不同损失函数下Poisson分布参数的E-Bayes估计及其E-MSE
|
韩明
|
E-Bayesian Estimation and Its E-MSE of Poisson Distribution Parameter Under Different Loss Functions
|
Ming Han
|
|
表 4 $\widehat \lambda_{EBi}$和E-MSE$(\widehat{\lambda}_{EBi})\ (i=1, 2, 3)$的计算结果($\lambda=4$)
|
|
|
$n$ | 20 | 40 | 60 | 80 | 100 | $\widehat\lambda_{EB1}$ | 3.9248 | 3.9617 | 3.9720 | 3.9787 | 3.9885 | $\widehat\lambda_{EB2}$ | 3.9003 | 3.9493 | 3.9638 | 3.9725 | 3.9886 | $\widehat\lambda_{EB3}$ | 3.8760 | 3.9370 | 3.9555 | 3.9663 | 3.9887 | E-MSE$(\widehat\lambda_{EB1})$ | 0.1915 | 0.0978 | 0.0656 | 0.0494 | 0.0395 | E-MSE$(\widehat\lambda_{EB2})$ | 0.1921 | 0.0980 | 0.0657 | 0.0495 | 0.0397 | E-MSE$(\widehat\lambda_{EB3})$ | 0.1939 | 0.0984 | 0.0659 | 0.0496 | 0.0398 |
|
|
|