电磁粒子模拟中电荷守恒的电流分配方案满足的统一公式
付梅艳,卢朓,朱湘疆

Unified Formulation of Charge-conserving Current Assignment in Electromagnetic Particle-in-Cell Simulation
Meiyan Fu,Tiao Lu,Xiangjiang Zhu
表 4 涉及八个元胞时相关形因子(三维,最常见情形)
Form-factor(1st order) $ -0.5 \leq x < 0.5, \ -0.5 \leq y < 0.5, \ -0.5 \leq z < 0.5 $
$S_{(i, j, k)}(x, y, z)$ $\left(0.5-x\right)\left(0.5-y\right)\left(0.5-z\right)$
$S_{(i+1, j, k)}(x, y, z)$ $\left(0.5+x\right)\left(0.5-y\right)\left(0.5-z\right)$
$S_{(i, j+1, k)}(x, y, z)$ $\left(0.5-x\right)\left(0.5+y\right)\left(0.5-z\right)$
$S_{(i+1, j+1, k)}(x, y, z)$ $\left(0.5+x\right)\left(0.5+y\right)\left(0.5-z\right)$
$S_{(i, j, k+1)}(x, y, z)$ $\left(0.5-x\right)\left(0.5-y\right)\left(0.5+z\right)$
$S_{(i+1, j, k+1)}(x, y, z)$ $\left(0.5+x\right)\left(0.5-y\right)\left(0.5+z\right)$
$S_{(i, j+1, k+1)}(x, y, z)$ $\left(0.5-x\right)\left(0.5+y\right)\left(0.5+z\right)$
$S_{(i+1, j+1, k+1)}(x, y, z)$ $\left(0.5+x\right)\left(0.5+y\right)\left(0.5+z\right)$