数学物理学报  2017, Vol. 37 Issue (6): 1148-1161   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
魏凤英
林青腾
一类具有校正隔离率随机SIQS模型的绝灭性与分布
魏凤英, 林青腾     
福州大学数学与计算机科学学院 福州 350116
摘要:该文探讨了一类具有校正隔离率的随机传染病模型,得到了该模型存在唯一的全局解.研究表明,当白噪声强度取较大值时,随机模型的解在无病平衡点附近是绝灭的,感染者的密度将指数衰减到零.当白噪声的强度较小时,随机模型的正解在地方病平衡点附近服从唯一的平稳分布.进而,若地方病平衡点是稳定的,在适当的条件下,该解渐近服从一个三维正态分布,且得到了均值与方差的表达式.最后,数值模拟图显示了该解的性质并对模型做出了合理的解释.
关键词随机SIQS传染病模型    绝灭    平稳分布    正态分布    李雅谱诺夫函数    
Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence
Wei Fengying, Lin Qingteng     
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116
Abstract: This paper discusses a stochastic SIQS epidemic model with the quarantined-adjusted incidence. We obtain that, the stochastic model admits a unique and global solution. Our research reveals that, when the intensities of the white noises are large enough, the solution of the stochastic model around the disease-free equilibrium will be extinct, and the density of the infective individuals will exponentially approach zero. When the intensities of the white noises are small enough, the positive solution of the stochastic model obeys a unique stationary distribution around the endemic equilibrium. Further, Under some sufficient conditions, the solution will asymptotically follow a three-dimensional normal distribution if the endemic equilibrium is stable, and the mean and the variance can be expressed by formulation. Moreover, the numerical simulations demonstrate the properties of the solution and give good explanations to our model.
Key words: Stochastic SIQS epidemic model     Extinction     Stationary distribution     Normal distribution     Lyapunov functions    
1 引言

我们提出一个具有校正隔离率的易感者-感染者-隔离者模型, 该模型用常微分方程描述如下

$ \begin{equation}\label{eq1} \left\{ \begin{array}{llll} \dot{S}(t) = A-d_{1}S(t)-\frac{\beta S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}+\gamma I(t)+\rho Q(t), \\ \dot{I}(t) = \frac{\beta S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}-(d_{2}+\gamma+\delta)I(t), \\[2mm] \dot{Q}(t) = \delta I(t)-(d_{3}+\rho)Q(t), \end{array} \right. \end{equation} $ (1.1)

其中, $S(t)$ 为易感者在 $t$ 时刻的密度, $I(t)$ 为没有接受隔离的感染者的密度, $Q(t)$ $t$ 时刻已接受隔离的隔离者的密度.参数 $A, d_1, d_2, d_3$ 为正数, 且 $\delta, \rho, \gamma$ , $\alpha_i$ 是非负常数.常数 $A$ 是易感者的出生及移民的输入率; $\beta$ 是易感者与感染者(即, 与非隔离者)之间的平均接触率; $d_{1}$ 为易感者的自然死亡率; $d_{2}$ 为感染者由疾病引起的死亡率; $d_{3}$ 为隔离者由疾病诱发的死亡率; $\delta$ 是被隔离的感染者的比率; $\gamma$ $\rho$ 分别是经过治疗、隔离后, 感染者与隔离者重新回到易感者的比率; $\frac{\beta SI}{1+\alpha_{1}S+\alpha_{2}I}$ 刻画了不含隔离者, 且依赖易感者和感染者的校正隔离率(见图 1).

图 1 SIQS模型的转化图

为了研究流行病, Kermack与McKendrick从简单的SIR模型开始, 于1927年首次提出了双线性传染率[1].借鉴Kermack与McKendrick的双线性传染率 $\beta SI$ , 改进后的转移率更接近种群自身的实际情况, 且其有利于描述该种群的动力学性质[1-15].当 $\alpha_{1}=\alpha_{2}=0$ 时, 模型(1.1)的校正隔离率 $\frac{\beta SI}{1+\alpha_{1}S+\alpha_{2}I}$ 退化为双线性传染率 $\beta SI$ , 相关的流行病最新研究结果见文献[7-9]及其引文.当 $\alpha_{1}=0$ 时, 模型(1.1)的校正隔离率转化为饱和传染率 $\frac{\beta SI}{1+\alpha I}$ (见文献[10-12]).具有一般传染率(即, 非线性传染率)的模型 $\frac{\beta SI}{\varphi(I)}$ , 其相关结果请参考[13-15]及其引文.

对于一般的随机流行病模型, 例如:易感者-感染者-隔离者模型, 其疾病的持久性与绝灭性等更多细节见文献[2].最近, 蒋达清等[7]提出了DI SIR模型, 通过对双线性传染率 $\beta $ 进行随机干扰, 利用构造的合适的Lyapunov函数, 他们分别考查了无病平衡点及地方并平衡点附近解的渐近行为.进而, 刘红等[12]在随机DI SIR流行病模型中引入饱和传染率 $\frac{\beta_j S I_j}{1+\alpha_j I_j}$ , 他们的结果表明:若干扰较大, 感染者指数衰减到零, 而易感者弱收敛到平稳分布, 且不依赖于 $R_0$ .若干扰较小且 $R_0\leq1$ , 则有相同的指数稳定性及弱收敛发生.若干扰较小且 $R_0>1$ , 通过构造一系列Lyapunov函数, 则得到解的遍历性及正常返性.同时, 对于一类具有接种的随机SIS模型, 赵亚男等[8]发现, 该模型的感染者指数减少到零, 且存在一个均值意义下的持久解.类似地, 林玉国等[9]考查了SIR模型, 并得到种群的密度收敛到一个不变密度, 或者收敛到一个类似的测度, 更多的细节请见引文.

学者May[4]曾指出:当考虑到环境的噪音时, 模型的参数将会展现出随机扰动.现在, 我们对确定的易感者-感染者-隔离者模型中的参数引入随机干扰

$ d_{i}\rightarrow d_i+\sigma_i\dot{B}_i(t) \ (i=1, 2, 3), \quad \beta\rightarrow \beta+\sigma_4\dot{B}_4(t), $

其中 $B_{i}(t)\ (i=1, 2, 3, 4)$ 为相互独立的一维布朗运动, $\sigma_{i}\ (i=1, 2, 3, 4)$ 表示白噪声的强度.于是, 我们得到一个具有校正隔离率的随机易感者-感染者-隔离者模型

$ \begin{equation}\label{eq2} \left\{ \begin{array}{llll} \mbox{d}S(t) &=& \Big[A-d_{1}S(t)-\frac{\beta S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}+\gamma I(t)+\rho Q(t)\Big]\mbox{d}t\\ &&-\sigma_{1}S(t)\mbox{d}B_{1}(t) -\frac{\sigma_{4}S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\mbox{d}B_{4}(t), \\ \mbox{d}I(t)& =&\Big[\frac{\beta S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}-(d_{2}+\gamma+\delta)I(t)\Big]\mbox{d}t\\ &&-\sigma_{2}I(t)\mbox{d}B_{2}(t) +\frac{\sigma_{4}S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\mbox{d}B_{4}(t), \\[2mm] \mbox{d}Q(t) &=&[\delta I(t)-(d_{3}+\rho)Q(t)]\mbox{d}t-\sigma_{3}Q(t)\mbox{d}B_{3}(t). \end{array} \right. \end{equation} $ (1.2)

我们将在第二节证明随机模型(1.3)解的存在唯一性.在第三节讨论解沿无病平衡点绝灭的充分性条件, 并证明当时间 $t$ 充分大时, 感染者的密度指数衰减这一结论.结合Lyapunov函数、伊藤公式及数值模拟, 正解的平稳分布及正态分布将在第四节探讨.

2 全局正解

由于模型(1.2)的系数满足局部Lipschitz条件, 不满足线性增长条件, 本节我们将利用文献[5]中的研究方法, 证明模型(1.2)存在唯一的全局正解.

定理2.1 对任意初值 $(S(0), I(0), Q(0))\in {\cal R}_{+}^{3}$ $t\geq0$ , 模型 $(1.2)$ 存在唯一一个解 $(S(t), I(t), Q(t))$ , 且该解以概率1位于区域 ${\cal R}_{+}^{3}$ 内.

 反证法.若结论不成立, 假设模型(1.2)在区间 $[0, \tau_{e})$ 上, 存在一个局部解 $(S(t), I(t), $ $ Q(t))$ , 其中 $\tau_{e}$ 为爆破时间, $(S(0), I(0), Q(0))\in {\cal R}_{+}^{3}$ 为任意的初值.为了证明模型(1.2)的解是全局正解, 我们需要证明 $\tau_{e}=\infty$ 几乎处处成立.定义停时

$ \tau_{+}=\inf\{t\in[0, \tau_{e}): S(t)\leq0~\mbox{或}~I(t)\leq 0 ~\mbox{或}~Q(t)\leq 0\}. $

贯穿全文, 令 $\inf\emptyset=\infty$ .下面, 我们将证明 $\tau_{+}=\infty$ 几乎处处成立.若不成立, 即 $\tau_{+}<\infty$ , 于是, 存在时间 $T$ 及任意小的正数 $\varepsilon$ 使得 $\mathit{\boldsymbol{P}}\{\tau_{+}<T\}>\varepsilon$ .定义一个 $C^{2}$ -函数

$ V(S(t), I(t), Q(t))=\ln S(t)I(t)Q(t), $

根据伊藤公式, 得到

$ \begin{eqnarray}\label{eq3} &&\mbox{d}V(S(t), I(t), Q(t)) \\ &=& \Big[\frac{A}{S(t)}-\frac{\beta I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}-d_{1}+\frac{\gamma I(t)}{S(t)}+\frac{\rho Q(t)}{S(t)}-\frac{1}{2}\sigma_{1}^{2}\\ &&-\frac{1}{2}\sigma_{4}^{2}\Big(\frac{I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\Big)^{2} +\frac{\beta S(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}-(d_{2}+\gamma+\delta)\\ &&-\frac{1}{2}\sigma_{2}^{2} -\frac{1}{2}\sigma_{4}^{2}\Big(\frac{S(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\Big)^{2} +\frac{\delta I(t)}{Q(t)}-(d_{3}+\rho)-\frac{1}{2}\sigma_{3}^{2}\Big]\mbox{d}t\\ &&-\sigma_{1}\mbox{d}B_{1}(t)-\sigma_{2}\mbox{d}B_{2}(t) -\sigma_{3}\mbox{d}B_{3}(t) -\sigma_{4}\frac{I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\mbox{d}B_{4}(t)\\ &&+\sigma_{4}\frac{S(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\mbox{d}B_{4}(t) \\ &\geq&K\mbox{d}t-\sigma_{1}\mbox{d}B_{1}(t)-\sigma_{2}\mbox{d}B_{2}(t)-\sigma_{3}\mbox{d}B_{3}(t) +\sigma_{4}\frac{S(t)-I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\mbox{d}B_{4}(t), \end{eqnarray} $ (2.1)

其中

$ K=-d_{1}-d_{2}-d_{3}-\gamma-\delta-\rho-\frac{1}{2}\sigma_{1}^{2} -\frac{1}{2}\sigma_{2}^{2}-\frac{1}{2}\sigma_{3}^{2}-\frac{\beta}{\alpha_{2}}-\frac{1}{2\alpha_{1}^2}\sigma_{4}^{2} -\frac{1}{2\alpha_{2}^2}\sigma_{4}^{2}. $

(2.1)式两侧由 $0$ $t$ 积分, 于是

$ \begin{eqnarray}\label{eq4} V(S(t), I(t), Q(t))&\geq&V(S(0), I(0), Q(0)) +Kt-\sigma_{1}B_{1}(t)-\sigma_{2}B_{2}(t)-\sigma_{3}B_{3}(t)\nonumber\\ && +\sigma_{4}\int_{0}^{t}\frac{S(u)-I(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}\mbox{d}B_{4}(u). \end{eqnarray} $ (2.2)

根据 $V(S(t), I(t), Q(t))$ 的定义, 我们注意到

$ \begin{array}{llll} \lim\limits_{t \to\tau_{+}}V(S(t), I(t), Q(t))=-\infty, \end{array} $

于是, (2.2)式两端令 $t \to\tau_{+}$ , 得到

$ \begin{eqnarray}\label{eq5} -\infty&\geq&V(S(0), I(0), Q(0))+K\tau_{+} -\sigma_{1}B_{1}(\tau_{+})-\sigma_{2}B_{2}(\tau_{+})-\sigma_{3}B_{3}(\tau_{+})\\ && +\sigma_{4}\int_{0}^{\tau_{+}}\frac{S(u)-I(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}\mbox{d}B_{4}(u) \\ &>&-\infty, \end{eqnarray} $ (2.3)

这与假设矛盾.于是, $\tau_{+}=\infty$ .证毕.

3 无病平衡点附近的绝灭性

显然, $E_{0}=(\frac{A}{d_{1}}, 0, 0)$ 为模型(1.2)的解, 称为无病平衡点.本节我们将研究 $E_0$ 附近解的渐近性质, 即, 定理3.1-3.2将给出模型(1.2)的解在无病平衡点附近, 疾病消失、感染者密度趋于零的充分性条件.

定理3.1 对任意初值 $(S(0), I(0), Q(0))\in {\cal R}_{+}^{3}$ , 令 $(S(t), I(t), Q(t))$ 为模型 $(1.2)$ 的解, 若白噪声的强度满足

$ \sigma_{1}^{2}<\frac{d_{1}}{2}, ~ \sigma_{2}^{2}<2d_{2}+\delta-\rho, ~ \sigma_{3}^{2}<2d_{3}+\rho-\frac{\rho^2}{d_{1}}-\delta, $

则该解有如下性质

$ \limsup\limits_{t\to \infty}\frac{1}{t}\, E\int_{0}^{t}\Big[\Big(S(u)-\frac{A}{d_{1}}\Big)^{2}+I^{2}(u)+Q^{2}(u)\Big]\mbox{d}u \leq\sigma_{1}\frac{A^{2}}{\xi d_{1}^{2}}+ \frac{A(d_{1}+d_{2}+\delta)}{\xi d_{1}\alpha_{2}}, $

其中

$ \xi=\min\{\xi_{1}, \xi_{2}, \xi_{3}\}, ~ \xi_{1}=\frac{d_{1}}{2}-\sigma_{1}^{2}, ~ \xi_{2}=d_{2}+\frac{\delta}{2}-\frac{\rho}{2}-\frac{\sigma_{2}^{2}}{2}, ~ \xi_{3}=d_{3}+\frac{\rho}{2}-\frac{\delta}{2}-\frac{\rho^{2}}{2d_{1}}-\frac{\sigma_{3}^{2}}{2}. $

 令 $u=S-\frac{A}{d_{1}}$ , $v=I$ , $w=Q$ , 则模型(1.2)改写为

$ \begin{equation}\label{eq6} \left\{ \begin{array}{llll} \mbox{d}u(t)&=&\Big[-d_{1}u-\frac{\beta (u+\frac{A}{d_{1}})v}{1+\alpha_{1}(u+\frac{A}{d_{1}})+\alpha_{2}v}+\gamma v+\rho w\Big]\mbox{d}t \\ &&-\sigma_{1}(u+\frac{A}{d_{1}})\mbox{d}B_{1}(t) -\sigma_{4}\frac{(u+\frac{A}{d_{1}})v}{1+\alpha_{1}(u+\frac{A}{d_{1}})+\alpha_{2}v}\mbox{d}B_{4}(t), \\ \mbox{d}v(t)&=&\Big[\frac{\beta (u+\frac{A}{d_{1}})v}{1+\alpha_{1}(u+\frac{A}{d_{1}})+\alpha_{2}v}-(d_{2}+\gamma+\delta)v\Big]\mbox{d}t \\ &&-\sigma_{2}v\mbox{d}B_{2}(t) +\sigma_{4}\frac{ (u+\frac{A}{d_{1}})v}{1+\alpha_{1}(u+\frac{A}{d_{1}})+\alpha_{2}v}\mbox{d}B_{4}(t), \\ \mbox{d}w(t)&=&[\delta v-(d_{3}+\rho)w]\mbox{d}t-\sigma_{3}w\mbox{d}B_{3}(t). \end{array} \right. \end{equation} $ (3.1)

定义由 ${\cal R}_+^3$ 映射到 ${\cal R}_+^3$ 的三个 $C^{2}$ -函数

$ V_{1}(u, v, w)=\frac{1}{2}(u+v)^{2}, ~ V_{2}(u, v, w)=v, ~ V_{3}(u, v, w)=\frac{1}{2}w^{2}. $

根据高维伊藤公式, 有

$ \begin{eqnarray*} {\cal L}V_{1}(u, v, w)&=&(u+v)[-d_{1}u-(d_{2}+\delta)v+\rho w] +\frac{1}{2}\sigma_{1}^{2}\Big(u+\frac{A}{d_{1}}\Big)^{2}+\frac{1}{2}\sigma_{2}^{2}v^{2}\\ &\leq&-(d_{1}-\sigma_{1}^{2})u^{2}-\Big(d_{2}+\delta-\frac{1}{2}\sigma_{2}^{2}\Big)v^{2}+\rho uw+\rho vw\\ &&-(d_{1}+d_{2}+\delta)uv+\sigma_{1}^{2}\frac{A^{2}}{d_{1}^{2}}\\ &\leq&-\Big(\frac{d_{1}}{2}-\sigma_{1}^{2}\Big)u^{2}-\Big(d_{2}+\delta-\frac{\rho}{2}-\frac{1}{2}\sigma_{2}^{2}\Big)v^{2} +\Big(\frac{\rho^{2}}{2d_{1}}+\frac{\rho}{2}\Big)w^{2}\\ &&-(d_{1}+d_{2}+\delta)uv+\sigma_{1}^{2}\frac{A^{2}}{d_{1}^{2}}, \end{eqnarray*} $
$ \begin{eqnarray*} {\cal L}V_{2}(u, v, w)&=&\Big[\frac{\beta (u+\frac{A}{d_{1}})v}{1+\alpha_{1}(u+\frac{A}{d_{1}})+\alpha_{2}v}-(d_{2}+\gamma+\delta)v\Big] \\ & \leq&\beta uv+ \frac{\beta A}{d_{1}\alpha_{2}}, \\ {\cal L}V_{3}(u, v, w)&=&w[\delta v-(d_{3}+\rho)w]+\frac{1}{2}\sigma_{3}^{2}w^{2} \\ & =&-\Big(d_{3}+\rho-\frac{1}{2}\sigma_{3}^{2}\Big)w^{2}+\delta vw\\ &\leq&-\Big(d_{3}+\rho-\frac{1}{2}\sigma_{3}^{2}-\frac{\delta}{2}\Big)w^{2}+\frac{\delta}{2}v^{2}. \end{eqnarray*} $

构造

$ V(u, v, w)=V_{1}(u, v, w)+\frac{d_{1}+d_{2}+\delta}{\beta}V_{2}(u, v, w)+V_{3}(u, v, w), $

则有

$ \begin{eqnarray}\label{eq7} \mbox{d}V(u, v, w)&=&{\cal L}V(u, v, w)\mbox{d}t-(u+v)\Big[\sigma_{1}\Big(u+\frac{A}{d_{1}}\Big)\mbox{d}B_{1}(t) +\sigma_{2}v\mbox{d}B_{2}(t)\Big]\\ &&-\frac{d_{1}+d_{2}+\delta}{\beta}\Big[\sigma_{2}v\mbox{d}B_{2}(t) +\frac{\sigma_{4} (u+\frac{A}{d_{1}})v}{1+\alpha_{1}(u+\frac{A}{d_{1}})+\alpha_{2}v}\mbox{d}B_{4}(t)\Big]\\ &&-\sigma_{3}w^{2}\mbox{d}B_{3}(t), \end{eqnarray} $ (3.2)

其中

$ \begin{eqnarray*} {\cal L}V(u, v, w) &=& -\Big(\frac{d_{1}}{2}-\sigma_{1}^{2}\Big)u^{2} -\Big(d_{2}+\frac{\delta}{2}-\frac{\rho}{2}-\frac{1}{2}\sigma_{2}^{2}\Big)v^{2} \nonumber\\ && -\Big(d_{3}+\frac{\rho}{2}-\frac{\delta}{2} -\frac{\rho^{2}}{2d_{1}} -\frac{1}{2}\sigma_{3}^{2}\Big)w^{2}+\sigma_{1}^{2}\frac{A^{2}}{d_{1}^{2}}+ \frac{A(d_{1}+d_{2}+\delta)}{d_{1}\alpha_{2}}.\nonumber \end{eqnarray*} $

(3.2)式的两端由0到 $t$ 积分并取期望, 得到

$ \begin{eqnarray*} 0 &\leq & EV(u(t), v(t), w(t))\\ &\leq &V(u(0), v(0), w(0))\\ && + E\int_{0}^{t}\Big(-\xi_{1}u^{2}(s) -\xi_{2}v^{2}(s) -\xi_{3}w^{2}(s)+\sigma_{1}^{2}\frac{A^{2}}{d_{1}^{2}} + \frac{A(d_{1}+d_{2}+\delta)}{d_{1}\alpha_{2}}\Big)\mbox{d}s.\nonumber \end{eqnarray*} $

选择正常数 $\xi=\min\{\xi_{1}, \xi_{2}, \xi_{3}\}$ , 因此, 不等式

$ \begin{equation}\label{eq8} \begin{array}{llll} \limsup\limits_{t\to \infty}\frac{1}{t}\, E\int_{0}^{t}(u^{2}(s)+v^{2}(s)+w^{2}(s))\mbox{d}s \leq\sigma_{1}^{2}\frac{A^{2}}{\xi d_{1}^{2}}+ \frac{A(d_{1}+d_{2}+\delta)}{\xi d_{1}\alpha_{2}} \end{array} \end{equation} $ (3.3)

成立.证毕.

定理3.2 若充分接触率 $\beta$ 满足如下性质

$ \beta^{2} <2\sigma_{4}^{2}\Big(d_{2}+\gamma+\delta+\frac{1}{2}\sigma_{2}^{2}\Big), $

则感染者的密度将几乎处处指数趋于零, 即

$ \begin{eqnarray} \limsup\limits_{t\rightarrow\infty}\frac{\ln I(t)}{t} \leq\frac{\beta^{2}}{2\sigma_{4}^{2}}-\Big(d_{2}+\gamma+\delta+\frac{1}{2}\sigma_{2}^{2}\Big)<0~~\mbox{a.s.}.\nonumber \end{eqnarray} $

 利用伊藤公式, 我们得到

$ \begin{eqnarray}\label{eq9} \mbox{d}\ln I(t) &=&\frac{\mbox{d}I(t)}{I(t)}-\frac{(\mbox{d}I(t))^{2}}{2I^{2}(t)} \\ &=&\Big[\frac{\beta S(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}-(d_{2}+\gamma+\delta)\Big]\mbox{d}t\nonumber\\ &&-\sigma_{2}\mbox{d}B_{2}(t)+\sigma_{4}\frac{S(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\mbox{d}B_{4}(t)\nonumber\\ &&-\frac{1}{2I^{2}(t)}\Big[\sigma_{2}^{2}I^{2}(t)+\sigma_{4}^{2}\frac{S^{2}(t)I^{2}(t)}{(1+\alpha_{1}S(t)+\alpha_{2}I(t))^{2}}\Big]\mbox{d}t\nonumber\\ &=&\Big[\frac{\beta S(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)} -\frac{\sigma_{4}^{2}S^{2}(t)}{2(1+\alpha_{1}S(t)+\alpha_{2}I(t))^{2}}\Big]\mbox{d}t\\ &&-\Big(d_{2}+\gamma+\delta+\frac{1}{2}\sigma_{2}^{2}\Big)\mbox{d}t-\sigma_{2}\mbox{d}B_{2}(t)\\ &&+\sigma_{4}\frac{S(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\mbox{d}B_{4}(t), \end{eqnarray} $ (3.4)

(3.4)式两侧由 $0$ $t$ 积分, 得到

$ \begin{eqnarray*} \ln I(t) &=& \int_{0}^{t}\frac{\beta S(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}\mbox{d}u -\frac{1}{2}\int_{0}^{t}\frac{\sigma_{4}^{2}S^{2}(u)}{(1+\alpha_{1}S(u)+\alpha_{2}I(u))^{2}}\mbox{d}u\nonumber\\ &&+\ln I(0) -\Big(d_{2}+\gamma+\delta+\frac{1}{2}\sigma_{2}^{2}\Big)t-\sigma_{2}B_{2}(t)+M(t), \nonumber \end{eqnarray*} $

其中局部鞅为

$ M(t)=\int_{0}^{t}\frac{\sigma_{4}S(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}\mbox{d}B_{4}(u), \nonumber $

其二次变分为

$ \langle M(t), M(t)\rangle =\int_{0}^{t} \Big[\frac{\sigma_{4}S(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}\Big]^{2}\mbox{d}u.\nonumber $

我们选择 $\delta=2, \nu_{k}=\nu>0$ $\tau_{k}=k$ (见文献[5, 定理7.4]), 对几乎所有的 $\omega\in\Omega$ , 存在一个随机整数 $k_{0}(\omega)$ 使得对 $k>k_{0}(w)$ $t\in[0, k]$ , 我们有

$ \begin{eqnarray}\label{eq10} M(t)-\frac{1}{2}\langle M(t), M(t)\rangle \leq-\frac{1-\nu}{2}\int_{0}^{t} \Big[\frac{\sigma_{4}S(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}\Big]^{2}\mbox{d}u+\frac{2}{\nu}\ln{k}. \end{eqnarray} $ (3.5)

另外, 由基本不等式 $(a+b)^2\leq2a^2+2b^2$ , 有

$ \begin{eqnarray}\label{eq11} \frac{\beta S(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}-\frac{1-\nu}{2}\Big[\frac{\sigma_{4}S(u)}{1+\alpha_{1}S(u)+\alpha_{2}I(u)}\Big]^{2} \leq\frac{\beta^{2}}{2(1-\nu)\sigma_{4}^{2}}. \end{eqnarray} $ (3.6)

$k-1\leq t\leq k$ , 由表达式( $3.5$ )和( $3.6$ ), 得到

$ \begin{eqnarray} \frac{\ln I(t)}{t} \leq\frac{\ln I(0)}{t} +\Big[\frac{\beta^{2}}{2(1-\nu)\sigma_{4}^{2}}-\Big(d_{2}+\gamma+\delta+\frac{1}{2}\sigma_{2}^{2}\Big)\Big] -\sigma_{2}\frac{B_2(t)}{t}+\frac{2\ln{k}}{\nu(k-1)}.\nonumber \end{eqnarray} $

$t\rightarrow\infty$ , 根据文献[5, 引理2.6]知,

$ \frac{B_{2}(t)}{t}\to 0, ~~\frac{\ln{k}}{k-1}\to 0. $

$\nu$ 趋于0时, 定理结论成立.证毕.

例3.3 考虑模型

$ \begin{equation}\label{eq12} \left\{ \begin{array}{llll} \mbox{d}S(t) &=& \Big[0.1-0.1S(t)-\frac{0.2S(t)I(t)}{1+S(t)+I(t)}+0.1 I(t)+0.004 Q(t)\Big]\mbox{d}t\\ &&-0.2 S(t)\mbox{d}B_{1}(t) -\frac{0.4 S(t)I(t)}{1+S(t)+I(t)}\mbox{d}B_{4}(t), \\ \mbox{d}I(t) &=& \Big[\frac{0.2 S(t)I(t)}{1+S(t)+I(t)}-(0.3+0.1+0.1)I(t)\Big]\mbox{d}t\\ &&-0.7 I(t)\mbox{d}B_{2}(t) +\frac{0.4 S(t)I(t)}{1+S(t)+I(t)}\mbox{d}B_{4}(t), \\[2mm] \mbox{d}Q(t) &=& [0.1 I(t)-(0.2+0.004)Q(t)]\mbox{d}t-0.8Q(t)\mbox{d}B_{3}(t). \end{array} \right. \end{equation} $ (3.7)

根据Milstein高阶方法[6], 我们选择初值 $(S(0), I(0), Q(0))=(2.4, 2.4, 1.2)$ , 定理3.1-3.2的条件均满足, 且无病平衡点为 $(\frac{A}{d_1}, 0, 0)=(1, 0, 0)$ , 模型(1.2)的解的绝灭性如图 2-3所示.

图 2 模型 $(1.2)$ 的解在无病平衡点 $(1, 0, 0)$ 附近的样本轨道

图 3 感染者的密度趋于零, 其中 $t=100$
4 地方并平衡点附近的平稳分布

对于易感者-感染者-隔离者模型(1.2), 其地方病平衡点为 $E^{\ast}=(S^{\ast}, I^{\ast}, Q^{\ast})$ , 对应的分量分别为

$ \begin{eqnarray} & I^{\ast}= \frac{A\beta-(\alpha_{1}A+d_{1})(d_{2}+\gamma+\delta)}{(d_{2}+\gamma+\delta) [d_{1}\alpha_{2}-d_{2}\alpha_{1}-\alpha_{1}\delta+\alpha_{1}\rho\delta(d_3+\rho)^{-1}]+\beta[d_{2}+\delta-\rho\delta(d_3+\rho)^{-1}]}, \nonumber\\[10pt] & S^{\ast} =\frac{(d_{2}+\gamma+\delta)(\alpha_{2}I^{\ast}+1)}{\beta-\alpha_{1} (d_{2}+\gamma+\delta)}, ~~ Q^{\ast}= \frac{\delta}{d_{3}+\rho}I^{\ast}.\nonumber \end{eqnarray} $

在适当的充分条件下, 本节将讨论模型(1.2)解的平稳分布的存在性, 及该解的遍历性(见定理4.1).若地方病平衡点 $E^{\ast}$ 是稳定的, 则进一步研究解的正态分布(见定理4.2).

定理4.1 若白噪声的强度满足

$ \sigma_{1}^{2}<d_{1}, ~ \sigma_{2}^{2}<d_{2}, ~ \sigma_{3}^{2}<d_{3} $

$ \eta < \min\{\eta_{1}S^{\ast 2}, \eta_{2}I^{\ast 2}, \eta_{3}Q^{\ast 2}\}, $

则模型 $(1.2)$ 存在一个平稳分布, 且该解是遍历的, 其中

$ \begin{eqnarray*} &&\eta_{1}=(c_{1}+c_{4})d_{1}-(c_{1}+c_{4})\sigma_{1}^{2}, \nonumber\\ &&\eta_{2}=(c_{1}+c_{4})d_{2}-(c_{1}+c_{4})\sigma_{2}^{2}+c_{4}\delta, \nonumber\\ &&\eta_{3}=(c_{1}+c_{2})d_{3}-(c_{1}+c_{2})\sigma_{3}^{2}+c_{2}\rho, \nonumber\\ &&\eta=(c_{1}+c_{4})S^{\ast2}\sigma_{1}^{2}+\Big(c_{1}+c_{4}+\frac{c_{3}}{2I^{\ast}}\Big)I^{\ast 2}\sigma_{2}^{2}+ (c_{1}+c_{2})Q^{\ast2}\sigma_{3}^{2}+\frac{c_{3}}{2\alpha_{1}^{2}}I^{\ast}\sigma_{4}^{2}, \nonumber \\ &&c_{1}=\rho, ~ c_{2}=\frac{\rho}{\delta}(d_{2}-d_{1}), ~\nonumber\\ &&c_{3}=\frac{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}}{\beta}[\rho(d_{1}+d_{2})+(d_{1}+d_{3})(d_{1}+d_{2}+\delta)], ~ c_{4}=d_{1}+d_{3}.\nonumber \end{eqnarray*} $

 地方病平衡点 $(S^{\ast}, I^{\ast}, Q^{\ast})$ 满足等式

$ A=d_{1}S^{\ast}+\frac{\beta S^{\ast}I^{\ast}}{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}} -\gamma I^{\ast}-\rho Q^{\ast}, $
$ \frac{\beta S^{\ast}I^{\ast}}{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}}=(d_{2}+\gamma+\delta)I^{\ast}, ~~~\delta I^{\ast}=(d_{3}+\rho)Q^{\ast}. $

定义由 ${\cal R}_{+}^{3}$ 映射到 ${\cal R}_{+}$ $C^{2}$ -函数

$ \begin{equation}\label{eq13} \begin{array}{lllll} & V_1(S, I, Q)=\frac{1}{2}(S-S^{\ast} +I-I^{\ast}+Q-Q^{\ast})^{2}, ~~~ V_2(S, I, Q)=\frac{1}{2}(Q-Q^{\ast})^{2}, \\ & V_3(S, I, Q)= I-I^{\ast}-I^{\ast}\ln\frac{I}{I^{\ast}}, ~~~ V_4(S, I, Q)=\frac{1}{2}(S-S^{\ast}+I-I^{\ast})^{2}, \end{array} \end{equation} $ (4.1)

根据高维伊藤公式, 得到

$ \begin{eqnarray} {\cal L}V_{1}(S, I, Q) &\leq&-(d_{1}-\sigma_{1}^{2})(S-S^{\ast})^{2}-(d_{2}-\sigma_{2}^{2})(I-I^{\ast})^{2}-(d_{3}-\sigma_{3}^{2})(Q-Q^{\ast})^{2}\\ &&-(d_{1}+d_{2})(S-S^{\ast})(I-I^{\ast})-(d_{1}+d_{3})(S-S^{\ast})(Q-Q^{\ast})\\ &&-(d_{2}+d_{3})(I-I^{\ast})(Q-Q^{\ast})+\sigma_{1}^{2}S^{\ast2}+\sigma_{2}^{2}I^{\ast 2}+\sigma_{3}^{2}Q^{\ast2}, \end{eqnarray} $ (4.2)
$ \begin{eqnarray} {\cal L}V_{2}(S, I, Q) &=&(Q-Q^{\ast})[\delta (I-I^{\ast})-(d_{3}+\rho)(Q-Q^{\ast})]+\frac{1}{2}\sigma_{3}^{2}(Q-Q^{\ast}+Q^{\ast})^{2} \\ &\leq&-(d_{3}+\rho-\sigma_{3}^{2})(Q-Q^{\ast})^{2}+\delta(I-I^{\ast})(Q-Q^{\ast})+\sigma_{3}^{2}Q^{\ast2}, \end{eqnarray} $ (4.3)
$ \begin{eqnarray} {\cal L}V_{3}(S, I, Q) &=&(I-I^{\ast})\Big[\frac{\beta S}{1+\alpha_{1}S+\alpha_{2}I}-\frac{\beta S}{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}} \\ &&+\frac{\beta}{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}}(S-S^{\ast})\Big] +\frac{1}{2}\sigma_{2}^{2}I^{\ast} +\frac{1}{2}\sigma_{4}^{2}\frac{S^{2}I^{\ast}}{(1+\alpha_{1}S+\alpha_{2}I)^{2}}\\ &\leq&\frac{\beta}{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}}(S-S^{\ast})(I-I^{\ast}) +\frac{1}{2}\Big(\sigma_{2}^{2}+\frac{\sigma_{4}^{2}}{\alpha_{1}^{2}}\Big)I^{\ast}, \end{eqnarray} $ (4.4)
$ \begin{eqnarray} {\cal L}V_{4}(S, I, Q) &\leq&(S-S^{\ast}+I-I^{\ast})[A-d_{1}S-(d_{2}+\delta)I+\rho Q] +\frac{1}{2}\sigma_{1}^{2}S^{2}+\frac{1}{2}\sigma_{2}^{2}I^{2}\\ &\leq&-(d_{1}-\sigma_{1}^{2})(S-S^{\ast})^{2}-(d_{2}+\delta-\sigma_{2}^{2})(I-I^{\ast})^{2}\\ &&-(d_{1}+d_{2}+\delta)(S-S^{\ast})(I-I^{\ast}) +\rho(S-S^{\ast})(Q-Q^{\ast})\\ &&+\rho(I-I^{\ast})(Q-Q^{\ast})+\sigma_{1}^{2}S^{\ast2}+\sigma_{2}^{2}I^{\ast 2}. \end{eqnarray} $ (4.5)

于是, 由表达式(4.2)-(4.5), 得到

$ \begin{eqnarray}\label{eq18} {\cal L}V(S, I, Q)&=&c_1{\cal L}V_1(S, I, Q)+c_2{\cal L}V_2(S, I, Q)+c_3{\cal L}V_3(S, I, Q)+c_4{\cal L}V_4(S, I, Q)\\ &\leq&-(c_{1}+c_{4})(d_{1}-\sigma_{1}^{2})(S-S^{\ast})^{2} -[c_{1}(d_{2}-\sigma_{2}^{2})+c_{4}(d_{2}+\delta-\sigma_{2}^{2})](I-I^{\ast})^{2}\\ &&-[c_{1}(d_{3}-\sigma_{3}^{2})+c_{2}(d_{3}+\rho-\sigma_{3}^{2})](Q-Q^{\ast})^{2}\\ &&+\Big[-c_{1}(d_{1}+d_{2})-c_{4}(d_{1}+d_{2}+\delta) +\frac{c_{3}\beta}{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}}\Big](S-S^{\ast})(I-I^{\ast})\\ &&+[-c_{1}(d_{2}+d_{3})+c_{2}\delta+c_{4}\rho](I-I^{\ast})(Q-Q^{\ast})\\ && +[-c_{1}(d_{1}+d_{3})+c_{4}\rho](S-S^{\ast})(Q-Q^{\ast})\\ && +c_{1}(\sigma_{1}^{2}S^{\ast2}+\sigma_{2}^{2}I^{\ast 2}+\sigma_{3}^{2}Q^{\ast2})+c_{2}\sigma_{3}^{2}Q^{\ast2}\\ && +c_{4}(\sigma_{1}^{2}S^{\ast2}+\sigma_{2}^{2}I^{\ast 2})+ \frac{c_{3}}{2} \Big(\sigma_{2}^{2}+\frac{\sigma_{4}^{2}}{\alpha_{1}^{2}}\Big)I^{\ast}. \end{eqnarray} $ (4.6)

选择

$ c_{1}=\rho, c_{2}=\frac{\rho}{\delta}(d_{2}-d_{1}), $
$ c_{3}=\frac{1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast}}{\beta}[\rho(d_{1}+d_{2})+(d_{1}+d_{3})(d_{1}+d_{2}+\delta)], ~~c_{4}=d_{1}+d_{3}, $

使得

$ {\cal L}V(S, I, Q) \leq -\eta_{1}(S-S^{\ast})^{2}-\eta_{2}(I-I^{\ast})^{2}-\eta_{3}(Q-Q^{\ast})^{2}+\eta. $

由文献[15, 引理3.1.2], 结合定理4.1的条件, 椭球

$ \eta_{1}(S-S^{\ast})^{2}+\eta_{2}(I-I^{\ast})^{2} +\eta_{3}(Q-Q^{\ast})^{2}=\eta $

位于区域 ${\cal R}_{+}^{3}$ 内, 且

$ {\cal L}V(S, I, Q)\leq -c<0 $

成立, 其中 $U$ 为椭球的某邻域, $\bar{U}\subseteq {\cal R}_{+}^{3}$ , $c$ 是一个正常数且 $(S, I, Q)\in {\cal R}_{+}^{3}\setminus U$ .

模型(1.2)在地方病平衡点 $(S^{\ast}, I^{\ast}, Q^{\ast})$ 的扩散矩阵为

$ \begin{eqnarray*} A&=&(a_{ij})_{3\times 3}\\ &=&\left( \begin{array}{ccc} \sigma_{1}^{2}S^{\ast2}+\sigma_{4}^{2}\frac{S^{\ast2}I^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}} & -\sigma_{4}^{2}\frac{S^{\ast2}I^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}}& 0\\ -\sigma_{4}^{2}\frac{S^{\ast2}I^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}} & ~~\sigma_{2}^{2}I^{\ast2}+\sigma_{4}^{2}\frac{S^{\ast2}I^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}} ~~& 0 \\[2mm] 0&0&\sigma_{3}^{2}Q^{\ast2} \end{array}\right), \end{eqnarray*} $

于是

$ \begin{eqnarray*} \sum\limits_{i, j=1}^{3}a_{ij}\lambda_{i}\lambda_{j} &=&\sigma_{1}^{2}S^{\ast2}\lambda_{1}^{2}+\sigma_{2}^{2}I^{\ast2}\lambda_{2}^{2} +\sigma_{3}^{2}Q^{\ast2}\lambda_{3}^{2} +\sigma_{4}^{2}\frac{S^{\ast2}I^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}} (\lambda_1-\lambda_2)^2 \\ %&&+2\sigma_{1}^{2}S^{\ast}Q^{\ast}\lambda_{1}\lambda_{3} +2\sigma_{1}^{2}I^{\ast}Q^{\ast}\lambda_{2}\lambda_{3}+\sigma_{2}^{2}I^{\ast2}(\lambda_{2}-\lambda_{3})^{2}\\ &\geq&\sigma_{1}^{2}S^{\ast2}\lambda_{1}^{2} +\sigma_{2}^{2}I^{\ast2}\lambda_{2}^{2} +\sigma_{3}^{2}Q^{\ast2}\lambda_{3}^{2}\geq M|\lambda|^{2}, \end{eqnarray*} $

对固定的常数 $M=\min\{\sigma_{1}^{2}S^{\ast2}, \sigma_{2}^{2}I^{\ast2}, \sigma_{3}^{2}Q^{\ast2}\}>0$ 及任意的 $U\subset{\cal R}_{+}^{3}$ , $\lambda\in{\cal R}_{+}^{3}$ .证毕.

定理4.2 对任意初值 $(S(0)$ , $I(0)$ , $Q(0))\in {\cal R}_{+}^{3}$ , 若地方病平衡点 $(S^{\ast}, I^{\ast}, Q^{\ast})$ 是稳定的, 则模型 $(1.2)$ 的解渐近服从一个三维正态分布, 其均值为 $(S^{\ast}, I^{\ast}, Q^{\ast})$ , 方差为

$ C_{(S, I, Q)}(0)= \frac{1}{2\pi}\int_{-\infty}^{+\infty} [\mu'(X^{\ast})-{\rm i}wI]^{-1}\sigma(X^{\ast})\sigma^{\mbox{ T}}(X^{\ast}) [(\mu'(X^{\ast})+{\rm i}wI)^{\mbox{ T}}]^{-1}\mbox{d}w, $

其中 $\mu'(X^{\ast})$ $\sigma'(X^{\ast})$ 见(4.7)和(4.8)式在 $X^{\ast}$ 点的值.

 令 $X(t)=(S(t), I(t), Q(t))^{\mbox{ T}}$ $\mbox{d}B(t)=(\mbox{d}B_1(t), \mbox{d}B_2(t), \mbox{d}B_3(t), \mbox{d}B_4(t))^{\mbox{ T}}$ , 模型(1.2)可改写为

$ \begin{equation}\label{eq19} \mbox{d}X(t)=\mu(X(t))\mbox{d}t+\sigma(X(t))\mbox{d}B(t), \end{equation} $ (4.7)

其中

$ \mu(X(t)) = \left( \begin{array}{c} A-d_{1}S(t)-\frac{\beta S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}+\gamma I(t)+\rho Q(t)\\ \frac{\beta S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}-(d_{2}+\gamma+\delta)I(t)\\ [2mm] \delta I(t)-(d_{3}+\rho)Q(t) \end{array} \right), $
$ \sigma(X(t))=\left( \begin{array}{ c c c c } -\sigma_{1}S(t)&0&0 & -\sigma_{4}\frac{S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\\ 0&-\sigma_{2}I(t)&0 & \sigma_{4}\frac{S(t)I(t)}{1+\alpha_{1}S(t)+\alpha_{2}I(t)}\\[2mm] 0&0&-\sigma_{3}Q(t) &0 \end{array}\right). $

$u(t)=X(t)-X^{\ast}$ , 沿地方病平衡点 $X^{\ast}$ 作泰勒展开, (4.7)式成为

$ \begin{eqnarray}\label{eq20} \mbox{d}u(t) &=& [\mu(X^{\ast}) +\mu'(X^{\ast})u(t)+\mbox{o}(|u(t)|^{2})]\mbox{d}t\\ &&+[\sigma(X^{\ast})+\sigma'(X^{\ast})\mbox{diag}(u(t)) +\mbox{o}(\mbox{diag}(u(t)))]\mbox{d}B(t), \end{eqnarray} $ (4.8)

其中

$ \mu'(X^{\ast})= \left( \begin{array}{cccc} -\frac{\beta I^{\ast}+\beta\alpha_{2}I^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}}-d_{1} &~~ -\frac{\beta S^{\ast}+\beta\alpha_{1}S^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}}+\gamma ~~& \rho\\ \frac{\beta I^{\ast}+\beta\alpha_{2}I^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}} & \frac{\beta S^{\ast}+\beta\alpha_{1}S^{\ast2}}{(1+\alpha_{1}S^{\ast}+\alpha_{2}I^{\ast})^{2}}-(d_{2}+\gamma+\delta) & 0\\[2mm] 0&\delta&-(d_{3}+\rho) \end{array}\right). $

由于 $X^{\ast}$ 是稳定的, $\mu(X^{\ast})=0$ , $\mu'(X^{\ast})<0$ .当 $X$ 沿着 $X^{\ast}$ 扰动, 且白噪声的强度 $\sigma_{i}$ $(i=1, 2, 3, 4)$ 充分小时, $\sigma'(X^{\ast})\mbox{diag}(u)$ 可以忽略不计.因此, (4.8)式的估计式

$ \begin{equation}\label{eq21} \begin{array}{ll} \mbox{d}u(t)-\mu'(X^{\ast})u(t)\mbox{d}t =\sigma(X^{\ast})\mbox{d}B(t) \end{array} \end{equation} $ (4.9)

为一个三维的O-U过程(细节见文献[3]的第6章和第11章), 方程(4.9)的解 $u(t)$ 服从正态分布 ${\cal N}(0, C_{u}(0))$ , 其中 $C_{u}(0)$ 为方差矩阵.根据自协方差 $C_{u, u}(\tau)$ 的如下性质

$ C_{\frac{du}{dt}, \frac{du}{dt}}(\tau)=-C''_{u, u}(\tau), ~~C_{u, \frac{du}{dt}}(\tau)=-C'_{u, u}(\tau), ~~C_{\frac{du}{dt}, u}(\tau)=C'_{u, u}(\tau), $

方程(4.9)的两端同时取自协方差运算, 得到

$ \begin{eqnarray}\label{eq22} &&\sigma(X^{\ast})\sigma^{\mbox{ T}}(X^{\ast})\delta I\\ &=& -C''_{u, u}(\tau)+\mu'(X^{\ast})C_{u, u}(\tau)\mu'^{\mbox{ T}}(X^{\ast})+\mu'(X^{\ast})C'_{u, u}(\tau)-C'_{u, u}(\tau)\mu'^{\mbox{ T}}(X^{\ast}), \end{eqnarray} $ (4.10)

其中 $C'_{u, u}(\tau)$ $C''_{u, u}(\tau)$ 分别表示自协方差关于 $\tau$ 的一阶、二阶导数; $\delta$ 是一个Dirac-Delta函数, $I$ 是三阶单位阵, $\sigma(X^{\ast})\sigma^{\mbox{ T}}(X^{\ast})$ 是扩散矩阵.

方程(4.10)的两端取傅里叶变换, 向量 $u$ 的谱密度矩阵 $S_{u}(w)$ 满足方程

$ \begin{eqnarray*} &&\sigma(X^{\ast})\sigma^{\mbox{ T}}(X^{\ast})\delta I\\ &=& -({\rm i}w)^{2}S_{u}(w)+\mu'(X^{\ast})S_{u}(w)\mu'^{\mbox{ T}}(X^{\ast})+{\rm i}w\mu'(X^{\ast})S_{u}(w)-{\rm i}wS_{u}(w)\mu'^{\mbox{ T}}(X^{\ast}). \end{eqnarray*} $

由于 $\mu'(X^{\ast})\pm {\rm i}wI$ 是可逆矩阵, 则有

$ S_{u}(w)=(\mu'(X^{\ast})-{\rm i}wI)^{-1}\sigma(X^{\ast})\sigma^{\mbox{ T}}(X^{\ast}) [(\mu'(X^{\ast})+{\rm i}wI)^{\mbox{ T}}]^{-1}. $

经过傅里叶逆变换, 令 $\tau=0$ , 我们有

$ C_{u}(0) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} [\mu'(X^{\ast})-{\rm i}wI]^{-1}\sigma(X^{\ast})\sigma^{\mbox{ T}}(X^{\ast}) [(\mu'(X^{\ast})+{\rm i}wI)^{\mbox{ T}}]^{-1}\mbox{d}w. $

事实上, $C_{X^{\ast}}(0)=0$ 推出 $C_{(S, I, Q)}(0)=C_{u}(0)$ .定理的结论成立.证毕.

例4.3 考虑模型

$ \begin{equation}\label{eq23} \left\{ \begin{array}{llll} \mbox{d}S(t) &=&\Big[6-0.016S(t)-\frac{0.4S(t)I(t)}{1+S(t)+I(t)}+0.001 I(t)+0.001 Q(t)\Big]\mbox{d}t\\ && -0.003 S(t)\mbox{d}B_{1}(t)-\frac{0.002 S(t)I(t)}{1+S(t)+I(t)}\mbox{d}B_{4}(t), \\ \mbox{d}I(t) &=&\Big[\frac{0.4 S(t)I(t)}{1+S(t)+I(t)}-(0.018+0.001+0.001)I(t)\Big]\mbox{d}t\\ && -0.01 I(t)\mbox{d}B_{2}(t)+\frac{0.002 S(t)I(t)}{1+S(t)+I(t)}\mbox{d}B_{4}(t), \\[2mm] \mbox{d}Q(t) &=&[0.001 I(t)-(0.022+0.001)Q(t)]\mbox{d}t-0.004Q(t)\mbox{d}B_{3}(t). \end{array} \right. \end{equation} $ (4.11)

在模型(4.11)中取初值 $(S(0), I(0), Q(0))=(1, 0.02, 0.03)$ , 易于验证定理4.1的条件成立, 于是, 地方病平衡点为 $(S^{\ast}, I^{\ast}, Q^{\ast})=(16.7, 318, 13.8)$ . 图 4说明正解在地方病平衡点 $E^{\ast}$ 附近存在一个平稳分布; 图 5-7分别显示了易感者、感染者、隔离者的频率直方图.而且, 在一些充分的条件下, 我们得到了模型解的正态分布.

图 4 模型 $(1.2)$ 的解在地方病平衡点 $(16.7, 318, 13.8)$ 的样本轨道

图 5 易感者的频率直方图, 其中 $k=23000$

图 6 感染者的频率直方图, 其中 $k=3000$

图 7 隔离者的频率直方图, 其中 $k=3000$
5 结论

本文中, 我们研究了一类具有饱和传染率的随机流行病模型, 通过构建 $C^2$ -函数及应用伊藤公式, 得到了模型(1.2)存在唯一全局解这一结论.同时, 研究表明:当白噪声的强度 $\sigma_i$ $ (i=1, 2, 3, 4)$ 充分大的时候, 疾病在模型(1.2)的无病平衡点 $E_0$ 附近趋于绝灭, 且感染者的密度将指数趋于零(见图 2-3).当白噪声的强度 $\sigma_i$ 足够小的时候, 模型(1.2)的正解沿地方病平衡点 $E^{\ast}$ 服从唯一的平稳分布, 相关的模拟图如图 4-7所示.若模型(1.2)的地方病平衡点 $E^{\ast}$ 是稳定的, 在一定的充分条件下, 模型(1.2)的解将渐近服从一个三维正态分布, 且得到了均值与方差的表达式.数值模拟的结果支持了定理的主要结论, 并对模型给出了较好的解释, 即, 在长期动力学行为中, 图 2-3意味着疾病将沿无病平衡点 $E_0$ 附近绝灭, 图 4-7展示了疾病将沿地方病平衡点附近传播.

参考文献
[1] Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics. Proc Royal Soc London Series A, 1927, 115: 700–721. DOI:10.1098/rspa.1927.0118
[2] Hethcote H, Ma Z E, Liao S B. Effects of quarantine in six endemic models for infectious diseases. Math Biosci, 2002, 180: 141–160. DOI:10.1016/S0025-5564(02)00111-6
[3] Geritz S A H. Stochastic Population Models (Course for Advanced Students, Helsinki, Spring 2011). http://wiki.helsinki.fi/display/mathstatHenkilokunta/
[4] May R M. Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press, 2001.
[5] Mao X R. Stochastic Differential Equations and Applications (2nd Edition). Chichester: Horwood, 2007.
[6] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev, 2001, 43(3): 525–546. DOI:10.1137/S0036144500378302
[7] Jiang D Q, Ji C Y, Shi N Z, Yu J J. The long time behavior of DI SIR epidemic model with stochastic perturbation. J Math Anal Appl, 2010, 372: 162–180. DOI:10.1016/j.jmaa.2010.06.003
[8] Zhao Y N, Jiang D Q, O'Regan D. The extinction and persistence of the stochastic SIS epidemic model with vaccination. Physica A, 2013, 392: 4916–4927. DOI:10.1016/j.physa.2013.06.009
[9] Lin Y G, Jiang D Q, Xia P Y. Long-time behavior of a stochastic SIR model. Appl Math Comput, 2014, 236: 1–9.
[10] Lin Y G, Jiang D Q, Jin M L. Stationary distribution of a stochastic SIR model with saturated incidence and its asymptotic stability. Acta Math Sci, 2015, 35B(3): 619–629.
[11] Zhao Y N, Jiang D Q. The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl Math Lett, 2014, 34: 90–93. DOI:10.1016/j.aml.2013.11.002
[12] Liu H, Yang Q S, Jiang D Q. The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences. Automatica, 2012, 48: 820–825. DOI:10.1016/j.automatica.2012.02.010
[13] Lahrouz A, Omari L. Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Stat Prob Lett, 2013, 83: 960–968. DOI:10.1016/j.spl.2012.12.021
[14] Rao F, Wang W M, Li Z B. Stability analysis of an epidemic model with diffusion and stochastic perturbation. Commun Nonlinear Sci Numer Simulat, 2012, 17: 2551–2563. DOI:10.1016/j.cnsns.2011.10.005
[15] Zhang X B, Huo H F, Xiang H, Meng X Y. Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence. Appl Math Comput, 2014, 243: 546–558.