不同损失函数下Poisson分布参数的E-Bayes估计及其E-MSE
|
韩明
|
E-Bayesian Estimation and Its E-MSE of Poisson Distribution Parameter Under Different Loss Functions
|
Ming Han
|
|
表 6 $\widehat\lambda_{EBi}\ (i=1, 2, 3)$和E-MSE$(\widehat{\lambda}_{EBi})\ (i=1, 2, 3)$的计算结果
|
|
|
$c$ | 1 | 3 | 5 | 7 | 9 | 极差 | $\widehat{\lambda}_{EB1}$ | 2.8225089 | 2.8197148 | 2.8169281 | 2.8141487 | 2.8113765 | 0.0111324 | $\widehat{\lambda}_{EB2}$ | 2.8220131 | 2.8192195 | 2.8164332 | 2.8136543 | 2.8108827 | 0.0111304 | $\widehat{\lambda}_{EB3}$ | 2.8215173 | 2.8187242 | 2.8159385 | 2.8131600 | 2.8103889 | 0.0111284 | E-MSE$(\widehat{\lambda}_{EB1})$ | 0.0027987 | 0.0027932 | 0.0027877 | 0.0027822 | 0.0027767 | 2.20e-005 | E-MSE$(\widehat{\lambda}_{EB2})$ | 0.0027990 | 0.0027934 | 0.0027879 | 0.0027824 | 0.0027769 | 2.21e-005 | E-MSE$(\widehat{\lambda}_{EB3})$ | 0.0027997 | 0.0027942 | 0.0027886 | 0.0027832 | 0.0027777 | 2.20e-005 |
|
|
|