设 $\Omega\subset{\Bbb R}^3$ 为光滑有界区域.我们主要研究如下Navier-Stokes-Fourier方程的人工可压逼近
其中, $u\in{\Bbb R}^3,\theta\in{\Bbb R},p\in{\Bbb R}$ 分别表示速度场, 温度场和流体的压强, $\mu$ 和 $\kappa>0$ 分别表示粘度常系数和热传导系数. Navier-Stokes-Fourier方程是热力学流体方程中最重要的方程.在过去的几十年里该模型已被大量研究, 参见文献[6-7, 9-11, 20].
人工可压逼近方法最初由Chorin[3-4]和Temam[14-16]提出, 主要是为了克服不可压缩约束条件 $"\mbox{div} u=0"$ 给Navier-Stokes方程数值逼近带来的困难.由于 $"\mbox{div} u=0"$ 不能确切成立, 在数值逼近的迭代过程中, 离散误差会不断积累, 随着误差积累的增多, 近似算法就会失效.为此, Chorin和Temam引进了如下扰动的可压Navier-Stokes方程
在文献[16]中, Temam利用经典的Sobolev紧嵌入定理和经典分数阶导数的Lions方法[11]克服了关于时间的紧性, 从而解决了Navier-Stokes方程在有界区域上可压逼近的收敛性的问题.
近年来利用Chorin和Temam的方法, 一些模型的人工可压逼近问题被大量研究.例如, 在文献[21-22]中, 赵才地教授和他的合作者分别研究了对流的Brinkman-Forchheimer方程和非Newtonian流体方程的可压逼近问题.我们在文献[13]中研究了Electro-hydrodynamics方程的可压逼近问题.
在本文中, 我们利用人工可压逼近的方法来研究系统(1.1)的逼近问题.考虑如下的关于参数 $\epsilon \in(0,1]$ 的扰动可压系统族
满足初边值条件
当 $\epsilon=0$ 时, 易知扰动的可压Navier-Stokes-Fourier方程(1.2)-(1.4)即为不可压的Navier-Stokes-Fourier方程(1.1).因此, 我们会很自然地去考虑方程(1.2)-(1.4)的解是否存在, 当 $\epsilon\rightarrow 0^+$ 时, 此解是否收敛到不可压的Navier-Stokes-Fourier方程(1.1)的解 $(u,\theta,p)$ .在本文中, 我们将解决以上这些问题.
从物理的角度来看, 我们可以由可压流体模型推导出不可压流体模型.可压流体方程的不可压极限是流体动力学数学理论中的一个重要问题.在过去的几十年里, 很多学者已经在这一领域做出很多工作并取得很大的进展, 如: Jiang[18-19], Lions和Masmoudi[12], Temam[16], Feireisl[1, 8], Chang和Kwak[2].
本文结构安排如下:第二节, 给出了一些本文所涉及到的基础知识; 第三节, 证明了方程(1.2)-(1.4)解的存在性; 第四节, 研究当 $\epsilon\rightarrow 0^+$ 时扰动问题解的收敛性.
为了更好的描述问题, 我们先来回顾一些常用的Lebesgue空间和Sobolev空间定义及相关符号, 更多详细的介绍可参见文献[14].
设 $L^2(\Omega)$ 和 $ H_0^1(\Omega)$ 分别表示标准的Lebesgue空间和Sobolev空间.记向量值空间 $(L^2(\Omega))^3$ 和 $ (H_0^1(\Omega))^3 $ 为 $ {\Bbb L}^2(\Omega)$ 和 $ {\Bbb H}_0^1(\Omega)$ .设
设 ${\Bbb H},{\Bbb V}$ 分别是 ${\cal V}$ 在空间 $( L^2(\Omega))^3$ 和 $( H^1_0(\Omega))^3$ 上的闭包.为了书写的方便, 我们用 $(\cdot,\cdot)$ 和 $|\cdot|$ 分别表示空间 $L^2(\Omega),{\Bbb L}^2(\Omega)$ 和 ${\Bbb H}$ 的内积和范数, 用 $((\cdot,\cdot))$ 和 $\|\cdot\|$ 分别表示空间 $ H^1_0(\Omega),{\Bbb H}^1_0(\Omega)$ 和 ${\Bbb V}$ 的内积和范数.设 $H^{-1}(\Omega),{\Bbb H}^{-1}(\Omega)$ 和 $ {\Bbb V}'$ 分别表示 $H^1_0(\Omega),{\Bbb H}^1_0(\Omega)$ 和 ${\Bbb V}$ 的对偶空间.我们用 $\|\cdot\|_*$ 来表示 $H^{-1}(\Omega), {\Bbb H}^{-1}(\Omega)$ 和 ${\Bbb V}'$ 的范数, 且用 $\langle\cdot, \cdot\rangle$ 来表示 $H^1_0(\Omega)$ 和 $H^{-1}(\Omega)$ , ${\Bbb H}^1_0(\Omega)$ 和 ${\Bbb H}^{-1}(\Omega)$ 或 ${\Bbb V}$ 和 ${\Bbb V}'$ 之间的对偶对.
定义由 ${\Bbb V} $ 到 $ {\Bbb V}^*$ 上的"Stokes算子" ${\cal A}=-\triangle$ 为
定义 ${\Bbb V}$ ( $H_0^1(\Omega)$ 或 ${\Bbb H}_0^1(\Omega)$ )上的三线性形式 $b(\cdot,\cdot,\cdot)$ 为
且定义 $B(u,v): {\Bbb V} \times {\Bbb V} \mapsto {\Bbb V}' ({\Bbb H}_0^1(\Omega)\times {\Bbb H}_0^1(\Omega) \mapsto {\Bbb H}^{-1}(\Omega))$ , 即
进一步, 定义三线性形式 $\hat{b}(\cdot,\cdot,\cdot)$ 为
且定义 $\hat{b}(u,v,w)$ 为 $ \langle \hat{B}(u,v),w\rangle .$
设 $X_0,X,X_1$ 是三个Hilbert空间, 且
其中嵌入是连续的, 且
设 $\psi(t)$ 是 ${\Bbb R}\rightarrow X_1$ 的函数, 我们用 $\hat{\psi}(\tau)$ 来表示它的Fourie变换
$\psi(t)$ 关于 $t$ 的 $\gamma$ 阶导数是 $(2{\rm i}\pi\tau)^{\gamma}\hat{\psi}(\tau)$ 的Fourier逆变换, 即
对于任给的 $\gamma>0$ , 定义空间 $M^{\gamma}$ 为
则空间 $M^{\gamma}$ 为Hilbert空间, 定义其范数为
对于任一有界集 $K\subset {\Bbb R}$ , $M^{\gamma}$ 的子空间 $M^{\gamma}_{K}$ 是紧包含在 $K$ 中的函数 $u\in M^{\gamma}$ 的集合, 即
我们需要如下关于时间变量 $t$ 的分数阶导数的紧性结果.
引理2.1 设 $X_0,X,X_1$ 是Hilbert空间且满足条件(2.1)和(2.2).则对于任意有界集 $K$ 和任意常数 $\gamma>0$ , 使得
在本节中, 我们证明问题(1.2)-(1.4)弱解的存在性.
定义3.1 设 $\epsilon\in (0,1]$ 且 $u_{0}\in {\Bbb H},\theta_{0},p_0\in L^2(\Omega),$ 对于任意的 $T>0$ , 则系统(1.2)-(1.4)的弱解 $(u_\epsilon,\theta_\epsilon,p_\epsilon)$ 满足
且
定理3.1 设 $\epsilon\in (0,1]$ , $u_{0}\in {\Bbb H},\theta_{0},p_0\in L^2(\Omega),$ 则问题(1.2)-(1.4)存在弱解 $(u_\epsilon,\theta_\epsilon,p_\epsilon)$ .
证 应用Galerkin逼近方法来证明弱解的存在性.用 $({\cal C}^\infty_0(\Omega))^3$ 中的元素 $\{\omega_i\}_{i=1}^{\infty}$ 来表示 ${\Bbb H}^1_{0}(\Omega)$ 的基底, ${\cal C}^\infty_0(\Omega)$ 中的元素 $\{\gamma_j\}_{j=1}^{\infty}$ 表示 $L^2(\Omega)$ 和 $ H^1_0(\Omega)$ 的基底.对于任一正整数 $m$ , 定义
并考虑逼近的常微分系统
其中, $u_{0m}$ ( $\theta_{0m}$ , $p_{0m}$ )是 $u_0$ ( $\theta_0$ , $p_0$ )到 ${\Bbb L}^2(\Omega)$ ( $L^{2}(\Omega)$ )中由 $\omega_1,\cdots ,\omega_m$ ( $\gamma_1,\cdots ,\gamma_m$ )张成的空间的正交投影.
方程(3.8)-(3.10)构成关于 $g_{1m},\cdots ,g_{mm}$ , $h_{1m},\cdots ,h_{mm}$ , $\xi_{1m},\cdots ,\xi_{mm}$ 的非线性微分系统.通过常微分方程的标准理论, 我们可以推断出常微分系统存在解.
分别用 $g_{im}(t),h_{jm}(t)$ 和 $\xi_{jm}(t)$ 乘以方程(3.8), (3.9)和(3.10), 我们可以得到
易证 $\hat{b}(u_{\epsilon m},u_{\epsilon m},u_{\epsilon m})=0$ , $\hat{b}(u_{\epsilon m},\theta_{\epsilon m},\theta_{\epsilon m})=0$ .又由于
可得出
对式上式从0到 $s$ 积分可推出
对于任一的 $T>0,$ 将(3.12)式关于 $t$ 从0到 $T$ 积分, 可得
为了在非线性项中取极限, 我们需要分别对 $u_{\epsilon m}$ 和 $\theta_{\epsilon m}$ 关于时间的分数阶导数进行估计.设
则(3.8)-(3.10)式可改写为
参照文献[16] (也可参照文献[21-22])的证明思路, 我们把函数 $u_{\epsilon m}(t),\theta_{\epsilon m}(t) $ 和 $ p_{\epsilon m}(t)$ 在区间 $[0,T]$ 外全部延拓为 $0$ 且分别定义为 $\tilde{u}_{\epsilon m}(t),\tilde{\theta}_{\epsilon m}(t) $ 和 $ \tilde{p}_{\epsilon m}(t)$ .考虑微分方程的Fourier变换.
下面的关系式在 ${\Bbb R}$ 上成立.
对其作Fourier变换, 得
我们对上面三个方程分别乘以 $\hat{g}_{km}(\tau),\hat{h}_{km}(\tau)$ 和 $\hat{\xi}_{lm}$ (其中 $\hat{g}_{km}(\tau),\hat{h}_{km}(\tau)$ 和 $\hat{\xi}_{lm}$ 分别是 $\tilde{g}_{km},\tilde{h}_{km}$ 和 $\tilde{\xi}_{lm}$ 的Fourier变换), 然后把所有的式子相加(其中 $k,j=1,\cdots ,m$ ), 从而有
由 ${{\hat u}_{m}}(\tau )|_{\partial \Omega}=0$ , 得 $(\nabla\hat{p}_{\epsilon m},\hat{u}_{\epsilon m})+({\mbox{div}} {{\hat u}_{m}},{\hat p }_{\epsilon m})=0$ .运用(3.13)和(3.14)式, 由(3.17)式可推断出
接下来对项 $|{\langle {{\hat \phi }_{\epsilon m}}(\tau ),{{\hat u}_{\epsilon m}}(\tau )\rangle }|$ 和 $|{\langle {{\hat \psi }_{\epsilon m}}(\tau ),{{\hat \theta}_{\epsilon m}}(\tau )\rangle }|$ 分别进行估计.事实上
结合(3.17), (3.18)和(3.19)式, 有
对于给定的 $\gamma\in(0,\frac{1}{4})$ , 我们有
因此
由Parseval不等式和Poincaré不等式, 有
对于任一的 $ \gamma\in(0,\frac{1}{4})$ , 有
我们可以推出
当 $m\rightarrow\infty$ 时, 运用(3.13)-(3.16)式和(3.22)式, 对(3.8)-(3.10)式中关于 $m$ 取极限, 对于给定的 $\epsilon\in(0,1]$ , 我们只考虑当 $m\rightarrow\infty$ 时取极限的过程.存在着一个序列 $m'\rightarrow\infty$ , 和 $\{v_\epsilon,q_\epsilon,\varphi_\epsilon,p_\epsilon\}$ 满足
取 $\psi(t)\in {\cal C}^{\infty}_{c}(0,T)$ , 我们用 $\psi(t)$ 乘以(3.8) (resp. (3.9)或(3.10))式, 然后在 $(0,T)$ 上积分, 得
接下来, 我们逐个考虑(3.23)和(3.24)式中非线性项的收敛性.首先
其中, 当 $m'\rightarrow 0$ 时, 有
由(3.26)-(3.30)式, 得
同理, 我们可以推出
当 $m'\rightarrow\infty$ 时, 对(3.23)-(3.25)式取极限(其中 $ 1\leq k,j\leq m$ ), 有
注意到
同理
因此, (3.33) (resp. (3.34)或(3.35))式对于任意 $\omega_{k}$ (resp. w $_{k}$ 或 $\gamma_l$ )的有限线性组合 $\omega$ (resp. w或 $\gamma$ )成立.由连续性知, 对于任意的 $\omega\in{{\Bbb H}^{1}_{0}}(\Omega)$ , (3.33)式成立, 对于任意的 $w\in H^1_0(\Omega)$ , (3.34)式成立, 对于任意的 $\gamma\in L^{2}(\Omega)$ , (3.35)式成立.因此
方程(3.37)-(3.39)证明了 $\{u_{\epsilon},\theta_{\epsilon}, p_{\epsilon}\}$ 在分布意义下满足(3.4)-(3.6)式.接下来证明 $u_{\epsilon}$ , $\theta_{\epsilon}$ 和 $p_{\epsilon}$ 满足(3.7)式.为此, 我们取 $\psi(t)\in{{\cal C}^{\infty}_{c}}([0,T])$ 且 $\psi(T)=0$ , 并用 $\psi(t)$ 分别乘以方程(3.4)-(3.6), 然后在 $[0,T]$ 上积分, 对于首项利用分部积分可得
通过比较(3.37)式与(3.40)式, (3.38)式与(3.41)式, (3.39)式与(3.42)式, 可得
我们选取 $\psi(0)\neq0$ 可得
因此, (3.7)式成立.
在本节中, 我们证明扰动的可压Navier-Stokes-Fourier方程的解收敛到不可压方程的解.
定义4.1 设 $u_{0}\in {\Bbb H},\theta_{0}\in L^2(\Omega).$ 对于任意的 $T>0$ , 系统(1.1)的弱解 $(u,\theta)$ 满足
由参考文献[5]知, 对于给定的 $\mu,\kappa>0$ 且任一 $T>0$ , 问题(1.1)至少存在一个弱解.
定理4.1 对于任意的 $\epsilon\in(0,1]$ , $u_0\in {\Bbb H},\theta_0,p_0\in L^{2}(\Omega)$ , 当 $\epsilon\rightarrow 0^{+}$ 时, 问题(1.2)-(1.4)的解 $\{u_{\epsilon},\theta_{\epsilon},p_{\epsilon}\}$ 按以下意义收敛到问题(1.1)的解 $\{u,\theta,p\}$ .
证 由(3.14)-(3.16)式, (3.20)-(3.22)式, 对于任一的$\epsilon\in(0, 1]$, 我们有
由(4.8)-(4.13)式, 存在序列 $\{\epsilon_m\}\subset (0,1]$ ( $\epsilon_m\rightarrow 0^{+}$ 当 $m\rightarrow\infty$ 时) $u_{*}\in L^{\infty}(0,T;{\Bbb L}^{2}(\Omega)) \cap L^{2}(0,T;{{\Bbb H}^{1}_{0}}(\Omega))$ , $\theta_*\in L^{\infty}(0,T;L^{2}(\Omega)) \cap L^{2}(0,T;H^{1}_{0}(\Omega))$ 且 $p_*\in L^{\infty}(0,T;L^{2}(\Omega))$ , 当 $\epsilon_m\rightarrow 0^{+}$ 时满足
当 $\epsilon_m\rightarrow 0^{+}$ 时, 对(3.6)式在分布意义下取极限, 得
结合(4.21)和(3.6)式有
从上式可以推断出 $\mbox{div} u_{*}=0$ , 从而有
现设 $\omega\in{\cal V}$ , $w\in{\cal W}$ .考虑到
方程(3.4)和(3.5)可写为
若 $\psi$ 是 $[0,T]$ 上的一个连续可微的标量函数, 且 $\psi(T)=0$ , 我们用 $\psi(t)$ 分别乘以方程(4.22), (4.23), 再关于 $t$ 进行积分.则由分部积分可得
类似于(3.31)-(3.32)式的推导, 利用(4.14)-(4.20)式的收敛性可得
注意到 $\mbox{div} u_{*}=0$ 且
在(4.24)和(4.25)式中取极限, 可得
易证明 $\{u_{*},\theta_{*}\}$ 是问题(1.1)的解.接下来证明(4.1)-(4.7)式的收敛性.注意到(4.1)-(4.4)式分别可由(4.8)-(4.11)式推导得到.更进一步, (4.5)式可以由(4.13), (4.14), (4.16)式和紧嵌入定理(参照文献[17])得出, 类似地, (4.6)式可由(4.13), (4.15), (4.17)式和紧嵌入定理得出.我们只需证明(4.7)式的收敛性.为此将(3.4)式写作
由 $u_{\epsilon_m}$ 的收敛性知, 当 $\epsilon_m\rightarrow 0^+$ 时, (4.28)式的右端在空间 $L^{\frac{4}{3}}(0,T;{\Bbb H}^{-1})$ 中弱收敛到
注意到(4.29)式即为 $\nabla p$ .因此
从而(4.7)式得证.