N维非线性时滞分数阶微分方程初值问题的全局解
Global Solutions of IVP for N-Dimensional Nonlinear Fractional Differential Equations with Delay
通讯作者:
收稿日期: 2017-06-22
基金资助: |
|
Received: 2017-06-22
Fund supported: |
|
微分方程初值问题全局解的存在性是研究李雅普诺夫意义下稳定性的先决条件。该文旨在研究初值问题(1.10)-(1.11)全局解的存在性.首先得到了初值问题(1.10)-(1.11)局部解的存在性,推广了文献[
关键词:
The existence of global solutions of initial value problems (IVP) for differential equations is a precondition to study their stability in Lyapunov sense. This paper aims to investigate the existence of the global solutions of the IVP (1.10)-(1.11). The existence of a local solution of the IVP (1.10)-(1.11) is obtained first, which is an extension of the paper[
Keywords:
本文引用格式
王俊, 王天璐, 温艳华, 周先锋.
Wang Jun, Wang Tianlu, Wen Yanhua, Zhou Xianfeng.
1 引言
微分方程(系统)局部解的存在性是研究解的连续依赖性、有限时间稳定性和能控性的先决条件.为了研究微分方程的解李雅普诺夫意义下的稳定性,必须保证方程全局解的存在性.
解的存在性和唯一性,其中
在2010年, Agarwal等人在文献[13]中考虑了有界时滞的分数阶中立型泛函微分方程初值问题
其中
解的全局存在性,其中
定理1.1[14,定理4.2] 设
其中对每个
的最大解
初值问题(1.5)-(1.6)是在一维空间中讨论的.也就是说, (1.5)的未知函数
的全局解的存在性,其中
这篇文章的剩余部分结构如下:第二节介绍一些预备知识,第三节给出这篇文章的主要结果.
2 预备知识
在这篇文章中,记号
其中
其中
特别,当
定义2.3 如果
定义2.4 设
记
和
其中
(H
(H
(H
引理2.1[13, Theorem 3.1] 假设存在
在
3 主要结果
在这节中,我们首先给出初值问题(1.10)-(1.11)解的局部存在性.
定理3.1 假设
证 我们将运用引理2.1来证明这个定理.只需证明:存在正数
选择正数
则集合
对
结合(3.2)和(3.3)式得到
于是对
注3.1 文献[14]中的定理3.1关于解的局部存在性仅仅在一维空间中成立,而本文中的定理3.1在
定理3.2 设
则初值问题(1.10)-(1.11)有唯一解.
证 由定理3.1可知,初值问题(1.10)-(1.11)在
和
由(3.6)-(3.9)式知
结合(3.5)和(3.10)式得到
由
由(3.12)和(3.13)式得
于是得到
取正数
再由
矛盾.
下面我们运用文献[32]中的方法讨论方程(1.10)解的延拓.
定理3.3 设
证 情形
如果定理的结论不真,则必存在一个序列
因此,对任意的
于是当
现在我们介绍初值问题(1.10)-(1.11)解的全局存在性定理.
定理3.4 设
证 由定理3.1可知,初值问题(1.10)-(1.11)在
初值问题(1.10)-(1.11)等价于
记
不等式(3.22)与(3.20)式矛盾.
由定理3.4,容易得到下面的推论.
推论3.1 设
推论3.2 设
参考文献
A fractional calculus approach of self-similar protein dynamics
DOI:10.1016/S0006-3495(95)80157-8 [本文引用: 1]
Relaxation in filled polymers:A fractional calculus approach
DOI:10.1063/1.470346
Non-standard extensions of gradient elasticity:Fractional non-locality, memory and fractality
DOI:10.1016/j.cnsns.2014.10.002 [本文引用: 1]
Existence results for fractional order functional differential equations with infinite delay
DOI:10.1016/j.jmaa.2007.06.021 [本文引用: 2]
Existence and uniqueness for fractional neutral differential equations with infinite delay
Existence and uniqueness for p-type fractional neutral differential equations
DOI:10.1016/j.na.2009.01.105 [本文引用: 2]
Existence of fractional neutral functional differential equations
DOI:10.1016/j.camwa.2009.05.010 [本文引用: 3]
Theory of fractional functional differential equations
DOI:10.1016/j.na.2007.09.025 [本文引用: 9]
Initial value problems for neutral fractional differential equations involving a RiemannLiouvill derivative
Existence of mild solutions for fractional delay evolution systems
Fractional functional differential equations with causal operators in Banach spaces Math
DOI:10.1016/j.mcm.2011.04.016 [本文引用: 1]
Piecewise continuous solutions of initial value problems of singular fractional differential equations with impulse effects
Existence, uniqueness and stability of random impulsive fractional differential equations
Lyapunov method for nonlinear fractional differential systems with delay
DOI:10.1007/s11071-015-2214-y [本文引用: 1]
Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks
Asymptotical stability of Riemann-Liouville fractional nonlinear systems
Finite time stability of fractional delay differential equations
Practical stability with respect to initial time difference for Caputo fractional differential equations
DOI:10.1016/j.cnsns.2016.05.005 [本文引用: 1]
Controllability of fractional damped dynamical systems
Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique
Controllability of a fractional linear time-invariant neutral dynamical system
Approximate controllability of nonlinear fractional dynamical systems
DOI:10.1016/j.cnsns.2013.05.015
Controllability and optimality of linear time-invariant neutral control systems with different fractional orders
Numerical algorithm for the variable-order Caputo fractional functional differential equation
DOI:10.1007/s11071-016-2797-y [本文引用: 1]
A predictor-corrector approach for the numerical solution of fractional differential equations
DOI:10.1023/A:1016592219341 [本文引用: 1]
/
〈 |
|
〉 |
