数, 是 \mathcal{G}_2(y_0,r_2,\beta_2,\gamma_2) 中的一个试验函数. 如果函数 f(x,y) 满足以下三个条件

(i) 对于任意的 y\in X_2,

\|f(\cdot,y)\| _ {\mathcal{G}_1(x_0,r_1,\beta_1,\gamma_1)} \leq C P_{\gamma_2} (y_0,y;r_2 );

(ii) 对于任意的 y, y'\in X_2, d_2(y,y')\leq (2A_0)^{-1}(r_2+d_2(y,y_0),

\|f(\cdot,y)-f(\cdot,y')\| _{\mathcal{G}_1(x_0,r_1,\beta_1,\gamma_1)} \leq C \bigg( \frac {d_2(y,y')} {r_2+d_2(y,y')} \bigg) ^{\beta_2} P_{\gamma_2} (y_0,y; r_2 );

(iii) 在变量 xy 交换时, 上式 (i) 和 (ii) 也成立, 则称定义于乘积空间 X_1 \times X_2 上的函数 f(x,y) 是中心在 (x_0, y_0) \in X_1 \times X_2 带有宽度 r_1, r_2>0(x_0,y_0;r_1,r_2;\beta_1,\beta_2; \gamma_1,\gamma_2) 型试验函数.

将中心在 (x_0, y_0) \in X_1 \times X_2, 带有宽度 r_1, r_2>0(x_0,y_0;r_1,r_2;\beta_1,\beta_2; \gamma_1,\gamma_2) 型试验函数的全体记为 \mathcal{G}(x_0,y_0;r_1,r_2; \beta_1,\beta_2;\gamma_1,\gamma_2).f \in \mathcal{G}(x_0,y_0;r_1,r_2; \beta_1,\beta_2;\gamma_1,\gamma_2), 则 f 在空间 \mathcal{G}(x_0,y_0;r_1,r_2; \beta_1,\beta_2; \gamma_1,\gamma_2) 中的范数定义为

\|f\| _ { \mathcal{G} ( x_1,y_1; r_1,r_2; \beta_1,\beta_2; \gamma_1,\gamma_2 ) } = \inf\{C\in (0,\infty):\rm(i),\rm(ii) \mbox{与} \rm(iii) \ \mbox{成立}\}.

定义 \mathring{\mathcal{G}}(x_0,y_0;r_1,r_2;\beta_1,\beta_2;\gamma_1,\gamma_2) :=\{f\in \mathcal{G}(x_0,y_0;r_1,r_2; \beta_1,\beta_2;\gamma_1,\gamma_2): \int_{X_1} f(x,y) {\rm d}\mu_1 (x) =0= \int_{X_2}f(x,y){\rm d} \mu_2 (y)\}, 则其相应的范数定义为

\|\cdot\| _{\mathring{\mathcal{G}}(x_0,y_0;r_1,r_2;\beta_1,\beta_2;\gamma_1,\gamma_2)} :=\| \cdot \|_{\mathcal{G}(x_0,y_0;r_1,r_2;\beta_1,\beta_2; \gamma_1,\gamma_2)}.

固定 (x_0,y_0)\in X_1 \times X_2, 简记 \mathring{\mathcal{G}}(x_0,y_0;1,1;\beta_1,\beta_2;\gamma_1,\gamma_2)\mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2).

类似命题, 1.1 可以证得, 对所有的 x\in X_1, y\in X_2r_1,r_2>0, 在范数等价的意义下有

\mathring{\mathcal{G}}(x,y;r_1,r_2;\beta_1,\beta_2;\gamma_1,\gamma_2)=\mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2),

\mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2) 是 Banach 空间. 如果存在常数 C, 使得对任意的 f\in \mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2)|\mathcal{L}(f)| \leq C\|f\|_{\mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2)}, 则称 \mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2) 的线性泛函 \mathcal{L} 是有界的. \mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2) 的对偶空间 (\mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2))' 是从 \mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2)\mathbb{C} 的全体有界线性泛函.

\eta_i \in (0,1), \beta_i,\gamma_i,\in (0,\eta_i)(i=1,2). 定义 \mathring{\mathcal{G}}_0^{\eta_1,\eta_2} ( \beta_1,\beta_2;\gamma_1,\gamma_2) 为空间 \mathring{\mathcal{G}}(\eta_1,\eta_2;\eta_1,\eta_2) 在空间 \mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2) 中的闭包, 定义其范数为 \| \cdot \|_{\mathring{\mathcal{G}}_0^{\eta_1,\eta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)}=\| \cdot \|_{\mathring{\mathcal{G}}(\beta_1,\beta_2;\gamma_1,\gamma_2)}. 定义 (\mathring{\mathcal{G}}_0^{\eta_1,\eta_2} ( \beta_1,\beta_2;\gamma_1,\gamma_2))'\mathring{\mathcal{G}}_0^{\eta_1,\eta_2} ( \beta_1,\beta_2;\gamma_1,\gamma_2) 的对偶空间.

为了给出乘积齐型空间上的离散型 Calderón 再生公式, 需要引入 Hytönen 和 Kairema 在齐型空间上建立的二进系统.

引理 1.1[25,26] 给定常数 0< c_0< C_0<\infty, \delta \in(0,1)12A_0^3C_0 \delta \leq c_0. 对每一个 k\in \mathbb{Z}, 存在一组点集 \mathcal{X}^k:=\{z_{\alpha}^k\subset X: \alpha \in \mathcal{A}_k\}, 其中 \mathcal{A}_k 是可数指标集, 有

(1) d(z_{\alpha}^k,z_{\beta}^k)\geq c_0 \delta^k, \alpha \neq \beta;

(2) 对于任意的 x\in X, \min_{\alpha \in \mathcal{A}_k}d(x,z_{\alpha}^k)\leq C_0 \delta^k;

进一步存在一个集族 \{Q_{\alpha}^k:k \in \mathbb{Z}, \alpha \in \mathcal{A}_k\}, 有

(3) 对于任意固定的 k, \bigcup_{\alpha \in \mathcal{A}_k}Q_{\alpha}^k=X, 以及 \{Q_{\alpha}^k:\alpha \in \mathcal{A}_k\} 是不相交的;

(4) 对于任意的 k,l,\alpha,\beta, k\leq l, 则 Q_ {\beta}^l\subset Q_{\alpha}^kQ_{\beta}^l \cap Q_{\alpha}^k=\varnothing;

(5) 对于任意的 k\in \mathbb{Z}, \alpha \in \mathcal{A}_k, B( z_{\alpha}^k,c_{\natural}\delta^k)\subset Q_{\alpha}^k\subset B(z_{\alpha}^k,C^{\natural}\delta^k), 其中 c_ {\natural}:=(3A_0^2)^{-1}c_0, C^{\natural}:=2A_0C_0, z_{\alpha}^kQ_{\alpha}^k 的中心.

根据 \{\mathcal{A}_k\}_{k \in \mathbb{Z}} 的构造, 我们可以进一步假设, 对任意的 k \in \mathbb{Z}, \mathcal{X}^{k+1}\supset \mathcal{X}^{k}. 因此我们可以设 \mathcal{G}_k:=\mathcal{A}_{k+1}\backslash \mathcal{A}_k 以及 \mathcal{Y}^k:=\{z_{\alpha}^{k+1}\}_{\alpha \in \mathcal{G}_k}=:\{y_{\alpha}^k\}_{\alpha \in \mathcal{G}_k}. 下文中, 对任意的 k \in \mathbb{Z}\alpha \in \mathcal{A}_k, 用 Q^{k, m}_{\alpha} \ ( m=1,2,\cdots,N(k,\alpha)) 表示所有的 Q^{k+j_0}_{\tau} \subset Q^{k}_{\alpha} 组成的集合, 其中 \tau \in\mathcal{A}_{k+j_0} , j_0 是充分大的自然数. 用 y^{k, m}_{\alpha} 表示 Q^{k, m}_{\alpha} 的中心.

在此基础上, 为引入乘积试验函数空间上正交小波基表示的离散型 Calderón 再生公式, 我们先回顾一下由 Auscher 和 Hytönen 构造的 L^2(X) 的正交小波基.

定义 1.3[25] 存在常数 a \in (0,1], \eta \in(0,1), C, v\in(0,\infty), 以及 L^2(X) 上的正交小波基 \{\psi_{\alpha}^k:k\in \mathbb{Z},\alpha \in \mathcal{G}_k\} 满足

(i) 对于任意的 x\in X,

|\psi_{\alpha}^k(x)| \leq \frac{C} {\sqrt{V_{\delta^k}(y_{\alpha}^k)}} \exp \bigg\{-v \bigg[\frac{d(x,y_{\alpha}^k)} {\delta^k}\bigg] ^{a}\bigg\};

(ii) 对于任意的 x, x' \in X, d(x,x')\leq \delta^k,

|\psi_{\alpha}^k(x)-\psi_{\alpha}^k(x')| \leq \frac{C} {\sqrt{V_{\delta^k}(y_{\alpha}^k)}} \bigg[ \frac{d(x,x')}{\delta^k} \bigg] ^{\eta} \exp \bigg \{ -v \bigg[\frac{d(x,y_{\alpha}^k)}{\delta^k}\bigg]^{a} \bigg\};

(iii)

\int_{X} \psi_{\alpha}^k(x){\rm d} \mu(x)=0.

进一步引进乘积齐型空间 ( X_1 \times X_2,d_1 \times d_2, \mu_1 \times \mu_2) 上的正交小波基. 对于任意的 k_i \in \mathbb{Z}, \alpha_i \in \mathcal{G}_{k_i}, (x_1,x_2)\in X_1 \times X_2, 设 \psi_{\alpha_i}^{k_i}(i=1,2) 是定义 1.3 中的正交小波基, 记

\psi^{k_1,k_2}_{\alpha_1,\alpha_2}(x_1,x_2) = \psi_{\alpha_1}^{k_1}(x_1) \psi_{\alpha_2}^{k_2}(x_2),
(1.12)

\psi^{k_1,k_2}_{\alpha_1,\alpha_2} 为乘积正交小波基.

为建立齐型空间上乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间, 我们先给出 Muckenhoupt 权的定义. 称局部可积非负函数 wA_r(X) 权, 如果存在正常数 C 使得

\begin{align*}\sup\limits _{ B\subset X}\Big( \frac{1}{\mu(B)} \int_{B} w(x){\rm d}\mu(x)\Big)& \Big( \frac{1}{\mu(B)} \int_{B} w(x)^{-\frac{1}{r-1}}{\rm d}\mu(x)\Big)^{r-1}< \infty,1< r<\infty;\\ &M(w)(x)\leq Cw(x),r=1, \end{align*}

其中 M 表示 Hardy-Littlewood 极大算子.当 1\leq r <\infty 时,

A_{\infty}(X)=\mathop{\cup}\limits_{1\leq r<\infty}A_{r}(X).

下面给出乘积齐型空间上的强极大函数的定义.

定义 1.4[8] 对于任意的 f\in L_{\rm loc}^1(X_1\times X_2), 强极大函数 \mathcal{M}_sf 定义为,

\mathcal{M}_sf(x_1,x_2) := \sup\limits _{(x_1,x_2)\in B_1 \times B_2} \frac{1}{\mu(B_1 \times B_2)} \int_{B_1\times B_2} |f(y_1,y_2)| {\rm d}\mu_1(y_1) {\rm d}\mu_2(y_2),
(1.13)

其中上确界取自包含 x_1 的所有球 B_1\subset X_1, 包含 x_2 的所有球 B_2\subset X_2 以及 \mu(B_1 \times B_2)=\mu_1(B_1) \times \mu_2(B_2).

现在我们引入乘积齐型空间上权函数的定义.

定义 1.5 (乘积齐型空间上的权函数[23]) 对于任意的 B_1 \times B_2 如(1.13) 式, (x_1,x_2)\in X_1 \times X_2, 当 1< r<\infty 时, 有

\begin{align*} &\Big( \frac{1}{\mu(B_1 \times B_2)} \int_{B_1 \times B_2} w(x_1,x_2){\rm d}\mu_1(x_1){\rm d}\mu_2(x_2)\Big)\\ & \times \Big( \frac{1}{\mu(B_1 \times B_2)} \int_{B_1 \times B_2} w(x_1,x_2)^{-\frac{1}{r-1}}{\rm d}\mu_1(x_1){\rm d}\mu_2(x_2)\Big)^{r-1}< \infty, \end{align*}

则称 X_1 \times X_2 上非负的局部可积函数 w(x_1,x_2 )A_r(X_1\times X_2) 权.

r=1 时, 有

\mathcal{M}_s(w)(x_1,x_2)\leq Cw(x_1,x_2),

则称 wA_1(X_1\times X_2) 权.

r=\infty 时, A_{\infty}(X_1\times X_2) 权定义为

A_{\infty}(X_1\times X_2)=\mathop{\cup}\limits_{1\leq r<\infty}A_{r}(X_1\times X_2).

关于 A_r(X_1\times X_2) 权, 文献 [23] 还给出了下列性质.

(i) 如果 w(x_1,x_2 )\in A_r(X_1\times X_2), 则几乎处处的 x_1\in X_1, w(x_1,\cdot )A_r(X_2) 权; 相似地, 几乎处处的 x_2\in X_2, w(\cdot,x_2 )A_r(X_1) 权;

(ii) 当 1< r< t<\infty 时, 有 A_1\subset A_r\subset A_t\subset A_{\infty};

(iii) 下列加权 Fefferman-Stein 向量值不等式满足

\int_{X_1\times X_2}| \mathcal{M}_s(\vec{f})(x)|^s_{\ell^n}w(x){\rm d}\mu(x)\leq C\int_{X_1\times X_2}| \vec{f}(x)|^s_{\ell^n}w(x){\rm d}\mu(x), 1< s,n<\infty, 其中 w\in A_r(X_1\times X_2), \vec{f} \in (f_1,f_2,\cdots )\in \ell^n.

本文考虑 w(x,y)A_r(X_1\times X_2) 权, 1\leq r<\infty. 接下来, 我们给出乘积加权 Besov 空间与乘积加权 Triebel-Lizorkin 空间的定义.

定义 1.6w\in A_r(X_1 \times X_2), r\geq 1, \psi^{k_1,k_2}_{\alpha_1,\alpha_2} 为 (1.12) 式中定义的乘积正交小波基,

\begin{align*} & \delta \leq (2A_0)^{-10}, \beta_i,\gamma_i \in (0,\eta_i),\\[2mm] & s_i\in ( -(\beta_i \wedge \gamma_i), \beta_i \wedge \gamma_i), \eta_i \in (0,1) (i=1,2). \end{align*}

(i) 对于 p\in (\max \{ p( s_1,\beta_1 \wedge \gamma_1)r, p( s_2,\beta_2 \wedge \gamma_2) r\},\infty]q\in(0,\infty], 若 f\in \big( \mathring{\mathcal{G}}_0^{\eta_1,\eta_2}( \beta_1, \beta_2;\\ \gamma_1,\gamma_2) \big)' 且满足

\begin{align*} \| f \| _ {\dot{B}_{p,q,w}^{s_1,s_2}(X_1 \times X_2)} := & \ \bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg\| \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \\ &\times \big | \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> \big | \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} \bigg\|^{q}_{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}} <\infty,\notag \end{align*}
(1.14)

其中 \widetilde{\mathcal{X}}_{Q_{\alpha_i}^{k_i,m_i}}= \mathcal{X}_{Q_{\alpha_i}^{k_i,m_i}}/(\mu(Q_{\alpha_i}^{k_i,m_i}))^{\frac{1}{2}}(i=1,2), 则称 f 属于乘积加权 Besov 空间, 记作 f\in \dot{B}_{p,q,w}^{s_1,s_2}(X_1 \times X_2), 其范数如 (1.14) 式所定义;

(ii) 对于 p\in ( \max\{ p( s_1,\beta_1 \wedge \gamma_1 )r, p( s_2,\beta_2 \wedge \gamma_2 ) r \}, \infty ), q\in ( \max\{ p( s_1,\beta_1 \wedge \gamma_1 )r, p( s_2,\\\beta_2 \wedge \gamma_2 )r \}, \infty ] , 若 f\in \big( \mathring{\mathcal{G}}_0^{\eta_1,\eta_2}( \beta_1,\beta_2;\gamma_1,\gamma_2) \big)' 且满足

\begin{align*} \| f \| _ {\dot{F}_{p,q,w}^{s_1,s_2}(X_1 \times X_2)} :=\,& \bigg\| \Big( \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in \mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \big | \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} \big | ^q \Big) ^{\frac{1}{q}} \bigg\| _ {L^p_w(X_1 \times X_2)} < \infty,\notag \end{align*}

则称 f 属于乘积加权 Triebel-Lizorkin 空间, 记作 f\in \dot{F}_{p,q,w}^{s_1,s_2}(X_1 \times X_2), 其范数如 (1.15) 式所定义.

本文主要的结果是在乘积齐型空间 (X_1 \times X_2, d_1 \times d_2, \mu_1 \times \mu_2) 上建立如下乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的 Plancherel-Pôlya 型等价性质.

定理1.1w\in A_r(X_1 \times X_2), r\geq 1, \psi^{k_1,k_2}_{\alpha_1,\alpha_2}\varphi^{k_1,k_2}_{\alpha_1,\alpha_2} 均是 (1.12) 式中定义的乘积正交小波基, \delta \leq (2A_0)^{-10}, \beta_i,\gamma_i \in (0,\eta_i)(i=1,2), 则对于任意的 f\in (\mathring{\mathcal{G}}_0^{\eta_1,\eta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))',

(i) 当 s_i\in ( -(\beta_i \wedge \gamma_i ),\beta_i \wedge \gamma_i), p\in ( \max\{ p( s_1, \beta_1 \wedge \gamma_1 )r, p( s_2, \beta_2 \wedge \gamma_2 )r\}, \infty ], q\in (0,\infty], 有

\begin{align*} &\bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg\| \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)}\big | \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> \big| \notag \\ & \times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2) \bigg\|^{q}_{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}}\notag\\ \simeq\, &\bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg\| \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} | \big< f,\varphi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> | \\ & \times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2) \bigg\|^{q}_{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}};\notag \end{align*}
(1.16)

(ii) 当 s_i \in ( -(\beta_i \wedge\gamma_i), \beta_i \wedge \gamma_i), p\in ( \max \{ p(s_1,\beta_1 \wedge \gamma_1)r, p(s_2,\beta_2 \wedge \gamma_2)r\},\infty ), q\in ( \max \{ p(s_1,\beta_1 \wedge \gamma_1)r, p(s_2,\beta_2 \wedge \gamma_2)r\},\infty ], 有

\begin{align*} &\bigg\|\bigg( \sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}} \delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}}\sum_{m_1=1}^{N(k_1,\alpha_1)} \sum_{m_2=1}^{N(k_2,\alpha_2)} \notag\\ & \times \Big| \big< f,\psi_{\alpha_1,\alpha_2}^{k_1,k_2}\big> \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2) \Big|^q \bigg)^{\frac{1}{q}}\bigg\|_{L^p_w(X_1 \times X_2)}\\ \simeq\, &\bigg\|\bigg( \sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}} \delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}}\sum_{m_1=1}^{N(k_1,\alpha_1)} \sum_{m_2=1}^{N(k_2,\alpha_2)} \notag\\ & \times \Big| \big< f,\varphi_{\alpha_1,\alpha_2}^{k_1,k_2}\big> \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} (x_1, x_2)\Big|^q \bigg)^{\frac{1}{q}}\bigg\|_{L^p_w(X_1 \times X_2)}\notag. \end{align*}
(1.17)

注 1.1 由上述定理 1.1 可知, 基于小波 \psi_{\alpha_1,\alpha_2}^{k_1,k_2} 所定义的乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的定义是独立于小波函数 \psi_{\alpha_1,\alpha_2}^{k_1,k_2} 的选取. 定理 1.1 中对乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的 Plancherel-Pôlya 型的等价性刻画, 即使退化到不加权的情形, 该结论也是新的.

本文的行文如下, 定理 1.1 的证明在第 2 节中给出. 记号 C 表示正常数, 它在不同处可以取不同值. a \lesssim b 表示存在常数 C > 0 使得 a\leq Cb, 用 a\simeq b 表示 a \lesssim b \lesssim a. 对于任意的 s,t \in \mathbb{R}, s \wedge t 表示 \min \{s,t\}s \vee t 表示 \max\left\{s,t\right\}.q \geq 1 时, \frac{1}{q}+\frac{1}{q'}=1.

2 定理 1.1 的证明

在本节中, 我们先建立与乘积正交小波基相关的离散型乘积 Calderón 再生公式和一些相关估计.

Q_k 是核函数 Q_k(x,y)=\sum\limits_{\alpha \in \mathcal{G}_{k}}\psi^{k}_{\alpha}(x)\psi^{k}_{\alpha}(y) 的表示算子, 由于 \psi^{k}_{\alpha}(x)L^2(X) 上的正交基, 因此有

\sum\limits_{k =-\infty}\limits^{+\infty}Q_k=I,
(2.1)

其中 IL^2(X) 中的恒等算子, 因此, 很容易看出下面引理中的乘积小波再生公式是成立的.

引理 2.1[19]\psi^{k_1,k_2}_{\alpha_1,\alpha_2} 是如 (1.12) 式中定义的乘积正交小波基, 使得对任意的 f\in\mathcal{G}_0^{\eta_1,\eta_2}( \beta_1,\beta_2;\gamma_1,\gamma_2) , 有

\begin{align*} f(x_1,x_2) = \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} \sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}} \big< f, \psi^{k_1,k_2} _{\alpha_1,\alpha_2} \big> \psi^{k_1,k_2} _{\alpha_1,\alpha_2} (x_1,x_2) \end{align*}
(2.2)

( \mathring{\mathcal{G}}_0^{\eta_1,\eta_2}( \beta_1,\beta_2;\gamma_1,\gamma_2) )' 上成立, \beta_i, \gamma_i \in (0, \eta_i), \eta_i \in (0,1)(i=1,2).

引理 2.2[8] 对于任意的 p \in (0, 1] 和 \ \{a_k\}_{k=1}^{\infty}\subset \mathbb{C}, 有

\begin{align*} \Big(\sum\limits_{k=1} ^ {\infty}|a_k|\Big)^p \leq \sum\limits_{k=1}^{\infty} |a_k|^p. \end{align*}
(2.3)

引理 2.3[23]w\in A_p(X_1 \times X_2), p\in(1,\infty)t\in(1,\infty], 那么对于任意的序列 \{f_j\}_{j=1}^{\infty} 的可测函数, 有

\begin{align*} \Big\| \Big( \sum_{j} \big[ \mathcal{M}_s(f_j) \big] ^t \Big) ^{\frac{1}{t}} \Big\| _{L^{p}_w(X_1 \times X_2)} \leq C \Big\| \Big( \sum_{j} | f_j |^t \Big) ^{\frac{1}{t}} \Big\| _{L^{p}_w(X_1 \times X_2)}. \end{align*}

为建立齐型空间上乘积加权 Besov 空间和乘积加权 Triebel-Lizorkin 空间的相关估计, 需建立下面的三个重要引理. 下文中引理 2.4 的单参情形下的相应结果参照文献 [27,引理 3.5].

引理 2.4\gamma_i\in(0,\infty), p\in \big(\max \big\{\frac{\omega_1}{\omega_1+\gamma_1},\frac{\omega_2}{\omega_2+\gamma_2}\big\},1\big], 那么对于任意的 k_1,k_1',k_2, k_2' \in \mathbb{Z}, \alpha_i \in \mathcal{G}_{k_i}m_i\in \{1,2,\cdots,N(k_i,\alpha_i)\}, (x_1,x_2)\in X_1 \times X_2, y_{\alpha_i}^{k_i,m_i} \in Q_{\alpha_i}^{k_i,m_i}(i=1,2), 有

\begin{align*} &\sum\limits_{\alpha_1 \in \mathcal{G}_{k_1}} \sum\limits_{\alpha_2 \in \mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \mu_1 (Q_{\alpha_1}^{k_1,m_1}) \mu_2(Q_{\alpha_2}^{k_2,m_2})\\ & \times \big[ P_{\gamma_1} (x_1,y_{\alpha_1}^{k_1,m_1};\delta^{k_1 \wedge k_1'}) P_{\gamma_2} (x_2,y_{\alpha_2}^{k_2,m_2};\delta^{k_2 \wedge k_2'}) \big] ^p\notag\\ \leq\,& C \big[ V_{\delta^{k_1 \wedge k_1'}}(x_1) V_{\delta^{k_2 \wedge k_2'}}(x_2) \big] ^{1-p}.\notag \end{align*}
(2.4)

对于任意的 k_i,k_i' \in \mathbb{Z}, \alpha_i \in \mathcal{G}_{k_i}, m_i\in \{1,2,\cdots,N(k_i,\alpha_i)\} 以及 z_i, \ y_{\alpha_i}^{k_i,m_i} \in Q_{\alpha_i}^{k_i,m_i}(i=1,2), 我们可以得到

\delta^{k_i \wedge k'_i}+d_i(x_i,y_{\alpha_i}^{k_i,m_i})\simeq \delta^{k_i \wedge k'_i}+d(x_i,z_i)

V_{\delta^{k_i \wedge k'_i}}(x_i)+V(x_i,y_{\alpha_i}^{k_i,m_i})\simeq V_{\delta^{k_i \wedge k'_i}}(x_i)+V(x_i,z_i).

对于任意的 (x_1,x_2)\in X_1 \times X_2, 通过这些估计和引理 1.1, 可得

\begin{align*} &\sum\limits_{\alpha_1\in \mathcal{G}_{k_1}} \sum\limits_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \mu_1(Q_{\alpha_1}^{k_1,m_1}) \mu_2(Q_{\alpha_2}^{k_2,m_2}) \\ & \times \big[ P_{\gamma_1} (x_1,y_{\alpha_1}^{k_1,m_1};\delta^{k_1 \wedge k_1'} ) P_{\gamma_2} (x_2,y_{\alpha_2}^{k_2,m_2};\delta^{k_2 \wedge k_2'} ) \big] ^p\\ \lesssim & \int_{X_1} \int_{X_2} \big[ P_{\gamma_1} (x_1,z_1;\delta^{k_1 \wedge k_1'} ) \big] ^p \big[ P_{\gamma_2} (x_2,z_2;\delta^{k_2 \wedge k_2'} ) \big] ^p {\rm d}\mu_1(z_1) {\rm d}\mu_2(z_2)\\ \simeq & \int_ {d(x_1,z_1)<\delta^{k_1 \wedge k'_1}} \int_ {d(x_2,z_2)<\delta^{k_2 \wedge k'_2}} \big[ P_{\gamma_1} (x_1,z_1;\delta^{k_1 \wedge k_1'} ) \big] ^p\\ &\times \big[ P_{\gamma_2} (x_2,z_2;\delta^{k_2 \wedge k_2'} ) \big] ^p {\rm d}\mu_1(z_1){\rm d}\mu_2(z_2)\\ &+ \sum\limits_{l_2=1}^{\infty} \int_ { 2^{l_2-1}\delta^{k_2\wedge k_2'} \leq d_2(x_2,z_2) < 2^{l_2}\delta^{k_2\wedge k'_2}} \int_ {d(x_1,z_1)<\delta^{k_1 \wedge k'_1}} \big[ P_{\gamma_1} (x_1,z_1;\delta^{k_1 \wedge k_1'} ) \big] ^p\\ &\times \big[ P_{\gamma_2} (x_2,z_2;\delta^{k_2 \wedge k_2'} ) \big] ^p {\rm d}\mu_1(z_1){\rm d}\mu_2(z_2)\\ &+ \sum\limits_{l_1=1}^{\infty} \int_ { 2^{l_1-1}\delta^{k_1\wedge k_1'} \leq d_1(x_1,z_1) < 2^{l_1}\delta^{k_1\wedge k'_1} } \int_{d(x_2,z_2)<\delta^{k_2 \wedge k'_2}} \big[ P_{\gamma_1} (x_1,z_1;\delta^{k_1 \wedge k_1'} ) \big] ^p\\ &\times \big[ P_{\gamma_2} (x_2,z_2;\delta^{k_2 \wedge k_2'} ) \big] ^p {\rm d}\mu_1(z_1) {\rm d}\mu_2(z_2)\\ &+ \sum\limits_{l_1=1}^{\infty} \sum\limits_{l_2=1}^{\infty} \int_ { 2^{l_1-1}\delta^{k_1\wedge k_1'} \leq d_1(x_1,z_1) < 2^{l_1}\delta^{k_1\wedge k'_1} } \int_ { 2^{l_2-1}\delta^{k_2\wedge k_2'} \leq d_2(x_2,z_2) < 2^{l_2}\delta^{k_2\wedge k'_2} }\\ &\times \big[ P_{\gamma_1} (x_1,z_1;\delta^{k_1 \wedge k_1'} ) \big] ^p \big[ P_{\gamma_2} (x_2,z_2;\delta^{k_2 \wedge k_2'} ) \big] ^p {\rm d}\mu_1(z_1){\rm d}\mu_2(z_2)\\ =: & I_1+I_2+I_3+I_4. \end{align*}

对于情形 I_1. 由于 d_i(x_i,z_i)<\delta^{k_i \wedge k'_i}(i=1,2), 有

\delta^{k_i \wedge k'_i}+d_i(x_i,z_i)\simeq \delta^{k_i \wedge k_i'}

V_{\delta^{k_i \wedge k_i'}}(x_i)+V(x_i,z_i)\simeq V_{\delta^{k_i \wedge k_i'}}(x_i).

通过这些估计可以得到

\begin{align*} I_1& \simeq \int _ {d(x_1,z_1)<\delta^{k_1\wedge k'_1}} \int _ {d(x_2,z_2)<\delta^{k_2 \wedge k'_2}} \Big[ \frac {1} { V_{\delta^{k_1 \wedge k'_1}}(x_1) V_{\delta^{k_2 \wedge k'_2}}(x_2) } \Big] ^p {\rm d}\mu_1(z_1){\rm d}\mu_2(z_2)\\ &\simeq [ V_{\delta^{k_1 \wedge k'_1}}(x_1) V_{\delta^{k_2 \wedge k'_2}}(x_2) ] ^{1-p}. \end{align*}

对于情形 I_2.l_2\in \mathbb{N} 以及 d_2(x_2,z_2)\simeq 2^{l_2}\delta^{k_2 \wedge k_2'}\gtrsim \delta^{k_2 \wedge k_2'}, 易得 \delta^{k_2\wedge k_2'}+d_2(x_2,z_2)\simeq 2^{l_2}\delta^{k_2 \wedge k'_2}V_{\delta^{k_1 \wedge k_2'}}(x_2)+V(x_2,z_2)\simeq V_{2^{l_2}\delta^{k_2 \wedge k'_2}}(x_2). 通过这些估计和双倍条件 (1.3) 式, 可得

\begin{align*} I_2 \simeq & \sum\limits_{l_2=1}^{\infty} \int_ { 2^{l_2-1}\delta^{k_2\wedge k_2'} \leq d_2(x_2,z_2) < 2^{l_2}\delta^{k_2\wedge k'_2}} \big[ P_{\gamma_2} (x_2,z_2;\delta^{k_2 \wedge k_2'}) \big] ^p {\rm d}\mu_2(z_2) [ V_{\delta^{k_1 \wedge k'_1}}(x_1)]^{1-p}\\ \simeq & \sum\limits_{l_2=1}^{\infty} \int_ { 2^{l_2-1}\delta^{k_2\wedge k_2'} \leq d_2(x_2,z_2) < 2^{l_2}\delta^{k_2\wedge k'_2} } \bigg[ \frac {1} {V_{2^{l_2}\delta^{k_2 \wedge k_2'}}(x_2)} \bigg] ^p \bigg[ \frac {\delta^{k_2\wedge k_2'}} {2^{l_2}\delta^{k_2\wedge k_2'}} \bigg] ^{p\gamma_2} {\rm d}\mu_2(z_2)\\ \hspace{-3cm} &\times \big[ V_{\delta^{k_1 \wedge k_1'}} (x_1) \big] ^{1-p}\\ \lesssim& \sum\limits_{l_2=1}^{\infty} 2^{-l_2 p \gamma_2} [ V_{2^{l_2}\delta^{k_2 \wedge k_2'}} (x_2) ] ^{1-p} [ V_{\delta^{k_1 \wedge k_1'}} (x_1) ] ^{1-p}\\ \lesssim& \sum\limits_{l_2=1}^{\infty} 2^{-l_2 [p \gamma_2-\omega_2(1-p)]} [ V_{\delta^{k_2 \wedge k_2'}}(x_2)] ^{1-p} [ V_{\delta^{k_1 \wedge k_1'}}(x_1)] ^{1-p}. \end{align*}

由于 I_3I_2 的估计类似, 易得

\begin{align*} I_3 \lesssim& \sum\limits_{l_1=1}^{\infty} 2^{-l_1 [p \gamma_1-\omega_1(1-p)]} \big[ V_{\delta^{k_1 \wedge k_1'}} (x_1) \big] ^{1-p} \big[ V_{\delta^{k_2 \wedge k_2'}} (x_2) \big] ^{1-p}. \end{align*}

结合 I_2I_3 的估计, 类似地可以得到关于 I_4 的估计, 得

\begin{align*} I_4 \lesssim \sum\limits_{l_1=1}^{\infty} \sum\limits_{l_2=1}^{\infty} 2^{-l_1 [ p\gamma_1-\omega_1 (1-p)]} 2^{-l_2 [ p\gamma_2-\omega_2 (1-p)]} [ V_{\delta^{k1\wedge k'_1}}(x_1) V_{\delta^{k2\wedge k'_2}}(x_2) ] ^{1-p}. \end{align*}

最后, 根据级数收敛性可得

\begin{align*} &\sum\limits_{\alpha_1 \in \mathcal{G}_{k_1}} \sum\limits_{\alpha_2 \in \mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \mu_1 (Q_{\alpha_1}^{k_1,m_1}) \mu_2(Q_{\alpha_2}^{k_2,m_2})\big[ P_{\gamma_1} (x_1,y_{\alpha_1}^{k_1,m_1};\delta^{k_1 \wedge k_1'})\\ & \times P_{\gamma_2} (x_2,y_{\alpha_2}^{k_2,m_2};\delta^{k_2 \wedge k_2'}) \big] ^p\notag\\ \lesssim& \big[ V_{\delta^{k_1 \wedge k_1'}}(x_1) V_{\delta^{k_2 \wedge k_2'}}(x_2) \big] ^{1-p} \Big\{ 1 + \sum\limits_{l_2=1}^{\infty} 2^{-l_2 [p\gamma_2-\omega_2(1-p)]}\\ &+ \sum\limits_{l_1=1}^{\infty} 2^{-l_1 [p \gamma_1-\omega_1(1-p)]} + \sum\limits_{l_1=1}^{\infty} \sum\limits_{l_2=1}^{\infty} 2^{-l_1 [ p\gamma_1-\omega_1 (1-p)]} 2^{-l_2 [ p\gamma_2-\omega_2 (1-p)]} \Big\}\\ \lesssim& \big[ V_{\delta^{k_1 \wedge k_1'}}(x_1) V_{\delta^{k_2 \wedge k_2'}}(x_2) \big] ^{1-p}. \end{align*}

综上所述可得 (2.4) 式成立, 因此引理 2.4 证毕.

下文中引理 2.5 的单参情形下的相应结果参照 [27,引理 3.6].

引理 2.5\gamma_i\in(0,\infty), t \in \big(\max \big\{\frac{\omega_1}{\omega_1+\gamma_1},\frac{\omega_2}{\omega_2+\gamma_2}\big\},1\big], 那么对于任意的 k_i, k_i'\in \mathbb{Z}, \alpha_i \in \mathcal{G}_{k_i}m_i\in \{1,2,\cdots,N(k_i,\alpha_i)\}, (x_1,x_2)\in X_1 \times X_2, a_{\alpha_i}^{k_i,m_i} \in \mathbb{C}y_{\alpha_i}^{k_i,m_i} \in Q_{\alpha_i}^{k_i,m_i}(i=1,2), 有

\begin{align*} &\sum\limits_{\alpha_1\in \mathcal{G}_{k_1}} \sum\limits_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \mu_1(Q_{\alpha_1} ^{k_1,m_1}) \mu_2(Q_{\alpha_2} ^{k_2,m_2}) P_{\gamma_1} ( x_1, y_{\alpha_1}^{k_1,m_1}; \delta^{k_1 \wedge k_1'} ) \\ &\times P_{\gamma_2} ( x_2, y_{\alpha_2}^{k_2,m_2}; \delta^{k_2 \wedge k_2'} ) | a_{\alpha_1}^{k_1,m_1} a_{\alpha_2}^{k_2,m_2} |\notag \\[2mm] \leq\, & C \delta ^ { [ ( k_1\wedge k'_1)-k_1] \omega_1 ( \frac{1}{t}-1) } \delta ^ { [ ( k_2\wedge k'_2)-k_2] \omega_2 ( \frac{1}{t}-1) }\notag \\ &\times \Big[ \mathcal{M}_s \Big( \sum\limits_{\alpha_1\in \mathcal{G}_{k_1}} \sum\limits_{\alpha_2\in \mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \big| a_{\alpha_1}^{k_1,m_1} a_{\alpha_2}^{k_2,m_2} {\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} {\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} \big| ^t \Big) (x_1,x_2) \Big] ^{\frac{1}{t}}. \end{align*}
(2.5)

对于任意的 k_1,k_1',k_2,k_2'\in \mathbb{Z}, \alpha_i \in \mathcal{G}_{k_i}, m_i\in \{1,2,\cdots,N(k_i,\alpha_i)\} 以及 z_i, y_{\alpha_i}^{k_i,m_i} \in Q_{\alpha_i}^{k_i,m_i}, 我们可以得到 \mu_i ( Q_{\alpha_i}^{k_i,m_i}) {\mathcal{X}}_{Q_{\alpha_i}^{k_i,m_i}}(z_i)\simeq V_{\delta^{k_i}}(z_i){\mathcal{X}}_{Q_{\alpha_i}^{k_i,m_i}}(z_i), 且通过双倍条件 (1.3) 式, 我们也可以得到 V_{\delta^{k_i \wedge k'_i}}(z_i) \lesssim \delta^{( k_i \wedge k'_i-k_i)\omega_i }V_{\delta^{k_i}}(z_i)(i=1,2), 类似于引理 2.4 的证明, 有

\begin{array}{l}\left\{\left[\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)} \mu_{1}\left(Q_{\alpha_{1}}^{k_{1}, m_{1}}\right) \mu_{2}\left(Q_{\alpha_{2}}^{k_{2}, m_{2}}\right)\right)\right. \\\left.\times P_{\gamma_{1}}\left(x_{1}, y_{\alpha_{1}}^{k_{1}, m_{1}} ; \delta^{k_{1} \wedge k_{1}^{\prime}}\right) P_{\gamma_{2}}\left(x_{2}, y_{\alpha_{2}}^{k_{2}, m_{2}} ; \delta^{k_{2} \wedge k_{2}^{\prime}}\right)\left|a_{\alpha_{1}}^{k_{1}, m_{1}} a_{\alpha_{2}}^{k_{2}, m_{2}}\right|^{t}\right]^{\frac{1}{t}} \\\lesssim\left\{\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)} \mu_{1}\left(Q_{\alpha_{1}}^{k_{1}, m_{1}}\right)^{t} \mu_{2}\left(Q_{\alpha_{2}}^{k_{2}, m_{2}}\right)^{t} P_{\gamma_{1}}\left(x_{1}, y_{\alpha_{1}}^{k_{1}, m_{1}} ; \delta^{k_{1} \wedge k_{1}^{\prime}}\right)^{t}\right. \\\left.\quad \times P_{\gamma_{2}}\left(x_{2}, y_{\alpha_{2}}^{k_{2}, m_{2}} ; \delta^{k_{2} \wedge k_{2}^{\prime}}\right)^{t}\left|a_{\alpha_{1}}^{k_{1}, m_{1}} a_{\alpha_{2}}^{k_{2}, m_{2}}\right|^{t}\right\}^{\frac{1}{t}} \\\lesssim \delta^{\left[\left(k_{1} \wedge k_{1}^{\prime}\right)-k_{1}\right] \omega_{1}\left(\frac{1}{t}-1\right)} \delta^{\left[\left(k_{2} \wedge k_{2}^{\prime}\right)-k_{2}\right] \omega_{2}\left(\frac{1}{t}-1\right)}\end{array}
\begin{array}{l}\times\left\{\frac{1}{V_{\delta^{k_{1} \wedge k_{1}^{\prime}}}\left(x_{1}\right) V_{\delta^{k_{2} \wedge k_{2}^{\prime}}}\left(x_{2}\right)} \int_{d_{1}\left(x_{1}, z_{1}\right)<\delta^{k_{1} \wedge k_{1}^{\prime}}} \int_{d_{2}\left(x_{2}, z_{2}\right)<\delta^{k_{2} \wedge k_{2}^{\prime}}}\right. \\\times\left(\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)}\left|a_{\alpha_{1}}^{k_{1}, m_{1}} a_{\alpha_{2}}^{k_{2}, m_{2}}\right|^{t} \mathcal{X}_{Q_{\alpha_{1}}^{k_{1}, m_{1}}} \mathcal{X}_{Q_{\alpha_{2}}^{k_{2}, m_{2}}}\left(z_{1}, z_{2}\right)\right) \mathrm{d} \mu_{1}\left(z_{1}\right) \mathrm{d} \mu_{2}\left(z_{2}\right) \\+\sum_{l_{1}=0}^{\infty} 2^{-l_{1}\left[\gamma_{1} t-\omega_{1}(1-t)\right]} \frac{1}{V_{2^{l_{1}+1} \delta^{\left(k_{1} \wedge k_{1}^{\prime}\right)}}\left(x_{1}\right)} \frac{1}{V_{\delta^{\left(k_{2} \wedge k_{2}^{\prime}\right)}}\left(x_{2}\right)} \\\times \int_{d_{1}\left(x_{1}, z_{1}\right)<2^{l_{1}+1} \delta^{\left(k_{1}^{\prime} \wedge k_{1}\right)}} \int_{d_{2}\left(x_{2}, z_{2}\right)<\delta^{\left(k_{2}^{\prime} \wedge k_{2}\right)}} \\\times\left(\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)}\left|a_{\alpha_{1}}^{k_{1}, m_{1}} a_{\alpha_{2}}^{k_{2}, m_{2}}\right|^{t} \mathcal{X}_{Q_{\alpha_{1}}^{k_{1}, m_{1}}} \mathcal{X}_{Q_{\alpha_{2}}^{k_{2}, m_{2}}}\left(z_{1}, z_{2}\right)\right) \mathrm{d} \mu_{1}\left(z_{1}\right) \mathrm{d} \mu_{2}\left(z_{2}\right) \\+\sum_{l_{2}=0}^{\infty} 2^{-l_{2}\left[\gamma_{2} t-\omega_{2}(1-t)\right]} \frac{1}{V_{2^{l_{2}+1} \delta^{\left(k_{2} \wedge k_{2}^{\prime}\right)}}\left(x_{2}\right)} \frac{1}{V_{\delta^{\left(k_{1} \wedge k_{1}^{\prime}\right)}}\left(x_{1}\right)}\end{array}
\begin{array}{l}\times \int_{d_{2}\left(x_{2}, z_{2}\right)<2^{l_{2}+1}} \delta^{\left(k_{2}^{\prime} \wedge k_{2}\right)} \int_{d_{1}\left(x_{1}, z_{1}\right)<\delta^{\left(k_{1}^{\prime} \wedge k_{1}\right)}} \\\times\left(\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)}\left|a_{\alpha_{1}}^{k_{1}, m_{1}} a_{\alpha_{2}}^{k_{2}, m_{2}}\right|^{t} \mathcal{X}_{Q_{\alpha_{1}}^{k_{1}, m_{1}}} \mathcal{X}_{Q_{\alpha_{2}}^{k_{2}, m_{2}}}\left(z_{1}, z_{2}\right)\right) \mathrm{d} \mu_{1}\left(z_{1}\right) \mathrm{d} \mu_{2}\left(z_{2}\right) \\+\sum_{l_{1}=0}^{\infty} \sum_{l_{2}=0}^{\infty} 2^{-l_{1}\left[\gamma_{1} t-\omega_{1}(1-t)\right]} 2^{-l_{2}\left[\gamma_{2} t-\omega_{2}(1-t)\right]} \frac{1}{V_{2^{l_{1}+1} \delta^{k_{1} \wedge k_{1}^{\prime}}}\left(x_{1}\right) V_{2^{l_{2}+1} \delta^{k_{2} \wedge k_{2}^{\prime}}}\left(x_{2}\right)} \\\times \int_{d_{1}\left(x_{1}, z_{1}\right)<2^{l_{1}+1} \delta^{\left(k_{1} \wedge k_{1}^{\prime}\right)}} \int_{d_{2}\left(x_{2}, z_{2}\right)<2^{l_{2}+1} \delta^{\left(k_{2} \wedge k_{2}^{\prime}\right)}} \\\left.\times\left(\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)}\left|a_{\alpha_{1}}^{k_{1}, m_{1}} a_{\alpha_{2}}^{k_{2}, m_{2}}\right|^{t} \mathcal{X}_{Q_{\alpha_{1}}^{k_{1}, m_{1}}} \mathcal{X}_{Q_{\alpha_{2}}^{k_{2}, m_{2}}}\left(z_{1}, z_{2}\right)\right) \mathrm{d} \mu_{1}\left(z_{1}\right) \mathrm{d} \mu_{2}\left(z_{2}\right)\right\}^{\frac{1}{t}}\end{array}
\begin{aligned}\lesssim & \delta^{\left[\left(k_{1} \wedge k_{1}^{\prime}\right)-k_{1}\right] \omega_{1}\left(\frac{1}{t}-1\right)} \delta^{\left[\left(k_{2} \wedge k_{2}^{\prime}\right)-k_{2}\right] \omega_{2}\left(\frac{1}{t}-1\right)} \\& \times\left[\mathcal{M}_{s}\left(\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)}\left|a_{\alpha_{1}}^{k_{1}, m_{1}} a_{\alpha_{2}}^{k_{2}, m_{2}}\right|^{t} \mathcal{X}_{Q_{\alpha_{1}}^{k_{1}, m_{1}}} \mathcal{X}_{Q_{\alpha_{2}}^{k_{2}, m_{2}}}\right)\left(x_{1}, x_{2}\right)\right]^{\frac{1}{t}}.\end{aligned}

至此完成了引理 2.5 的证明.

几乎正交估计是证明定理 1.1 的重要工具, 下文中引理 2.6 的单参情形下的相应结果参照文献 [p155]. 下面给出乘积小波函数族的几乎正交估计.

引理 2.6\psi^{k_1,k_2}_{\alpha_1,\alpha_2},\varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} 是如 (1.12) 式中定义的乘积小波函数族, 则存在 \beta_i,\gamma_i,\beta'_i,\gamma'_i \in (0,\eta_i), \eta _i \in(0,1), \beta'_i \in ( 0, \gamma_i\wedge \beta_i ), i=1,2, 使得

\begin{align*} &\Bigg| \Bigg< \frac{\psi_{\alpha_1,\alpha_2}^{k_1,k_2}}{\sqrt{\mu_1( Q_{\alpha_1}^{k_1,m_1}) \mu_2(Q_{\alpha_2}^{k_2,m_2})}}, \frac{\varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'}}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'}) \mu_2( Q_{\alpha_2'}^{k_2',m_2'})}} \Bigg> \Bigg| \\ \leq\, & C \delta^{| k_1-k_1'| \beta_1'} \delta^{| k_2-k_2'| \beta_2'}P_{\gamma_1'} (y_{\alpha_1}^{k_1,m_1}, y_{\alpha_1'}^{k_1',m_1'};\delta^{k_1 \wedge k_1'} )P_{\gamma_2'} (y_{\alpha_2}^{k_2,m_2}, y_{\alpha_2'}^{k_2',m_2'};\delta^{k_2 \wedge k_2'} ). \notag \end{align*}
(2.6)

在这里我们强调一下, 引理中的小波函数族不要求满足正交性条件. 下面来证明引理中的不等式, 对于任意的 (x_1,x_2) \in X_1 \times X_2,

\begin{align*} &\Bigg| \Bigg< \frac{\psi_{\alpha_1,\alpha_2}^{k_1,k_2}}{\sqrt{\mu_1( Q_{\alpha_1}^{k_1,m_1}) \mu_2(Q_{\alpha_2}^{k_2,m_2})}}, \frac{\varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'}}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'}) \mu_2( Q_{\alpha_2'}^{k_2',m_2'})}} \Bigg> \Bigg| \\ =\,&\bigg| \int_{X_1 \times X_2} \frac{\psi_{\alpha_1,\alpha_2}^{k_1,k_2}(x_1,x_2)}{\sqrt{\mu_1( Q_{\alpha_1}^{k_1,m_1}) \mu_2(Q_{\alpha_2}^{k_2,m_2})}}\times \frac{\varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'}(x_1,x_2)}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'}) \mu_2( Q_{\alpha_2'}^{k_2',m_2'})}} {\rm d}\mu_1(x_1){\rm d}\mu_2(x_2) \bigg|\\ \lesssim \,&\bigg|\int_{X_1} \frac{\psi_{\alpha_1}^{k_1}(x_1)}{\sqrt{\mu_1( Q_{\alpha_1}^{k_1,m_1})}} \frac{\varphi_{\alpha_1'}^{k_1'}(x_1)}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'})}} {\rm d} \mu_1 (x_1)\bigg| \times \bigg|\int_{X_2} \frac{\psi_{\alpha_2}^{k_2}(x_2)}{\sqrt{\mu_2( Q_{\alpha_2}^{k_2,m_2})}} \frac{\varphi_{\alpha_2'}^{k_2'}(x_2)}{\sqrt{\mu_2( Q_{\alpha_2'}^{k_2',m_2'})}} {\rm d} \mu_2 (x_2)\bigg|. \end{align*}

下面不妨对 \big| \int_{X_1} \frac{\psi_{\alpha_1}^{k_1}(x_1)}{\sqrt{\mu_1( Q_{\alpha_1}^{k_1,m_1})}} \frac{\varphi_{\alpha_1'}^{k_1'}(x_1)}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'})}} {\rm d} \mu_1 (x_1)\big| 进行估计. 利用 \int_ {X_1}\psi_{\alpha_1}^{k_1}(x_1){\rm d} \mu_1 (x_1)=0 可得

\begin{align*} &\bigg|\int_{X_1} \frac{\psi_{\alpha_1}^{k_1}(x_1)}{\sqrt{\mu_1( Q_{\alpha_1}^{k_1,m_1})}} \frac{\varphi_{\alpha_1'}^{k_1'}(x_1)}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'})}} {\rm d} \mu_1 (x_1) \bigg|\\ \lesssim & \int_{W_1} \frac{|\psi_{\alpha_1}^{k_1}(x_1)|}{\sqrt{\mu_1 (Q_{\alpha_1}^{k_1,m_1})}} \bigg| \frac{\varphi_{\alpha_1'}^{k_1'}(x_1)-\varphi_{\alpha_1'}^{k_1'} (y_{\alpha_1}^{k_1,m_1})}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'})}} \bigg|{\rm d} \mu_1 (x_1)\\ &+\int_{W_2} \frac{|\psi_{\alpha_1}^{k_1}(x_1)|}{\sqrt{\mu_1 ( Q_{\alpha_1}^{k_1,m_1})}} \bigg[ \bigg| \frac{\varphi_{\alpha_1'}^{k_1'}(x_1)}{\sqrt{\mu_1 ( Q_{\alpha_1'}^{k_1',m_1'})}} \bigg|+\bigg| \frac{\varphi_{\alpha_1'}^{k_1'}(y_{\alpha_1}^{k_1,m_1})}{\sqrt{\mu_1( Q_{\alpha_1'}^{k_1',m_1'})}} \bigg| \bigg] {\rm d} \mu_1 (x_1)\\ =:& V_1+V_2, \end{align*}

其中 W_1:=\{ x_1 \in X_1: d_1(x_1,y_{\alpha_1}^{k_1,m_1})\leq (2A_0)^{-1}( \delta^{k_1'}+d_1(y_{\alpha_1'}^{k_1',m_1'},x_1)) \}, W_2:=X_1 \setminus W_1. 对于 V_1, 利用文献 [19,定理 3.3], 可得

\begin{align*} V_1 \lesssim \,& \int_{W_1} P_{\gamma_1}(y_{\alpha_1}^{k_1,m_1},x_1;\delta^{k_1}) P_{\gamma_1'}(y_{\alpha_1'}^{k_1',m_1'},x_1;\delta^{k_1'})\Big( \frac{\delta^{k_1'}}{\delta^{k_1'}+d(y_{\alpha_1'} ^{k_1',m_1'},x_1)}\Big) ^{\beta_1'}{\rm d}\mu_1 (x_1)\\ \lesssim \,& \delta^{(k_1-k_1')\beta_1'} \int_{W_1} \frac{1}{V_{\delta^{k_1}}(y_{\alpha_1}^{k_1,m_1}) +V( y_{\alpha_1}^{k_1,m_1},x_1)} \Big( \frac{\delta^{k_1}}{\delta^{k_1}+d_1(y_{\alpha_1}^{k_1,m_1},x_1)} \Big)^{\gamma_1-\beta_1'} {\rm d} \mu_1 (x_1) \\ & \times \frac{1}{V_{\delta^{k_1'}}( y_{\alpha_1}^{k_1,m_1})+V_{\delta^{k_1'}}(y_{\alpha_1'}^{k_1',m_1'}) +V(y_{\alpha_1}^{k_1,m_1},y_{\alpha_1'}^{k_1',m_1'})}\Big( \frac{\delta^{k_1'}}{\delta^{k_1'}+d_1 (y_{\alpha_1'}^{k_1',m_1'},y_{\alpha_1}^{k_1,m_1})} \Big)^{\gamma_1'}\\ \lesssim\, & \delta^{(k-k_1')\beta_1'} \frac{1}{V_{\delta^{k_1'}}( y_{\alpha_1}^{k_1,m_1})+V_{\delta^{k_1'}}(y_{\alpha_1'} ^{k_1',m_1'})+V(y_{\alpha_1}^{k_1,m_1},y_{\alpha_1'}^{k_1',m_1'} )} \Big( \frac{\delta^{k_1'}}{\delta^{k_1'}+d_1 (y_{\alpha_1'}^{k_1',m_1'},y_{\alpha_1}^{k_1,m_1})} \Big)^{\gamma_1'}\\ \lesssim\,& \delta^{| k_1-k_1'| \beta_1'} P_{\gamma_1'} (y_{\alpha_1}^{k_1,m_1}, y_{\alpha_1'}^{k_1',m_1'};\delta^{k_1 \wedge k_1'} ). \end{align*}

对于 V_2. d_1(x_1,y_{\alpha_1}^{k_1,m_1})> (2A_0)^{-1}( \delta^{k_1'}+d_1(y_{\alpha_1'}^{k_1',m_1'},x_1)), 我们有 V(x_1,y_ {\alpha_1}^{k_1,m_1})\geq CV(x_1, (2A_0)^{-1}( \delta^{k_1'}+d_1(y_{\alpha_1'}^{k_1',m_1'},x_1))\geq C[V_{\delta^{k_1}}(y_{\alpha_1'}^{k_1',m_1'}) +V( y_{\alpha_1'}^{k_1',m_1'},x_1)]\delta^{k_1}+d_1(x_1,y_{\alpha_1}^{k_1,m_1}) \geq C [\delta^{k_1}+\delta^{k_1'}+d_1(y_{\alpha_1'}^{k_1',m_1'},x_1)] \geq C \delta^{k_1'}.利用这些估计和文献 [P155], 可得

\begin{align*} V_2 \lesssim \,& \int_{\omega_2} P_{\gamma_1}(y_{\alpha_1}^{k_1,m_1},x_1;\delta^{k_1}) \bigg[ P_{\gamma_1'}(y_{\alpha_1'}^{k_1',m_1'},x_1;\delta^{k_1'}) + P_{\gamma_1'}(y_{\alpha_1'}^{k_1',m_1'},y_{\alpha_1}^{k_1,m_1}; \delta^{k_1'}) \bigg] {\rm d} \mu_1 (x_1)\\ \lesssim \,& \delta^{(k-k')\gamma_1} \frac{1}{V_{\delta^{k_1'}}(y_{\alpha_1}^{k_1,m_1})+V_{\delta^{k_1'}} (y_{\alpha_1'}^{k_1',m_1'})+V(y_{\alpha_1}^{k_1,m_1},y_{\alpha_1'}^{k_1',m_1'} )} \bigg( \frac{\delta^{k_1'}}{\delta^{k_1'}+d_1(y_{\alpha_1'}^{k_1',m_1'}, y_{\alpha_1}^{k_1,m_1})}\bigg)^{\gamma_1'}. \end{align*}

类似可得

\begin{align*} &\bigg| \int_{X_2} \frac{\psi_{\alpha_2}^{k_2}(x_2)}{\sqrt{\mu_2( Q_{\alpha_2}^{k_2,m_2})}} \frac{\varphi_{\alpha_2'}^{k_2'}(x_2)}{\sqrt{\mu_2( Q_{\alpha_2'}^{k_2',m_2'})}} {\rm d} \mu_2 (x_2) \bigg|\\ \lesssim \,& \delta^{|k_2-k_2'|\beta_2'} \frac{1}{V_{\delta^{k_2'}}(y_{\alpha_2}^{k_2,m_2})+ V_{\delta^{k_2'}}(y_{\alpha_2'}^{k_2',m_2'})+V (y_{\alpha_2}^{k_2,m_2},y_{\alpha_2'}^{k_2',m_2'})} \bigg(\frac{\delta^{k_2'}}{\delta^{k_2'}+d_2 (y_{\alpha_2'}^{k_2',m_2'},y_{\alpha_2}^{k_2,m_2})} \bigg)^{\gamma_2'}\\ \lesssim \,& \delta^{| k_2-k_2'| \beta_2'} P_{\gamma_2'} (y_{\alpha_2}^{k_2,m_2}, y_{\alpha_2'}^{k_2',m_2'};\delta^{k_2 \wedge k_2'} ). \end{align*}

即有 (2.6) 式成立, 引理 2.6 证毕.

下面我们给出定理 1.1(i) 的证明

f \in ( \mathring{\mathcal{G}}_0^{\eta_1,\eta_2} ( \beta_1, \beta_2; \gamma_1, \gamma_2))', 由乘积小波再生公式 (2.2) 式有

\begin{align*} f(z_1,z_2)=\sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \sum_{\alpha_1' \in \mathcal{G}_{k_1'}} \sum_{\alpha_2' \in \mathcal{G}_{k_2'}} \big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \big> \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'}(z_1,z_2), \end{align*}

其中对于任意的 k_i' \in \mathbb{Z}, \alpha_i' \in \mathcal{G}_{k_i'}(i=1,2).

对任意的 k_i \in \mathbb{Z}, \alpha_i \in \mathcal{G}_{k_i}, m_i\in \{1,2,\cdots,N(k_i,\alpha_i)\} 以及 z_i, y_{\alpha_i}^{k_i,m_i} \in Q_{\alpha_i}^{k_i,m_i}, y_{\alpha_i'}^{k_i',m_i'} \in Q_{\alpha_i'}^{k_i',m_i'}, 我们有

\delta^{k_i \wedge k'_i}+d(z_i,y_{\alpha_i'}^{k_i',m_i'})\simeq \delta^{k_i \wedge k'_i}+d(y_{\alpha_i}^{k_i,m_i},y_{\alpha_i'}^{k_i',m_i'})

V_{\delta^{k_i \wedge k'_i}}(y_{\alpha_i'}^{k_i',m_i'})+V(z_i,y_{\alpha_i'}^{k_i',m_i'}) \simeq V_{\delta^{k_i \wedge k'_i}}(y_{\alpha_i'}^{k_i',m_i'}) +V(y_{\alpha_i}^{k_i,m_i}, y_{\alpha_i'}^{k_i',m_i'}).

利用这些估计, 以及 (2.6) 式和(2.5) 式, 则对于任意固定的 \beta_i' \in (0,\beta_i\wedge \gamma_i), 有

\begin{align*}\label{sup} \hspace{-3cm} & | \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> | \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2)\notag\\ =& \bigg|\bigg< \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \sum_{\alpha_1' \in \mathcal{G}_{k_1'}} \sum_{\alpha_2' \in \mathcal{G}_{k_2'}}\sum\limits_{m_1'=1}^{N(k_1',\alpha_1')} \sum\limits_{m_2'=1}^{N(k_2',\alpha_2')}\Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big>\varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'}, \psi_{\alpha_1,\alpha_2}^{k_1,k_2} \bigg> \bigg| \notag \\ & \times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2) \notag \\ \lesssim & \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \sum_{\alpha_1' \in \mathcal{G}_{k_1'}} \sum_{\alpha_2' \in \mathcal{G}_{k_2'}}\sum\limits_{m_1'=1}^{N(k_1',\alpha_1')} \sum\limits_{m_2'=1}^{N(k_2',\alpha_2')} \delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \\ & \times [\mu_1 (Q_{\alpha_1'}^{k_1',m_1'}) \mu_2(Q_{\alpha_2'}^{k_2',m_2'})]^{\frac{1}{2}} P_{\gamma_1'} ( y_{\alpha_1'}^{k_1',m_1'}, y_{\alpha_1}^{k_1,m_1}; \delta^{k_1 \wedge k_1'} ) P_{\gamma_2'} ( y_{\alpha_2'}^{k_2',m_2'}, y_{\alpha_2}^{k_2,m_2}; \delta^{k_2 \wedge k_2'}) \notag \\ & \times \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big|\mathcal{X}_{Q_{\alpha_1}^{k_1,m_1}} \mathcal{X}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2)\notag\\ \lesssim & \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) } \delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) } \notag \\ &\times \bigg[ \mathcal{M}_s \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \notag \\ &\times\Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^t \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg) (z_1,z_2) \bigg] ^{\frac{1}{t}}\mathcal{X}_{Q_{\alpha_1}^{k_1,m_1}} \mathcal{X}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2), \notag \end{align*}
(2.7)

其中 \beta_i'> \max\{s_i,-s_i+\omega_2 ( \frac{1}{t}-1 )\}. 关于 p, 下面分为两种情况进行讨论

(1) \max\{ p( s_1, \beta_1 \wedge \gamma_1)r, p( s_2,\beta_2 \wedge \gamma_2)r \}< p\leq 1 ; (2) 1< p \leq\infty.

1< p \leq\infty 时, 根据引理 2.5 和引理 2.3, 对于 t\leq \min\{1,\frac{p}{r}\}w\in A_{p/t}(X_1 \times X_2), 可得

\begin{align*} &\bigg\| \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \big| \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> \big| \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} \bigg\|_{L^p_w(X_1 \times X_2)} \\ \lesssim \,& \bigg\|\sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) } \delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) } \\ &\times \bigg[ \mathcal{M}_s \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^t \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg) (\cdot,\cdot) \bigg] ^{\frac{1}{t}}\bigg\|_{L^p_w(X_1 \times X_2)}\\ \lesssim \,& \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) } \delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) } \\ &\times \bigg\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg\|_{L^p_w(X_1 \times X_2)}. \end{align*}

然后我们将考虑两种情况: 0 < q\leq 1q > 1.0 < q\leq 1, 利用 (2.3) 式和

\begin{aligned} & \sup _{k_{1}, k_{2} \in \mathbb{Z}} \sum_{k_{1}^{\prime} \in \mathbb{Z}} \sum_{k_{2}^{\prime} \in \mathbb{Z}}\left(\delta^{\left(k_{1}^{\prime}-k_{1}\right) s_{1}} \delta^{\left(k_{2}^{\prime}-k_{2}\right) s_{2}} \delta^{\left|k_{1}-k_{1}^{\prime}\right| \beta_{1}^{\prime}} \delta^{\left|k_{2}-k_{2}^{\prime}\right| \beta_{2}^{\prime}} \delta^{\left(k_{1}^{\prime}-k_{1} \wedge k_{1}^{\prime}\right) \omega_{1}\left(1-\frac{1}{t}\right)} \delta^{\left(k_{2}^{\prime}-k_{2} \wedge k_{2}^{\prime}\right) \omega_{2}\left(1-\frac{1}{t}\right)}\right)^{q} \\ = & \sup _{k_{1}, k_{2} \in \mathbb{Z}}\left(\sum_{k_{1}^{\prime}>k_{1}} \delta^{\left(k_{1}^{\prime}-k_{1}\right)\left(s_{1}+\beta_{1}^{\prime}+\omega_{1}-\frac{\omega_{1}}{t}\right) q}+\sum_{k_{1}^{\prime} \leq k_{1}} \delta^{\left(k_{1}^{\prime}-k_{1}\right)\left(\beta_{1}^{\prime}-s_{2}\right) q}\right) \\ & \times\left(\sum_{k_{2}^{\prime}>k_{2}} \delta^{\left(k_{2}^{\prime}-k_{2}\right)\left(s_{2}+\beta_{2}^{\prime}+\omega_{2}-\frac{\omega_{2}}{t}\right) q}+\sum_{k_{2}^{\prime} \leq k_{2}} \delta^{\left(k_{2}^{\prime}-k_{2}\right)\left(\beta_{2}^{\prime}-s_{2}\right) q}\right) \lesssim C. \end{aligned}

对于 \max\{ p( s_1, \beta_1 \wedge \gamma_1)r, p( s_2,\beta_2 \wedge \gamma_2)r \}< t< q\leq 1 , 可得

\begin{align*} &\bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg\| \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \big|\big< f, \psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> \big| \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} \bigg\|^{q}_{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}}\notag\\ \lesssim \,& \Big\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q}\\ &\times \Big( \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) }\delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) }\\ &\times \Big\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \big| \big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \big> \big| \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}}\Big\|_{L^p_w(X_1 \times X_2)}\Big)^q \Big\} ^{\frac{1}{q}}\\ \lesssim\,&\bigg\{ \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \delta^{-k_1' s_1 q} \delta^{-k_2' s_2 q} \bigg\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \\ &\times \Big| \Big< f( y_{\alpha_1'}^{k_1',m_1'}, y_{\alpha_2'}^{k_2',m_2'} ), \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}}\bigg\|^q _{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}}. \end{align*}

q > 1 时, 使用 Hölder 不等式和下面的估计

\begin{align*} & \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \delta^{(k_1'-k_1) s_1 } \delta^{(k_2'-k_2) s_2 } \delta^{| k_1-k_1'| \beta_1' } \delta^{| k_2-k_2'| \beta_2' } \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} ) } \delta^{(k_2'-k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} ) }\\ \leq& C, \end{align*}

对于 \max\{ p( s_1, \beta_1 \wedge \gamma_1)r, p( s_2,\beta_2 \wedge \gamma_2)r \}< t\leq 1 , 可得

\begin{align*} & \bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg\| \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \notag \\ &\times | \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> | \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} \bigg\|^{q}_{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}} \\ \lesssim & \bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg( \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) } \end{align*}
\begin{align*} &\times\delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) } \bigg\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big|\\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}}\bigg\|_{L^p_w(X_1 \times X_2)}\bigg)^q \bigg\} ^{\frac{1}{q}}\notag\\ \lesssim & \bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \bigg( \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{(k_1'-k_1) s_1 q'} \delta^{(k_2'-k_2) s_2 q'}\delta^{|k_1-k_1'|\beta_1'q'} \delta^{|k_2-k_2'|\beta_2'q'} \\ &\times \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} )q' } \delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} )q' } \bigg)^{\frac{q}{q'}} \\ &\times\bigg( \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{-k_1' s_1 q} \delta^{-k_2' s_2 q} \bigg\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| \\ \notag \hspace{-2cm} &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}}\bigg\|_{L^p_w(X_1 \times X_2)}\bigg)^q \bigg\} ^{\frac{1}{q}}\notag\\ \lesssim&\bigg\{ \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \delta^{-k_1' s_1 q} \delta^{-k_2' s_2 q}\bigg\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}}\sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')}\Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big|\\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}}\bigg\|^q _{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}}.\end{align*}

\max\{ p( s_1, \beta_1 \wedge \gamma_1)r, p( s_2,\beta_2 \wedge \gamma_2)r \}< p\leq 1 时, 利用 (2.3) 式和定理 2.3, 对于 t\leq \min\{1,\frac{p}{r}\}w\in A_{p/t}(X_1 \times X_2), 可得

\begin{aligned} & \left\{\iint\left(\sum_{\alpha_{1} \in \mathcal{G}_{k_{1}}} \sum_{\alpha_{2} \in \mathcal{G}_{k_{2}}} \sum_{m_{1}=1}^{N\left(k_{1}, \alpha_{1}\right)} \sum_{m_{2}=1}^{N\left(k_{2}, \alpha_{2}\right)}\left|\left\langle f, \psi_{\alpha_{1}, \alpha_{2}}^{k_{1}, k_{2}}\right\rangle\right| \widetilde{\mathcal{X}}_{Q_{\alpha_{1}}^{k_{1}, m_{1}}} \widetilde{\mathcal{X}}_{Q_{\alpha_{2}}^{k_{2}, m_{2}}}\left(x_{1}, x_{2}\right)\right)^{p}\right. \\ & \left.\times w\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right\}^{\frac{1}{p}} \\ \lesssim & \left\{\int \int \left(\sum_{k_{1}^{\prime} \in \mathbb{Z}} \sum_{k_{2}^{\prime} \in \mathbb{Z}} \delta^{\left|k_{1}-k_{1}^{\prime}\right| \beta_{1}^{\prime}} \delta^{\left|k_{2}-k_{2}^{\prime}\right| \beta_{2}^{\prime}} \delta^{\left[k_{1}^{\prime}-\left(k_{1}^{\prime} \wedge k_{1}\right)\right] \omega_{1}\left(1-\frac{1}{t}\right)} \delta^{\left[k_{2}^{\prime}-\left(k_{2}^{\prime} \wedge k_{2}\right)\right] \omega_{2}\left(1-\frac{1}{t}\right)}\right.\right. \\ & \times\left[\mathcal{M}_{s}\left(\sum_{\alpha_{1}^{\prime} \in \mathcal{G}_{k_{1}^{\prime}}} \sum_{\alpha_{2}^{\prime} \in \mathcal{G}_{k_{2}^{\prime}}} \sum_{m_{1}^{\prime}=1}^{N\left(k_{1}^{\prime}, \alpha_{1}^{\prime}\right)} \sum_{m_{2}^{\prime}=1}^{N\left(k_{2}^{\prime}, \alpha_{2}^{\prime}\right)}\left|\left\langle f, \varphi_{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}}^{k_{1}^{\prime}, k_{2}^{\prime}}\right\rangle\right|^{t} \widetilde{\mathcal{X}}_{Q_{\alpha_{1}^{\prime}}^{k_{1}^{\prime}, m_{1}^{\prime}}} \widetilde{\mathcal{X}}_{Q_{\alpha_{2}^{\prime}}^{k_{2}^{\prime}, m_{2}^{\prime}}}\left(z_{1}, z_{2}\right)\right)^{\frac{1}{t}}\right)^{p} \\ & \left.\times w\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right\}^{\frac{1}{p}} \\ \lesssim & \left\{\int \int \left(\sum_{k_{1}^{\prime} \in \mathbb{Z}} \sum_{k_{2}^{\prime} \in \mathbb{Z}} \delta^{\left|k_{1}-k_{1}^{\prime}\right| \beta_{1}^{\prime}} \delta^{\left|k_{2}-k_{2}^{\prime}\right| \beta_{2}^{\prime}} \delta^{\left[k_{1}^{\prime}-\left(k_{1}^{\prime} \wedge k_{1}\right)\right] \omega_{1}\left(1-\frac{1}{t}\right)} \delta^{\left[k_{2}^{\prime}-\left(k_{2}^{\prime} \wedge k_{2}\right)\right] \omega_{2}\left(1-\frac{1}{t}\right)}\right.\right. \\ & \left.\times\left[\mathcal{M}_{s}\left(\sum_{\alpha_{1}^{\prime} \in \mathcal{G}_{k_{1}^{\prime}}} \sum_{\alpha_{2}^{\prime} \in \mathcal{G}_{k_{2}^{\prime}}} \sum_{m_{1}^{\prime}=1}^{N\left(k_{1}^{\prime}, \alpha_{1}^{\prime}\right)} \sum_{m_{2}^{\prime}=1}^{N\left(k_{2}^{\prime}, \alpha_{2}^{\prime}\right)}\left|\left\langle f, \varphi_{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}}^{k_{1}^{\prime}, k_{2}^{\prime}}\right\rangle\right|^{t} \widetilde{\mathcal{X}}_{Q_{\alpha_{1}^{\prime}}^{k_{1}^{\prime}, m_{1}^{\prime}}} \widetilde{\mathcal{X}}_{Q_{\alpha_{2}^{\prime}}^{k_{2}^{\prime}, m_{2}^{\prime}}}\left(z_{1}, z_{2}\right)\right)\right]^{\frac{1}{t}}\right)^{t \times \frac{p}{t}} \\ & \left.\times w\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right\}^{\frac{t}{p} \times \frac{1}{t}} \\ \lesssim & \left\{\int \int \left(\sum_{k_{1}^{\prime} \in \mathbb{Z}} \sum_{k_{2}^{\prime} \in \mathbb{Z}} \delta^{\left|k_{1}-k_{1}^{\prime}\right| \beta_{1}^{\prime}} \delta^{\left|k_{2}-k_{2}^{\prime}\right| \beta_{2}^{\prime}} \delta^{\left[k_{1}^{\prime}-\left(k_{1}^{\prime} \wedge k_{1}\right)\right] \omega_{1}\left(1-\frac{1}{t}\right)} \delta^{\left[k_{2}^{\prime}-\left(k_{2}^{\prime} \wedge k_{2}\right)\right] \omega_{2}\left(1-\frac{1}{t}\right)}\right.\right. \end{aligned}
\begin{aligned} & \left.\times\left(\sum_{\alpha_{1}^{\prime} \in \mathcal{G}_{k_{1}^{\prime}}} \sum_{\alpha_{2}^{\prime} \in \mathcal{G}_{k_{2}^{\prime}}} \sum_{m_{1}^{\prime}=1}^{N\left(k_{1}^{\prime}, \alpha_{1}^{\prime}\right)} \sum_{m_{2}^{\prime}=1}^{N\left(k_{2}^{\prime}, \alpha_{2}^{\prime}\right)}\left|\left\langle f, \varphi_{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}}^{k_{1}^{\prime}, k_{2}^{\prime}}\right\rangle\right|^{t} \widetilde{\mathcal{X}}_{Q_{\alpha_{1}^{\prime}}^{k_{1}^{\prime}, m_{1}^{\prime}}} \widetilde{\mathcal{X}}_{Q_{\alpha_{2}^{\prime}}^{k_{2}^{\prime}, m_{2}^{\prime}}}\left(z_{1}, z_{2}\right)\right)^{\frac{1}{t}}\right)^{p} \\ & \left.\times w\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right\}^{\frac{1}{p}} \\ \lesssim & \left\{\sum_{k_{1}^{\prime} \in \mathbb{Z}} \sum_{k_{2}^{\prime} \in \mathbb{Z}}\left(\delta^{\left|k_{1}-k_{1}^{\prime}\right| \beta_{1}^{\prime}} \delta^{\left|k_{2}-k_{2}^{\prime}\right| \beta_{2}^{\prime}} \delta^{\left(k_{1}^{\prime}-k_{1} \wedge k_{1}^{\prime}\right) \omega_{1}\left(1-\frac{1}{t}\right)} \delta^{\left(k_{2}^{\prime}-k_{2} \wedge k_{2}^{\prime}\right) \omega_{2}\left(1-\frac{1}{t}\right)}\right)^{p}\right. \\ & \times \iint\left[\left(\sum_{\alpha_{1}^{\prime} \in \mathcal{G}_{k_{1}^{\prime}}} \sum_{\alpha_{2}^{\prime} \in \mathcal{G}_{k_{2}^{\prime}}} \sum_{m_{1}^{\prime}=1}^{N\left(k_{1}^{\prime}, \alpha_{1}^{\prime}\right)} \sum_{m_{2}^{\prime}=1}^{N\left(k_{2}^{\prime}, \alpha_{2}^{\prime}\right)} \mid\left\langle f, \varphi_{\left.\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\rangle}^{\left.k_{1}^{\prime}, k_{2}^{\prime}\right\rangle}\right| \widetilde{\mathcal{X}}_{Q_{\alpha_{1}^{\prime}, m_{1}^{\prime}}^{k_{1}^{\prime}}} \widetilde{\mathcal{X}}_{Q_{\alpha_{2}^{\prime}, m_{2}^{\prime}}^{\prime}}\left(z_{1}, z_{2}\right)\right)^{p}\right. \\ & \left.\times w\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right\}^{\frac{1}{p}}. \end{aligned}

那么对于 \frac{1}{p}\frac{1}{1-p}, 通过 Hölder 不等式, 可得

\begin{align*} & \bigg\{\iint \bigg(\sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)}\big| \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> \big| \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} (x_1, x_2)\bigg) ^{p} \\ &\times w(x_1, x_2){\rm d}\mu_1(x_1){\rm d}\mu_2(x_2)\bigg\}^{\frac{1}{p}}\\ \lesssim&\bigg\{ \sum_{k_1' \in \mathbb{Z}} \sum_{k_2' \in \mathbb{Z}} \big( \delta^{| k_1-k_1'| \beta_1' } \delta^{| k_2-k_2'| \beta_2' } \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} ) } \delta^{(k_2'- k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} ) }\big)^p\\ &\times \iint \bigg[ \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg) \bigg] ^{p} \\ &\times w(x_1, x_2){\rm d}\mu_1(x_1){\rm d}\mu_2(x_2)\bigg\}^{\frac{1}{p}} \\ \lesssim& \bigg\{\sum_{k_1' \in \mathbb{Z}} \sum_{k_2' \in \mathbb{Z}} \big( \delta^{| k_1-k_1'| \beta_1' } \delta^{| k_2-k_2'| \beta_2' } \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} ) } \delta^{(k_2'- k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} ) }\big)^{\frac{p}{1-p}}\bigg\}^{\frac{1-p}{p}}\\ &\times \sum_{k_1' \in \mathbb{Z}} \sum_{k_2' \in \mathbb{Z}}\bigg[\iint \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big|\widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg) ^{p} \\ &\times w(x_1, x_2){\rm d}\mu_1(x_1){\rm d}\mu_2(x_2)\bigg] ^{\frac{1}{p}}\\ \lesssim& \sum_{k_1' \in \mathbb{Z}} \sum_{k_2' \in \mathbb{Z}} \delta^{| k_1-k_1'| \beta_1' } \delta^{| k_2-k_2'| \beta_2' } \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} ) } \delta^{(k_2'- k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} ) }\\ &\times \sum_{k_1' \in \mathbb{Z}} \sum_{k_2' \in \mathbb{Z}}\bigg[\iint \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big|\widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg) ^{p} \\ &\times w(x_1, x_2){\rm d}\mu_1(x_1){\rm d}\mu_2(x_2)\bigg] ^{\frac{1}{p}}. \end{align*}

因此, 当 q\leq 1 时, 利用 (2.3) 式, 当 q> 1 时, 使用 Hölder 不等式, 可得

\begin{align*} & \bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg\| \sum_{\alpha_1\in \mathcal{G}_{k_1}} \sum_{\alpha_2\in\mathcal{G}_{k_2}} \sum\limits_{m_1=1}^{N(k_1,\alpha_1)} \sum\limits_{m_2=1}^{N(k_2,\alpha_2)} \big | \big< f,\psi^{k_1,k_2}_{\alpha_1,\alpha_2}\big> \big | \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}} \bigg\|^{q}_{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}} \\ \lesssim & \bigg\{ \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \delta^{-k_1 s_1 q} \delta^{-k_2 s_2 q} \bigg( \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) }\\ &\times\delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) } \bigg\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}}\bigg\|_{L^p_w(X_1 \times X_2)}\bigg)^q \bigg\} ^{\frac{1}{q}} \\ \lesssim&\bigg\{ \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \delta^{-k_1' s_1 q} \delta^{-k_2' s_2 q} \bigg\| \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}}\bigg\|^q _{L^p_w(X_1 \times X_2)} \bigg\} ^{\frac{1}{q}}. \end{align*}

对于倒数第二个不等式, 我们可取 \max\{ p( s_1,\beta_1 \wedge \gamma_1 )r, p( s_2,\beta_2 \wedge \gamma_2 )r \}< t< \min\{1,p,q\}, 使得

\begin{align*} & \sum_{k_1\in \mathbb{Z}} \sum_{k_2\in \mathbb{Z}} \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \big( \delta^{(k_1'-k_1) s_1 } \delta^{(k_2'-k_2) s_2 } \delta^{| k_1-k_1'| \beta_1' } \delta^{| k_2-k_2'| \beta_2' } \\ &\times \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} ) } \delta^{(k_2'-k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} ) }\big)^{(q\wedge 1)} \leq C. \end{align*}

定理 1.1(i) 证明完毕.

其次证明定理 1.1(ii) 对于任意的 x_1\in X_1x_2\in X_2, 由引理 2.5 和 (2.7) 式得

\begin{align*} & \bigg( \sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}} \delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}}\sum_{m_1=1}^{N(k_1,\alpha_1)} \sum_{m_2=1}^{N(k_2,\alpha_2)} \\ &\times \Big| \big< f,\psi_{\alpha_1,\alpha_2}^{k_1,k_2}\big> \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1,x_2) \Big|^q \bigg)^{\frac{1}{q}}\\ \lesssim& \bigg\{ \sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}}\sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}}\sum_{m_1=1}^{N(k_1,\alpha_1)} \sum_{m_2=1}^{N(k_2,\alpha_2)} \bigg( \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'}\\ &\times \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) } \delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) } \bigg[ \mathcal{M}_s \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \\ &\times \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^t \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg) \bigg] ^{\frac{1}{t}}\bigg)^q\mathcal{X}_{Q_{\alpha_1}^{k_1,m_1}} \mathcal{X}_{Q_{\alpha_2}^{k_2,m_2}}(x_1, x_2)\bigg\}^{\frac{1}{q}}\\ \hspace{-6cm} \lesssim& \bigg\{ \sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}} \bigg( \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}}\delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \delta^{|k_1-k_1'|\beta_1'} \delta^{|k_2-k_2'|\beta_2'} \delta ^ { [ k_1'-(k_1' \wedge k_1) ] \omega_1 ( 1-\frac{1}{t} ) } \\ &\times \delta ^ { [ k_2'-(k_2' \wedge k_2) ] \omega_2 ( 1-\frac{1}{t} ) } \bigg[ \mathcal{M}_s \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^t \\ & \times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg)(z_1,z_2) \bigg] ^{\frac{1}{t}}\bigg)^q\bigg\}^{\frac{1}{q}}. \end{align*}

对于倒数第一个不等式, 我们可分两种情形. 当 \max\{ p( s_1,\beta_1 \wedge \gamma_1 )r, p( s_2,\beta_2 \wedge \gamma_2 ) r \}< t< q<1 时, 通过引理 2.2 和

\begin{align*} &\sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} \delta^{(k_1'-k_1) s_1 q} \delta^{(k_2'-k_2) s_2 q} \delta^{| k_1-k_1'| \beta_1' q } \delta^{| k_2-k_2'| \beta_2' q } \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} )q } \delta^{(k_2'-k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} )q }\\ =& \bigg( \sum_{k_1 >k_1'} \delta^{( k_1-k_1') (\beta_1'-s_1) q }+\sum_{k_1 \leq k_1'} \delta^{( k_1'- k_1)(s_1+\beta_1'+\omega_1 ( 1-\frac{1}{t} )q } \bigg) \\ & \times \bigg( \sum_{k_2 >k_2'} \delta^{( k_2-k_2') (\beta_2'-s_2) q } + \sum_{k_2 \leq k_2'} \delta^{( k_2'- k_2)(s_2+\beta_2'+\omega_2 ( 1-\frac{1}{t} )q } \bigg) \leq C \end{align*}

可得

\begin{align*} &\bigg( \sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}} \delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}}\sum_{m_1=1}^{N(k_1,\alpha_1)} \sum_{m_2=1}^{N(k_2,\alpha_2)}\Big| \big< f,\psi_{\alpha_1,\alpha_2}^{k_1,k_2}\big> \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1,x_2) \Big|^q \bigg)^{\frac{1}{q}} \\ \lesssim& \bigg\{ \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \bigg[ \mathcal{M}_s \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \delta^{-k_1's_1 t} \delta^{-k_2' s_2 t} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^t \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg)(z_1,z_2) \bigg]^{\frac{q}{t}} \bigg\}^{\frac{1}{q}}. \end{align*}

再考虑当 q>1, \max\{ p( s_1,\beta_1 \wedge \gamma_1 )r, p( s_2,\beta_2 \wedge \gamma_2 ) r \}< t\leq 1 时, 通过 Hölder 不等式和

\begin{align*} & \sup\limits _ { k_1,k_2 \in \mathbb{Z} } \sum_{k_1' \in \mathbb{Z}} \sum_{k_2' \in \mathbb{Z}} \delta^{(k_1'-k_1) s_1 } \delta^{(k_2'-k_2) s_2 } \delta^{| k_1-k_1'| \beta_1' } \delta^{| k_2-k_2'| \beta_2' } \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} ) } \delta^{(k_2'- k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} ) } \\ & + \sup\limits _ { k_1',k_2' \in \mathbb{Z} } \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} \delta^{(k_1'-k_1) s_1 } \delta^{(k_2'-k_2) s_2 } \delta^{| k_1-k_1'| \beta_1' } \delta^{| k_2-k_2'| \beta_2' } \delta^{(k_1'- k_1\wedge k_1') \omega_1 ( 1-\frac{1}{t} ) } \delta^{(k_2'- k_2\wedge k_2') \omega_2 ( 1-\frac{1}{t} ) } \\ \leq & C. \end{align*}

可得

\begin{align*} & \bigg( \sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}} \delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}}\sum_{m_1=1}^{N(k_1,\alpha_1)} \sum_{m_2=1}^{N(k_2,\alpha_2)}\Big| \big< f,\psi_{\alpha_1,\alpha_2}^{k_1,k_2}\big> \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1,x_2) \Big|^q \bigg)^{\frac{1}{q}}\\ \lesssim& \bigg\{ \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \bigg[ \mathcal{M}_s \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \delta^{-k_1's_1 t} \delta^{-k_2' s_2 t} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^t \\\notag &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg)(z_1,z_2) \bigg]^{\frac{q}{t}} \bigg\}^{\frac{1}{q}}. \end{align*}

最后, 由引理 2.3,当 1< p \leq\infty 时, 对于 t\leq \min\{1,\frac{p}{r}\}w\in A_{p/t}(X_1 \times X_2), 得到如下估计

\begin{align*} & \bigg\| \bigg(\sum_{k_1 \in \mathbb{Z} } \sum_{k_2 \in \mathbb{Z}} \delta^{-k_1s_1 q} \delta^{-k_2 s_2 q} \sum_{\alpha_1 \in \mathcal{G}_{k_1}} \sum_{\alpha_2 \in \mathcal{G}_{k_2}}\sum_{m_1=1}^{N(k_1,\alpha_1)} \sum_{m_2=1}^{N(k_2,\alpha_2)} \Big| \big< f,\psi_{\alpha_1,\alpha_2}^{k_1,k_2}\big> \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1}^{k_1,m_1}} \widetilde{\mathcal{X}}_{Q_{\alpha_2}^{k_2,m_2}}(x_1,x_2) \Big|^q \bigg)^{\frac{1}{q}}\bigg\|_{L^p_w(X_1 \times X_2)}\\ \lesssim& \bigg\|\bigg\{ \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \bigg[ \mathcal{M}_s \bigg( \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \delta^{-k_1's_1 t} \delta^{-k_2' s_2 t} \Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^t \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg)(z_1,z_2) \bigg]^{\frac{q}{t}} \bigg\}^{\frac{1}{q}}\bigg\|_{L^p_w(X_1 \times X_2)} \\ \lesssim& \bigg\|\bigg\{ \sum_{k_1'\in \mathbb{Z}} \sum_{k_2'\in \mathbb{Z}} \sum_{\alpha_1'\in \mathcal{G}_{k_1'}} \sum_{\alpha_2'\in \mathcal{G}_{k_2'}} \sum_{m_1'=1}^{N(k_1',\alpha_1')} \sum_{m_2'=1}^{N(k_2',\alpha_2')} \delta^{-k_1's_1 q} \delta^{-k_2' s_2 q}\Big| \Big< f, \varphi_{\alpha_1',\alpha_2'}^{k_1',k_2'} \Big> \Big| ^q \\ &\times \widetilde{\mathcal{X}}_{Q_{\alpha_1'}^{k_1',m_1'}} \widetilde{\mathcal{X}}_{Q_{\alpha_2'}^{k_2',m_2'}} \bigg)(z_1,z_2) \bigg\}^{\frac{1}{q}}\bigg\|_{L^p_w(X_1 \times X_2)}. \end{align*}

这就完成了对定理 1.1(ii) 的证明. 综上所述, 定理 1.1 证毕.

致谢

感谢审稿人的细致审阅和有益建议.

参考文献

Coifman R R, Weiss G.

Analyse Harmonique Non-Commutative Sur Certains Espaces Homogènes

Berlin: Springer-Verlag, 1971

[本文引用: 1]

Coifman R R, Weiss G.

Extensions of Hardy spaces and their use in analysis

Bull Amer Math Soc, 1977, 83(4): 569-645

[本文引用: 1]

Frazier M, Jawerth B.

A discrete transform and decompositions of distribution spaces

J Funct Anal, 1990, 93(1): 34-170

[本文引用: 1]

Han Y S, Müller D, Yang D C.

A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carath\'{e}odory spaces

Abstr Appl Anal, 2008, 2008( 1): 893409

[本文引用: 4]

Han Y S.

Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications

Proc Amer Math Soc, 1998, 126(11): 3315-3327

Tao X X, Kang Y C, Zheng T T.

The Tb theorem for some inhomogeneous Besov and Triebel-Lizorkin spaces over space of homogeneous type

J Math Anal Appl, 2024, 531(1): 127879

Zheng T T, Chen J C, et al.

Calderón-Zygmund operators on homogeneous product Lipschitz spaces

J Geom Anal, 2021, 31(2): 2033-2057

[本文引用: 1]

Zheng T T, Xiao Y M, He S Y, Tao X X.

T1 theorem on homogeneous product Besov spaces and product Triebel-Lizorkin spaces

Banach J Math Anal, 2022, 16(3): Article 50

[本文引用: 5]

Zheng T T, Li H L, Tao X X.

The boundedness of Calderón-Zygmund operators on Lipschitz spaces over spaces of homogeneous type

Bull Braz Math Soc (N S), 2020, 51(2): 653-669

[本文引用: 1]

Zheng T T, Xiao Y M, Tao X X.

The T1 theorem for the generalized product Calderón-Zygmund operator on product endpoint function spaces over RD spaces (in Chinese)

Sci Sin Math, 2023, 53: 441-472

[本文引用: 3]

Han Y S, Sawyer E T.

Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces

Mem Amer Math Soc, 1994, 110(530): 1-126

[本文引用: 1]

Deng D G, Han Y S.

Harmonic Analysis on Spaces of Homogeneous Type

Berlin:Springer, 2009

[本文引用: 1]

Han Y S.

Inhomogeneous Calderón reproducing formula on spaces of homogeneous type

J Geom Anal, 1997, 7(2): 259-284

[本文引用: 1]

Müller D. Yang D C.

A difference characterization of Besov and Triebel-Lizorkin spaces on RD spaces

Forum Math, 2009, 21(2): 259-298

[本文引用: 1]

Grafakos L, Liu L G, Maldonado D, Yang D C.

Multilinear analysis on metric spaces

Dissertationes Math, 2014, 497: 1-121

[本文引用: 1]

Capri O N, Gutiérrez C E.

Weighted inequalities for a vector-valued strong maximal function

Rocky Mountain J Math, 1988, 18(3): 565-570

[本文引用: 2]

Ding Y, Han Y S, Lu G Z, Wu X F.

Boundedness of singular integrals on multiparameter weighted Hardy spaces H^p_w\ (\Bbb R^n\times\Bbb R^m)

Potential Anal, 2012, 37(1): 31-56

[本文引用: 1]

Fefferman R.

A_p weights and singular integrals

Amer J Math, 1988, 110(5): 975-987

[本文引用: 1]

Han Y S, Li J, Ward L A.

Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases

Appl Comput Harmon Anal, 2018, 45(1): 120-169

[本文引用: 4]

Huang Y H, Fang Q Q, Tao X X, Zheng T T.

A new approach for Hardy spaces on Euclidean space

J Geom Anal, 2024, 34(10): Article 304

Müller D, Ricci F, Stein E M.

Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I

Invent Math, 1995, 119(2): 119-233

[本文引用: 1]

Müller D, Ricci F, Stein E M.

Marcinkiewicz multipliers and multi-parameter strucure on Heisenberg (-type) groups, II

Math Z, 1996, 221(2): 267-291

[本文引用: 1]

Zheng T T, Xiao Y M, Tao X X.

Weighted estimates for product singular integral operatorsin Journe's class on RD-spaces

Forum Math, 2025, 37(2): 593-627

[本文引用: 6]

Lu G Z, Zhu Y P.

Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters

Acta Math Sin Engl Ser, 2013, 29(1): 39-52

[本文引用: 2]

Auscher P, Hytönen T.

Addendum to orthonormal bases of regular wavelets in spaces of homogeneous type

Appl Comput Harmon Anal, 2013, 34(2): 266-296

[本文引用: 2]

Hytönen T, Kairema A.

Systems of dyadic cubes in a doubling metric space

Colloq Math, 2012, 126(1): 1-33

[本文引用: 1]

Wang F, Han Y S, He Z Y, Yang D C.

Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderón-Zygmund operators

Dissertationes Math, 2021, 565: 1-113

[本文引用: 2]

/