Processing math: 0%

数学物理学报, 2018, 38(6): 1095-1102 doi:

论文

φ-混合序列加权和的完全收敛性

章志华,1, 陈平炎,2

Complete Convergence for Weighted Sums for φ-Mixing Random Variables

Zhang Zhihua,1, Chen Pingyan,2

通讯作者: 陈平炎, E-mail: tchenpy@jnu.edu.cn

收稿日期: 2017-02-18  

基金资助: 国家自然科学基金.  11271161
教育部人文社科基金青年项目.  17YJC910010

Received: 2017-02-18  

Fund supported: Supported by the NSFC.  11271161
the HSSYFMOEC.  17YJC910010

作者简介 About authors

章志华,E-mail:zzhjnu@163.com , E-mail:zzhjnu@163.com

摘要

该文把Chen和Sung(文献[1])的一个关于同分布NA随机变量序列加权和最大值完全收敛性结果推广到了φ-混合随机变量序列情形.由于已有文献所用的工具本质上是部分和最大值指数型概率不等式,而对于φ-混合随机变量序列而言,没有那么好的指数型不等式,因此原有的证明方法已失效.该文将应用φ-混合随机变量序列部分和最大值的2-阶Marcinkiewicz-Zygmund矩不等式,结合再截尾方法,获得了理想的结果.该文的证明方法不同于已有结果的证明方法.

关键词: φ-混合序列]]> ; 加权和 ; 完全收敛性

Abstract

The paper obtains the complete convergence for the maximun weighted sums, which improved and extended the result of Chen and Sung[1] from NA sequence to φ-mixing random variables. The main tool in Chen and Sung[1] is the exponent inequality of NA sequence, but no one knows wether the coresponding exponent inequality holds or not for φ-mixing random variables, so a different method is needed. In fact, we use only the maximun moment inequality and a new truncated method to prove the main result.

Keywords: φ-Mixing sequence ]]> ; Weighted sum ; Complete convergence

PDF (316KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

章志华, 陈平炎. φ-混合序列加权和的完全收敛性. 数学物理学报[J], 2018, 38(6): 1095-1102 doi:

Zhang Zhihua, Chen Pingyan. Complete Convergence for Weighted Sums for φ-Mixing Random Variables. Acta Mathematica Scientia[J], 2018, 38(6): 1095-1102 doi:

1 引言及主要结果

在统计学中,如最小二乘估计,水手刀法统计,密度核估计,递归密度核估计,非线性回归核估计,等等,很多统计量,表现形式为随机变量序列加权和,因此对随机变量序列加权和极限性质的研究是有必要的,并且已有了很丰富的结果.如强大数定律(见文献[2-4]等等),完全收敛性(见文献[5-7]),等等.

最近Sung[5]对同分布NA随机变量序列加权和获得了如下完全收敛性结果.

定理A 设1<\alpha\leq 2, \gamma>0, \{X, X_{n}, n\ge 1\}为同分布的NA随机变量序列, \{a_{nk}, n\geq1, 1\leq k\leq n\}为常数序列满足

\sup\limits_{n\geq1}\sum\limits^n_{k=1}|a_{nk}|^\alpha<\infty.
(1.1)

假设

EX=0, \ \\left\{\begin{array}{ll}E|X|^\alpha<\infty, &\ \ \mbox{如果}\ \alpha>\gamma, \\E|X|^\alpha\log(1+|X|)<\infty, &\ \ \mbox{如果}\ \alpha=\gamma, \\E|X|^\gamma<\infty, &\ \ \mbox{如果}\ \alpha<\gamma, \end{array}\right.
(1.2)

则对任意\varepsilon>0,有

\sum\limits_{n=1}^\infty n^{-1}P\left(\max\limits_{1\le m\len}\left|\sum\limits_{k=1}^ma_{nk}X_k\right|>\varepsilon\log^{1/\gamma}n\right)<\infty,
(1.3)

其中\log x=\log_e\max\{e, x\}, \forall x>0.

一方面,在定理A中,如果当1\leq k\leq n-1时令a_{nk}=0,当k=n时令a_{nn}=1,则(1.3)式等价于E|X|^\gamma<\infty;如果对所有n\geq11\leq k\leq n,令a_{nk}=1,则(1.3)式可推出E|X|^\alpha/\log^{\alpha/\gamma}(1+|X|)<\infty.这表明,当\alpha<\gamma时,定理A的矩条件是充分必要的,但当\alpha\geq \gamma时,定理A的矩条件不是必要的.随之而来的问题是,当\alpha\geq \gamma时,在条件E|X|^\alpha/\log^{\alpha/\gamma}(1+|X|)<\infty下, (1.3)式是否成立?完全回答这一问题是有难度的, Chen和Sung[1]在比E|X|^\alpha/\log^{\alpha/\gamma}(1+|X|)<\infty强但比E|X|^\alpha<\infty弱的矩条件下得到了下面结果.

定理B 设1<\alpha\leq 2, 0<\gamma<\alpha, \{X, X_{n}, n\ge 1\}为同分布的NA随机变量序列, \{a_{nk}, n\geq1, 1\leq k\leq n\}为常数序列满足(1.1)式.假设EX=0E|X|^\alpha/\log^{\alpha/\gamma-1}(1+|X|)<\infty,则对任意\varepsilon>0, (1.3)式成立.

定理A和定理B的主要工具是文献[8,定理1],但追根溯源是用到了NA随机变量序列如下的性质:设Y_i, 1\leq i\leq n是非负的NA序列,则有

E\prod\limits_{i = 1}^n {{Y_i}} \le \prod\limits_{i = 1}^n E {Y_i}.

从而由此得到了NA序列的指数型概率不等式.但对于其它序列如\rho^* -混合序列, \varphi -混合序列,等等,没有这样的概率性质,因而不能用同NA序列情形时的方法得到相应的结果.虽然如此,还是有作者克服了这个困难,他们应用\rho^* -混合序列最大值的Rosenthal不等式后,对某些部分作出了细致并且复杂的计算得到了如同定理A的结果,参见文献[9-11],等等.对于\varphi -混合序列,在一定的混合速度限制条件下,也有相应的最大值的Rosenthal不等式,因此定理A对于\varphi -混合序列也是成立的.但至今还没有文献讨论定理B在\varphi -混合情形时是否成立.

另一方面,在矩条件E|X|^\alpha<\infty下,直接应用NA序列最大值的\alpha-阶Marcinkiewicz-Zygmund矩不等式(见文献[12]),定理B是成立的.事实上我们有如下更一般的结果.

定理C 设1<\alpha\leq 2, \{X_{n}, n\ge 1\}为NA随机变量序列(不必同分布), \{a_{nk}, n\geq1, 1\leq k\leq n\}为常数序列满足(1.1)式.假设对任意n\geq1, EX_n=0\sup\limits_{n\geq1}E|X_n|^\alpha<\infty,则对任意\varepsilon>0

\sum\limits^\infty_{n=1}n^{-1}P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}a_{nk}X_k\right|>\varepsilon f^{1/\alpha}(n)\right\}<\infty,
(1.4)

其中f(\cdot)为正函数满足\mathop {\lim }\limits_{x \to \infty } f(x)=\infty\int^\infty_1(xf(x))^{-1}{\rm d}x<\infty.

本文的目的就是在\varphi -混合序列情形下证明定理B和定理C也是成立的,本文将使用\varphi -混合序列最大值的2 -阶Marcinkiewicz-Zygmund矩不等式及再截尾方法,其方法完全不同于已有结果的证明方法.

先来介绍\varphi -混合序列的概念.

定义1.1 设\{X_n, n\geq1\}是一随机变量序列,记{\cal F}^m_n=\sigma(X_i, n\leq i\leq m),定义\varphi -混合系数如下

\varphi(n)=\sup\limits_{k\geq1}\sup\{|P\{B|A\}-P\{B\}|:\ A\in {\cal F}^k_1, B\in {\cal F}^\infty_{n+k}, P\{A\}\not=0\}.

如果当n\rightarrow\infty时有\varphi(n)\rightarrow0,则称\{X_n, n\geq1\}\varphi -混合随机变量序列.

\varphi -混合的定义是由Dobrushin[13]首先对Markov过程引入了,至今已有了丰富的结果,更多的性质与结论可参见陆传荣和林正炎的专著[14].

以下是本文的主要结果,必要的引理及定理的证明放到第2节.

定理1.1 设0<\gamma<\alpha\leq 2, \{X, X_{n}, n\ge 1\}为同分布的\varphi -混合随机变量序列,其混合系数满足\sum\limits^\infty_{n=1}\varphi^{1/2}(n)<\infty,又设常数序列\{a_{nk}, n\geq1, 1\le k\le n\}满足(1.1)式.假设E|X|^\alpha/\log^{\alpha/\gamma-1}(1+|X|)<\infty,若1<\alpha\leq 2,还设EX=0.则对任意\varepsilon>0, (1.3)式成立.

由定理1.1,立知下面推论成立.

推论1.1 设0<\gamma<\alpha\leq 2, \{X, X_{n}, n\ge 1\}为同分布的\varphi -混合随机变量序列,其混合系数满足\sum\limits^\infty_{n=1}\varphi^{1/2}(n)<\infty,设E|X|^\alpha/\log^{\alpha/\gamma-1}(1+|X|)<\infty,若1<\alpha\leq 2,还设EX=0.

(1)若常数序列\{b_n, n\geq1\}满足\sup\limits_{n\geq1}n^{-1}\sum\limits^n_{k=1}|b_k|^\alpha<\infty,则对任意\varepsilon>0,有

\sum\limits^\infty_{n=1}n^{-1}P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}b_kX_k\right|>\varepsilon n^{1/\alpha}\log^{1/\gamma}n\right\}<\infty.

进而有

\frac{\sum\limits^n_{k=1}b_kX_k}{n^{1/\alpha}\log^{1/\gamma}n}\rightarrow 0\ \ {\rm a.s.} .

(2)若常数序列\{b_n, n\geq1\}满足\sum\limits^\infty_{n=1}|b_n|^\alpha<\infty,则对任意\varepsilon>0,有

\sum\limits^\infty_{n=1}n^{-1}P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}b_kX_k\right|>\varepsilon \log^{1/\gamma}n\right\}<\infty.

进而有

\frac{\sum\limits^n_{k=1}b_kX_k}{\log^{1/\gamma}n}\rightarrow 0\ \ {\rm a.s.} .

注1.1 主要结论的证明使用了再截尾方法.在证明中先对a_{nk}X_k进行截尾,截尾水平为\log^{1/\gamma}n,然后再对X_k进行截尾,截尾水平为n^{1/\alpha}\log^{1/\gamma}n.这种方法充分利用了权所提供的信息.

注1.2 如果\{b_n, n\geq1\}是有界的常数序列,显然有\sup\limits_{n\geq1}n^{-1}\sum\limits^n_{k=1}|b_k|^\alpha<\infty,即推论1.1(1)的条件满足.下面给出一个无界情形的例子.如果\sqrt{n}不是整数,则令b_n=1,如果\sqrt{n}是整数,则令b_n=(\sqrt{n})^{1/\alpha}.

\sum\limits^n_{k=1}|b_k|^\alpha=n-\lfloor\sqrt{n}\rfloor+\sum\limits^{\lfloor\sqrt{n}\rfloor}_{i=1}\left(i^{1/\alpha}\right)^\alpha=n-\lfloor\sqrt{n}\rfloor+\sum\limits^{\lfloor\sqrt{n}\rfloor}_{i=1}i<2n,

从而推论1.1(1)的条件满足,其中\lfloor\cdot\rfloor表示取整函数.

定理1.2 设1<\alpha\leq 2, \{X_{n}, n\ge 1\}\varphi -混合随机变量序列(不必同分布),其混合系数满足\sum\limits^\infty_{n=1}\varphi^{1/2}(n)<\infty, \{a_{nk}, n\geq1, 1\leq k\leq n\}为常数序列满足(1.1)式.假设对任意n\geq1, EX_n=0\sup\limits_{n\geq1}E|X_n|^\alpha<\infty,则对任意\varepsilon>0, (1.4)式成立,其中f(\cdot)为正函数满足\mathop {\lim }\limits_{x \to \infty } f(x)=\infty\int^\infty_1(xf(x))^{-1}{\rm d}x<\infty.

由定理1.2可获得相应于推论1.1的结果,这里不再一一列出来.

本文约定, C总代表正常数,在不同的地方可以代表不同的值.对于事件A, B, I(A)表示事件A的示性函数, I(A, B)=I(A\cap B).

2 主要结果及其证明

定理的证明需要下面的引理.第一个引理就是\varphi -混合随机变量序列最大值的2-阶Marcinkiewicz-Zygmund矩不等式,可由文献[15,引理1]及[14,引理2.2.10]直接得到.

引理2.1 对任意\varphi -混合序列\{X_n, n\geq1\},若\sum\limits^\infty_{n=1}\varphi^{1/2}(n)<\infty,则有

E\max\limits_{1\leq m\leq n}\left|\sum\limits_{k=1}^{m}(X_k-EX_k)\right|^2\leq C\sum\limits^n_{k=1}E|X_k|^2, \ \ \forall\ n\geq1,

其中正常数C只与混合速度系数\varphi(\cdot)有关.

引理2.2 在定理1.1的条件下有

\begin{equation}\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}P\{|a_{nk}X_k|>\log^{1/\gamma}n\}<\infty\end{equation}
(2.1)

\begin{equation}\sum\limits^\infty_{n=1}n^{-1}\cdot \log^{-\alpha/\gamma}n\sum\limits^n_{k=1}E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n)<\infty.\end{equation}
(2.2)

 记b_n=n^{1/\alpha}\log^{1/\gamma}n,取\beta\in (0, \alpha).先证(2.1)式.注意到

\begin{eqnarray}P\{|a_{nk}X_k|>\log^{1/\gamma}n\}&=&P\{|a_{nk}X_k|>\log^{1/\gamma}n, |X_k|>b_n\}\\&&+P\{|a_{nk}X_k|>\log^{1/\gamma}n, |X_k|\leq b_n\}.\end{eqnarray}
(2.3)

由Markov不等式有

\begin{equation}P\{|a_{nk}X_k|>\log^{1/\gamma}n, |X_k|>b_n\}\leq \log^{-\beta/\gamma}n\ |a_{nk}|^\beta E|X|^\beta I(|X|>b_n)\end{equation}
(2.4)

\begin{equation}P\{|a_{nk}X_k|>\log^{1/\gamma}n, |X_k|\leq b_n\}\leq \log^{-\alpha/\gamma}n\ |a_{nk}|^\alpha E|X|^\alpha I(|X|\leq b_n).\end{equation}
(2.5)

易知

\begin{eqnarray}&&\sum\limits^\infty_{n=1}n^{-1}\cdot \log^{-\beta/\gamma}n\bigg(\sum\limits^n_{k=1}|a_{nk}|^\beta\bigg)E|X|^\beta I(|X|>b_n)\\&\leq& C\sum\limits^\infty_{n=1}n^{-\beta/\alpha}\cdot \log^{-\beta/\gamma}n\ E|X|^\beta I(|X|>b_n)\\&\leq& CE|X|^\alpha/\log^{\alpha/\gamma}(1+|X|)<\infty\end{eqnarray}
(2.6)

\begin{eqnarray}&&\sum\limits^\infty_{n=1}n^{-1}\cdot \log^{-\alpha/\gamma}n\bigg(\sum\limits^n_{k=1}|a_{nk}|^\alpha\bigg)E|X|^\alpha I(|X|\leq b_n)\\&\leq& C\sum\limits^\infty_{n=1}n^{-1}\cdot\log^{-\alpha/\gamma}n\ E|X|^\alpha I(|X|\leq b_n)\\&\leq &CE|X|^\alpha/\log^{\alpha/\gamma-1}(1+|X|)<\infty.\end{eqnarray}
(2.7)

由(2.3)-(2.7)式知(2.1)式成立.再证(2.2)式.类似地有

\begin{eqnarray}E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n)&=&E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n, |X_k|>b_n)\\&& +E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n, |X_k|\leq b_n).\end{eqnarray}
(2.8)

\begin{eqnarray}E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n, |X_k|>b_n)\leq \log^{(\alpha-\beta)/\gamma}n\ |a_{nk}|^\beta E|X|^\beta I(|X|>b_n)\end{eqnarray}
(2.9)

\begin{equation}E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n, |X_k|\leq b_n)\leq |a_{nk}|^\alpha E|X|^\alpha I(|X|\leq b_n), \end{equation}
(2.10)

因此由(2.8)-(2.10), (2.6)及(2.7)式知(2.2)式成立.

引理2.3 引理2.3在定理1.1的条件下,若1<\alpha\leq 2,则有

\log^{-1/\gamma}n\ \max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}Ea_{nk}X_kI(|a_{nk}X_k|\leq \log^{1/\gamma} n)\right|\rightarrow 0.

 记b_n=n^{1/\alpha}\log^{1/\gamma}n.EX=0

\begin{eqnarray}\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}Ea_{nk}X_kI(|a_{nk}X_k|\leq \log^{1/\gamma} n)\right|\leq \sum\limits^n_{k=1}E|a_{nk}X_k|I(|a_{nk}X_k|>\log^{1/\gamma} n).\end{eqnarray}
(2.11)

注意到

\begin{eqnarray}E|a_{nk}X_k|I(|a_{nk}X_k|>\log^{1/\gamma} n)&=&E|a_{nk}X_k|I(|a_{nk}X_k|>\log^{1/\gamma} n, |X_k|>b_n)\\&& +E|a_{nk}X_k|I(|a_{nk}X_k|>\log^{1/\gamma} n, |X_k|\leq b_n).%\tag{2.12}\end{eqnarray}
(2.12)

因为

\begin{eqnarray}&&E|a_{nk}X_k|I(|a_{nk}X_k|>\log^{1/\gamma} n, |X_k|>b_n)\\&\leq& |a_{nk}|E|X|I(|X|>b_n)\\&=&|a_{nk}|E\left(\frac{|X|^\alpha}{\log^{\alpha/\gamma-1}(1+|X|)} \cdot |X|^{1-\alpha}\log^{\alpha/\gamma-1}(1+|X|)\right)I(|X|>b_n)\\&\leq& Cn^{-1+1/\alpha}|a_{nk}|%\tag{2.13}\end{eqnarray}
(2.13)

\begin{eqnarray}&&E|a_{nk}X_k|I(|a_{nk}X_k|>\log^{1/\gamma} n, |X_k|\leq b_n)\\&\leq& \log^{(1-\alpha)/\gamma}n\ |a_{nk}|^\alpha E|X|^\alpha I(|X|\leq b_n)\\&=&\log^{(1-\alpha)/\gamma}n\ |a_{nk}|^\alpha E\left(\frac{|X|^\alpha}{\log^{\alpha/\gamma-1}(1+|X|)} \cdot \log^{\alpha/\gamma-1}(1+|X|)\right) I(|X|\leq b_n)\\&\leq& C \log^{-1+1/\gamma}n, %\tag{2.14}\end{eqnarray}
(2.14)

易知

\log^{-1/\gamma} n\cdot n^{-1+1/\alpha}\bigg(\sum\limits^n_{k=1}|a_{nk}|\bigg)\leq C\log^{-1/\gamma} n\rightarrow0
(2.15)

\log^{-1/\gamma} n \cdot \log^{-1+1/\gamma}n\bigg(\sum\limits^n_{k=1}|a_{nk}|^\alpha\bigg)\leq C\log^{-1}n\rightarrow0.
(2.16)

于是由(2.11)-(2.16)式,引理得证.

定理1.1的证明 令X_{nk}=a_{nk}X_kI(|a_{nk}X_k|\leq \log^{1/\gamma}n).因对任意n\geq1及任意\varepsilon>0

\begin{eqnarray*}&&\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}a_{nk}X_k\right|>\varepsilon \log^{1/\gamma}n\right\}\\&&\subset \bigcup^n_{k=1}\{|a_{nk}X_k|>\log^{1/\gamma}n\}\cup\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}X_{nk}\right|>\varepsilon\log^{1/\gamma}n\right\}.\end{eqnarray*}

由(2.1)式,对任意\varepsilon>0,要证(1.3)式,只要证

\sum\limits^\infty_{n=1}n^{-1}P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}X_{nk}\right|>\varepsilon\log^{1/\gamma}n\right\}<\infty.
(2.17)

如果0<\alpha\leq 1,由Markov不等式, C_r -不等式有

P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}X_{nk}\right|>\varepsilon\log^{1/\gamma}n\right\}\leq C\log^{-\alpha/\gamma}n\ \sum\limits^n_{k=1}E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n).

因此由(2.2)式知, (2.17)式成立.当1<\alpha\leq 2时,由引理2.3,对任意\varepsilon>0,要证(1.17)式,只要证

\sum\limits^\infty_{n=1}n^{-1}P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}(X_{nk}-EX_{nk})\right|>\varepsilon\log^{1/\gamma}n\right\}<\infty.
(2.18)

由Markov不等式,引理2.1,有

\begin{eqnarray*}&&P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}(X_{nk}-EX_{nk})\right|>\varepsilon\log^{1/\gamma}n\right\}\\&\leq &C\log^{-2/\gamma}n\ \sum\limits^n_{k=1}E(X_{nk}-EX_{nk})^2\\&\leq &C\log^{-2/\gamma}n\ \sum\limits^n_{k=1}E|a_{nk}X_k|^2I(|a_{nk}X_k|\leq \log^{1/\gamma}n)\\&=&C\log^{-2/\gamma}n\ \sum\limits^n_{k=1}E\left(|a_{nk}X_k|^\alpha\cdot|a_{nk}X_k|^{2-\alpha}\right)I(|a_{nk}X_k|\leq \log^{1/\gamma}n)\\&\leq& C\log^{-\alpha/\gamma}n\ \sum\limits^n_{k=1}E|a_{nk}X_k|^\alpha I(|a_{nk}X_k|\leq \log^{1/\gamma}n).\end{eqnarray*}

因此,由(2.2)式知(2.18)式成立.定理得证.

定理1.2的证明 令X_{nk}=a_{nk}X_kI(|X|\leq f^{1/\alpha}(n)).因对任意n\geq1及任意\varepsilon>0

\begin{eqnarray*}&&\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}a_{nk}X_k\right|>\varepsilon f^{1/\alpha}(n)\right\}\\&&\subset \bigcup^n_{k=1}P\{|a_{nk}X_k|>f^{1/\alpha}(n)\}\cup\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}X_{nk}\right|>\varepsilon f^{1/\alpha}(n)\right\}, \end{eqnarray*}

因此要证(1.4)式,只要证

\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}\{|a_{nk}X_k|>f^{1/\alpha}(n)\}<\infty
(2.19)

及对任意\varepsilon>0

\sum\limits^\infty_{n=1}n^{-1}P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}X_{nk}\right|>\varepsilon f^{1/\alpha}(n)\right\}<\infty.
(2.20)

由Markov不等式及条件(1.1),有

\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}P\{|a_{nk}X_k|>f^{1/\alpha}(n)\}\leq C\sum\limits^\infty_{n=1}\frac{1}{nf(n)}\leq C\int^\infty_1\frac{{\rm d}x}{xf(x)}<\infty,

即(2.19)式成立.由EX_n=0,有

\begin{eqnarray*}f^{-1/\alpha}(n)\max\limits_{1\leq m\leq n}\left|E\sum\limits^m_{k=1}X_{nk}\right|&\leq& f^{-1/\alpha}(n)\sum\limits^n_{k=1}E|a_{nk}X_k|I(|a_{nk}X_k|>f^{1/\alpha}(n))\\&\leq &f^{-1/\alpha}(n)\sum\limits^n_{k=1}(|a_{nk}|^\alpha E|X_k|^\alpha \cdot f^{(1-\alpha)/\alpha}(n))\\&\leq &Cf^{-1}(n)\rightarrow 0.\end{eqnarray*}

因此,要证(2.20)式,只要证对任意\varepsilon>0,有

\sum\limits^\infty_{n=1}n^{-1}P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}(X_{nk}-EX_{nk})\right|>\varepsilon f^{1/\alpha}(n)\right\}<\infty.
(2.21)

由Markov不等式及引理2.1,有

\begin{eqnarray*}&&P\left\{\max\limits_{1\leq m\leq n}\left|\sum\limits^m_{k=1}(X_{nk}-EX_{nk})\right|>\varepsilon f^{1/\alpha}(n)\right\}\\&\leq &Cf^{-2/\alpha}(n)\sum\limits^n_{k=1}E|a_{nk}X_k|^2I(|a_{nk}X_k|\leq f^{1/\alpha}(n))\\&=&Cf^{-2/\alpha}(n)\sum\limits^n_{k=1}E|a_{nk}X_k|^{\alpha+2-\alpha}I(|a_{nk}X_k|\leq f^{1/\alpha}(n))\\&\leq& Cf^{-2/\alpha}(n)\sum\limits^n_{k=1}(|a_{nk}|^\alpha E|X_k|^\alpha\cdot f^{(2-\alpha)/\alpha}(n))\\&\leq &Cf^{-1}(n).\end{eqnarray*}

于是由\sum\limits^\infty_{n=1}(nf(n))^{-1}\leq C\int^\infty_1(nf(n))^{-1}{\rm d}x<\infty知(2.21)式成立.定理得证.

参考文献

Chen P , Sung S H .

On the strong convergence for weighted sums of negatively associated random variables

Statist Probab Letter, 2014, 92: 45- 52

DOI:10.1016/j.spl.2014.04.028      [本文引用: 4]

Chow Y S .

Some convergence theorems for independent random variables

Ann Math Statist, 1966, 37: 1482- 1493

DOI:10.1214/aoms/1177699140      [本文引用: 1]

Cuzick J .

A strong law for weighted sums of i.i.d. random variables

J Theoret Probab, 1995, 8: 625- 641

DOI:10.1007/BF02218047     

Chen P , Gan S .

Limiting behavior of weighted sums of i.i.d. random variables

Statist Probab Lett, 2007, 77: 1589- 1599

DOI:10.1016/j.spl.2007.03.038      [本文引用: 1]

Sung S H .

Strong convergence for weighted sums of random variables

Stat Papers, 2011, 52: 447- 454

DOI:10.1007/s00362-009-0241-9      [本文引用: 2]

陈平炎.

NA随机变量加权和的极限结果

数学物理学报, 2005, 25A (4): 489- 495

DOI:10.3321/j.issn:1003-3998.2005.04.007     

Chen P Y .

Limiting behavior of weighted sums of negatively associated random variables

Acta Math Sci, 2005, 25A (4): 489- 495

DOI:10.3321/j.issn:1003-3998.2005.04.007     

邱德华.

\tilde \rho 混合随机变量加权和的收敛性

数学物理学报, 2011, 31A (1): 132- 141

[本文引用: 1]

Qiu D H .

Convergence properties for weighted sums of \tilde \rho -mixing random variables

Acta Math Sci, 2011, 31A (1): 132- 141

[本文引用: 1]

Chen P , Hu T C , Liu X , Volodin A .

On complete convergence for arrays of rowwise negatively associated random variables

Theory Probability and Its Applications, 2008, 52 (2): 323- 328

DOI:10.1137/S0040585X97983079      [本文引用: 1]

Zhou X C , Tan C C , Lin J G .

On the strong laws for weighted sums of ρ*-mixing random variables

J Ineq Appl, 2011

DOI:10.1155/2011/157816      [本文引用: 1]

Sung S H .

On the strong convergence for weighted sums of ρ*-mixing random variables

Stat Papers, 2013, 54: 773- 781

DOI:10.1007/s00362-012-0461-2     

Wu Y F , Sung S H , Volodin A .

A note on the rates of convergence for weighted sums of ρ*-mixing random variables

Lith Math J, 2014, 54: 220- 228

DOI:10.1007/s10986-014-9239-7      [本文引用: 1]

Shao Q M .

A comparison theorem on inequalities between negatively associated and independent random variables

J Theoret Probab, 2000, 13: 343- 356

DOI:10.1023/A:1007849609234      [本文引用: 1]

Dobrushin R L .

The central limit theorem for non-stationary Markov chain

Probab Theory Appl, 1956, 1: 72- 88

URL     [本文引用: 1]

陆传荣, 林正炎. 混合相依变量的极限理论. 北京: 科学出版社, 1997

[本文引用: 2]

Lu C Y , Lin Z Y . Limit Theory for Mixing Random Variables. Beijing: Science Press, 1997

[本文引用: 2]

杨善朝.

混合序列加权和的强收敛性

系统科学与数学, 1995, 15 (3): 254- 265

URL     [本文引用: 1]

Yang S C .

Almost sure convergence of weighted sums of mixing random sequences

J Sys Sci & Math Sci, 1995, 15 (3): 254- 265

URL     [本文引用: 1]

/