数学物理学报  2017, Vol. 37 Issue (6): 1062-1069   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
李文娟
汤获
俞元洪
中立型Emden-Fowler微分方程的振动性
李文娟1,2, 汤获1,2, 俞元洪3     
1. 赤峰学院数学与统计学院 内蒙古赤峰 024000;
2. 赤峰学院应用数学研究所 内蒙古赤峰 024000;
3. 中国科学学院数学与系统科学研究院 北京 100190
摘要:该文主要研究了二阶中立型Emden-Fowler微分方程 $\begin{eqnarray} (r(t)|z'(t)|^{\alpha-1}z'(t))'+p(t)|z'(t)|^{\alpha-1}z'(t)+q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t))=0 \end{eqnarray}$ 的振动性, 其中$z(t)=x(t)+g(t)x(\tau(t))$.利用广义Riccati变换和积分平均技巧建立新的振动准则, 推广和改进了一些文献中的结果.
关键词Emden-Fowler方程    中立型微分方程    振动性    
Oscillation of the Neutral Emden-Fowler Differential Equation
Li Wenjuan1,2, Tang Huo1,2, Yu Yuanhong3     
1. School of Mathematics and Statistics, Chifeng University, Inner Mongolia Chifeng 024000;
2. Institute of Applied Mathematics, Chifeng University, Inner Mongolia Chifeng 024000;
3. Academy of Mathematics System Sciences, Chinese Academy of Sciences, Beijing 100190
Abstract: In this work, we investigate the oscillation of the neutral Emden-Fowler differential equation $\begin{eqnarray} (r(t)|z'(t)|^{\alpha-1}z'(t))'+p(t)|z'(t)|^{\alpha-1}z'(t)+q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t))=0, \end{eqnarray}$ where $z(t)=x(t)+g(t)x(\tau(t))$. By using the generalized Riccati transformation and integral averaging technique, we establish some new oscillation criteria. These results extend and improve some existing results in the literature.
Key words: Emden-Fowler equation     Neutral differential equation     Oscillation    
1 引言

本文考虑中立型Emden-Fowler微分方程

$\begin{eqnarray}(r(t)|z'(t)|^{\alpha-1}z'(t))'+p(t)|z'(t)|^{\alpha-1}z'(t)+q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t))=0,\tag{$E$}\end{eqnarray}$

其中 $z(t)=x(t)+g(t)x(\tau(t)),r(t)\in C^{1}([t_{0},\infty),{\Bbb R}), p(t),q(t)\in C([t_{0},\infty),{\Bbb R}),\alpha $ $\beta$ 是两个常数, 并且满足如下条件

$(H_{1}) \alpha>0,\beta>0;$

$(H_{2}) 0\leq g(t)\leq1,p(t)\geq0,q(t)\geq0;$

$(H_{3}) r(t)>0,r'(t)>0,R(t)=\int^{t}_{t_{0}}r^{-\frac{1}{\alpha}}(s){\rm d}s; $

$(H_{4}) \tau(t)\in C^{1}([t_{0},\infty),{\Bbb R}),\tau(t)\leq t ,$ $ \lim\limits_{ t\rightarrow\infty}\tau(t)=\infty,$ $ \sigma(t)\in C^{1}([t_{0},\infty),{\Bbb R}),$ $\sigma(t)>0,$ $\sigma(t)\leq t ,$ $ \sigma'(t)>0,$ $ \lim\limits_{ t\rightarrow\infty}\sigma(t)=\infty.$

$T_{x}=\min\{\tau(T),\sigma(T)\},T\geq t_{0}.$ 我们称 $x(t)$ 为方程 $(E)$ 的一个解, 是指函数 $x(t)\in C^{1}([T_{x},\infty),{\Bbb R})$ 使得 $r(t)|z'(t)|^{\alpha-1}z'(t)\in C^{1} ([T_{x},\infty),{\Bbb R})$ 且在 $[T_{x},\infty)$ 上满足方程 $(E)$ .本文仅考虑方程 $(E)$ 的非平凡解, 即方程 $(E)$ $[T_{x},\infty)$ 上的解满足 $\sup\{|x(t)|:t\geq T \}>0$ 对一切 $T\geq T_{x}$ 成立.方程 $(E)$ 的解称为振动的, 如果它有任意大的零点, 否则, 称它为非振动的.方程 $(E)$ 的一切解均振动, 则称方程 $(E)$ 为振动的.

近年来, 中立型Emden-Fowler微分方程的振动性理论及其应用受到很大的关注, 出现了大量的研究成果(参见文献[1-10]).下面是几个重要的特例.文献[2]考虑的微分方程

$\begin{eqnarray}(r(t)x'(t))'+q(t)x(t)=0.\end{eqnarray}$ (1.1)

文献[3]考虑的二阶时滞微分方程

$\begin{eqnarray}(x(t)+p(t)x(t-\tau))''+q(t)x(t-\sigma)=0.\end{eqnarray}$ (1.2)

文献[4]考虑的二阶时滞微分方程

$\begin{eqnarray}(r(t)|z'(t)|^{\alpha-1}z'(t))'+q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t))=0.\end{eqnarray}$ (1.3)

定理A[2] 设

$\begin{eqnarray}\int^{\infty}_{t_{0}}\frac{1}{r(t)}{\rm d}t=\infty,\end{eqnarray}$ (1.4)
$\begin{eqnarray}\int^{\infty}_{t_{0}}q(t){\rm d}t=\infty,\end{eqnarray}$ (1.5)

则方程(1.1)振动.

定理B[3] 设 $0\leq p(t)\leq1,q(t)\geq0,$

$\begin{eqnarray}\int^{\infty}_{t_{0}}q(s)[1-p(s-\sigma)]{\rm d}s=\infty,\end{eqnarray}$ (1.6)

则方程(1.2)振动.

文献[1]和[4]利用Riccati方法和积分平均技巧建立方程(1.3)新的振动准则, 推广和改进了一些文献中的结果.本文研究的方程 $(E)$ 形式上更为广泛, 所得结果将推广和改进已有文献的结果.

$\varphi(t)=\exp(\int^{t}_{t_{0}}\frac{p(u)}{r(u)}{\rm d}u)$ .用 $\varphi(t)$ 乘以方程 $(E)$ 的两端, 则 $(E)$ 变为

$\begin{eqnarray}(\varphi(t)r(t)|z'(t)|^{\alpha-1}z'(t))'+\varphi(t)q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t))=0,t\geq t_{0}.\end{eqnarray}$

$R(t)=\varphi(t)r(t),Q(t)=\varphi(t)q(t)$ , 可得

$\begin{eqnarray}(R(t)|z'(t)|^{\alpha-1}z'(t))'+Q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t))=0,t\geq t_{0}.\end{eqnarray}$

下面分两种情况讨论方程 $(E)$ 的解的振动性, 即

$\begin{eqnarray}\int^{\infty}_{t_{0}}\Big(\frac{1}{R(t)}\Big)^{\frac{1}{\alpha}}{\rm d}t=\infty,\tag{$C_{1}$}\end{eqnarray}$
$\begin{eqnarray}\int^{\infty}_{t_{0}}\Big(\frac{1}{R(t)}\Big)^{\frac{1}{\alpha}}{\rm d}t<\infty.\tag{$C_{1}'$}\end{eqnarray}$
2 主要结果及证明

引理1 设 $x(t)$ 是方程 $(E)$ 的最终正解且条件 $(C_{1})$ 成立, 则 $z'(t)>0$ .

 因为 $x(t)$ 是方程 $(E)$ $[t_{0},\infty)$ 上的最终正解, 则存在 $t_{1}\geq t_{0},$ 使得当 $t\geq t_{1}$ 时有 $x(t)>0,x(\tau(t))>0,x(\sigma(t))>0 $ .由方程 $(E)$ $(H_{2}),$ 我们得到

$\begin{eqnarray}z(t)\geq x(t)>0,(\varphi(t)r(t)|z'(t)|^{\alpha-1}z'(t))'\leq0,t\geq t_{1}.\end{eqnarray}$ (2.1)

因此 $\varphi(t)r(t)|z'(t)|^{\alpha-1}z'(t)$ 是非增函数且 $z'(t)$ 最终保号, 于是 $z'(t)$ 仅有两种可能.我们断言 $z'(t)>0,t\geq t_{1}$ .否则, 假设 $z'(t)<0,t\geq t_{1},$ 由(2.1)式知, 存在常数 $h$ 使得

$\begin{eqnarray}-R(t)(-z'(t))^{\alpha}\leq-R(t_{1})(-z'(t_{1}))^{\alpha}=-h<0 ,t\geq t_{1},\end{eqnarray}$

$\begin{eqnarray}z'(t)\leq-h^{\frac{1}{\alpha}}(R(t))^{-\frac{1}{\alpha}},t\geq t_{1}.\end{eqnarray}$

$t_{1}$ $t$ 积分上式, 我们得到

$\begin{eqnarray}z(t)\leq z(t_{1})-h^{\frac{1}{\alpha}}\int^{t}_{t_{1}}R^{-\frac{1}{\alpha}}(s){\rm d}s,t\geq t_{1}.\end{eqnarray}$ (2.2)

上式中令 $t\rightarrow\infty$ , 由条件 $(C_{1})$ $z(t)\rightarrow-\infty$ .此式与(2.1)式矛盾, 故假设不成立.

引理2 设 $x(t)$ 是方程 $(E)$ 的最终正解且条件 $(C_{1})$ 成立, 令

$\begin{eqnarray}W(t)=\frac{R(t)(z'(t))^{\alpha}}{z^{\beta}(\sigma(t))},t\geq T, \end{eqnarray}$

则有不等式

$\begin{eqnarray}W'(t)+\overline{Q}(t)+\frac{\lambda m\sigma'(t)}{R^{\frac{1}{\lambda}}(t)}W^{\frac{\lambda+1}{\lambda}}(t)\leq0,t\geq T,\end{eqnarray}$ (2.3)

其中 $\lambda=\min\{\alpha,\beta\},0<m\leq1$ , $\overline{Q}(t)=Q(t)[1-g(\sigma(t))]^{\beta}$ .

 因为 $x(t)$ 是方程 $(E)$ $[t_{0},\infty)$ 上的最终正解, 则存在 $T\geq t_{0}$ 使得当 $t\geq T$ 时, 有 $x(t)>0,x(\tau(t))>0,x(\sigma(t))>0 $ .由引理1知 $z'(t)>0.$ 方程 $(E)$ 变为等价方程

$\begin{eqnarray}(R(t)(z'(t))^{\alpha})'+Q(t)x^{\beta}(\sigma(t))=0,t\geq T.\tag{$E_{0}$}\end{eqnarray}$

由于 $z(t)=x(t)+g(t)x(\tau(t))$ , 故由 $(E_{0})$ 可得

$\begin{eqnarray}(R(t)(z'(t))^{\alpha})'+Q(t)[z(\sigma(t)) -g(\sigma(t))x(\tau(\sigma(t)))]^{\beta}=0.\end{eqnarray}$

注意到(2.1)式, 上式变为

$\begin{eqnarray}(R(t)(z'(t))^{\alpha})'+\overline{Q}(t)z^{\beta}(\sigma(t))\leq0,t\geq T,\tag{$E'_{0}$}\end{eqnarray}$

其中 $\overline{Q}(t)=Q(t)[1-g(\sigma(t))]^{\beta}$ .由 $(E'_{0})$ $W(t)$ 的定义可知

$\begin{eqnarray}W'(t)\leq-\overline{Q}(t)-R(t)(z'(t))^{\alpha}\frac{\beta z'(\sigma(t))\sigma'(t)}{z^{\beta+1}(\sigma(t))},t\geq T.\end{eqnarray}$ (2.4)

$\alpha\leq\beta$ 时, 由方程 $(E_{0})$ , 我们得到 $R(t)(z'(t))^{\alpha}$ 为减函数, 即

$\begin{eqnarray}R(t)(z'(t))^{\alpha}\leq R(\sigma(t))(z'(\sigma(t)))^{\alpha},\end{eqnarray}$

也即

$\begin{eqnarray} z'(\sigma(t))\geq\Big(\frac{R(t)}{R(\sigma(t))}\Big) ^{\frac{1}{\alpha}}z'(t),t\geq T.\end{eqnarray}$

由上式和(2.4)式, 可得

$\begin{eqnarray*} W'(t)&\leq&-\overline{Q}(t)-\frac{\beta \sigma'(t)R(t)(z'(t))^{\alpha+1}} {z^{\beta+1}(\sigma(t))}\Big (\frac{R(t)}{R(\sigma(t))}\Big) ^{\frac{1}{\alpha}} \\ &\leq&-\overline{Q}(t)-\frac{\beta \sigma'(t)z^{\frac{\beta}{\alpha}-1} (\sigma(t))}{R^{\frac{1}{\alpha}}(\sigma(t))} W^{\frac{\alpha+1}{\alpha}}(t) , \end{eqnarray*}$

其中 $m_{\alpha}=\min\{z^{\frac{\beta-\alpha}{\alpha}}(\sigma(T)),1\}$ .又 $z^{\frac{\beta-\alpha}{\alpha}}(\sigma(t))\geq z^{\frac{\beta-\alpha}{\alpha}}(\sigma(T))\geq m_{\alpha}$ , 故有

$\begin{eqnarray} W'(t)\leq-\overline{Q}(t)-\frac{\alpha m_{\alpha}\sigma'(t)}{R^{\frac{1}{\alpha}}(\sigma(t))} W^{\frac{\alpha+1}{\alpha}}(t).\end{eqnarray}$ (2.5)

$\alpha>\beta$ 时, 由方程 $(E_{0}),$ 我们得到

$\begin{eqnarray}(R(t)(z'(t))^{\alpha})'=(\varphi(t)r(t)(z'(t))^{\alpha})'\leq0,\end{eqnarray}$

$\begin{eqnarray}\varphi'(t)r(t)(z'(t))^{\alpha}+\varphi(t)r'(t)(z'(t))^{\alpha}+\alpha\varphi(t)r(t)(z'(t))^{\alpha-1}z''(t)\leq0.\end{eqnarray}$

而由上式可得 $z''(t)\leq0$ .易得 $z'(t)\leq z'(\sigma(t))$ $(z'(t))^{1-\frac{\alpha}{\beta}}\geq (z'(T))^{1-\frac{\alpha}{\beta}}\geq m_{\beta}$ , 其中 $m_{\beta}=\min\{(z'(T))^{1-\frac{\alpha}{\beta}},1\}.$ 再由上式和(2.4)式, 可得

$\begin{eqnarray*} W'(t)&=&-\overline{Q}(t)-\frac{\beta \sigma'(t)R^{1+\frac{1}{\beta}}(t)(z'(t))^{\alpha+\frac{\alpha}{\beta}}z'(\sigma(t))}{R^{\frac{1}{\beta}}(t)(z'(t))^{\frac{\alpha}{\beta}}z^{\beta+1}(\sigma(t))} \\ & \leq&-\overline{Q}(t)-\frac{\beta \sigma'(t)(z'(t))^{1-\frac{\alpha}{\beta}}}{R^{\frac{1}{\beta}}(t)} W^{\frac{\beta+1}{\beta}}(t), \end{eqnarray*}$

$\begin{eqnarray} W'(t) \leq-\overline{Q}(t)-\frac{\beta \sigma'(t)m_{\beta}}{R^{\frac{1}{\beta}}(t)} W^{\frac{\beta+1}{\beta}}(t). \end{eqnarray}$ (2.6)

综上所述, 有

$\begin{eqnarray} W'(t) \leq-\overline{Q}(t)-\frac{\lambda m\sigma'(t)}{R^{\frac{1}{\lambda}}(t)} W^{\frac{\lambda+1}{\lambda}}(t) ,t\geq T,\end{eqnarray}$

其中 $ m=\min\{m_{\alpha},m_{\beta}\},\lambda=\min\{\alpha,\beta\}$ .证毕.

定理1 设 $(H_{1})$ -- $(H_{4})$ 和条件 $(C_{1})$ 成立, 存在 $\rho (t)\in C^{1}([t_{0},\infty),{\Bbb R}^{+})$ 使得条件

$\begin{eqnarray}\int^{\infty}_{t_{0}}\bigg[\rho(t)\overline{Q}(t)-\frac{R(t)(\rho'(t))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m\rho(t)\sigma'(t))^{\lambda}}\bigg]{\rm d}t=\infty \tag{$C_{2}$}\end{eqnarray}$

成立, 其中 $\lambda=\min\{\alpha,\beta\},0<m\leq1,\overline{Q}(t)=Q(t)[1-g(\sigma(t))]^{\beta}$ , 则方程 $(E)$ 振动.

 设 $x(t)$ 是方程 $(E)$ 的非振动解.不失一般性, 设 $x(t)$ $[t_{0},\infty)$ 上的最终正解( $x(t)<0$ 的情况类似的分析成立), 则由引理2, 有

$\begin{eqnarray} W'(t) +\overline{Q}(t)+\frac{\lambda m\sigma'(t)}{R^{\frac{1}{\lambda}}(t)} W^{\frac{\lambda+1}{\lambda}}(t)\leq0 ,t\geq T.\end{eqnarray}$ (2.7)

上式两边同时乘以 $\rho(t)$ 并从 $T$ $t$ 积分, 可得

$\begin{eqnarray} \int^{t}_{T} \rho(s)\overline{Q}(s){\rm d}s &\leq&- \int^{t}_{T}\rho(s)W'(t){\rm d}s - \int^{t}_{T}\rho(s)\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)} W^{\frac{\lambda+1}{\lambda}}(s){\rm d}s \\ &\leq&\rho(T)W(T)-\rho(t)W(t)\\ &&+ \int^{t}_{T}\bigg[\rho'(s)W(s)-\rho(s)\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)} W^{\frac{\lambda+1}{\lambda}}(s)\bigg]{\rm d}s ,t\geq T. \end{eqnarray}$

由不等式 $Bu-Au^{\frac{\lambda+1}{\lambda}}\leq\frac{\lambda^{\lambda}}{(\lambda+1)^{\lambda+1}}\frac{B^{\lambda+1}}{A^{\lambda}}$ 和(2.8)式, 可得

$\begin{eqnarray*} \int^{t}_{T} \rho(s)\overline{Q}(s){\rm d}s &\leq&\rho(T)W(T)+\int^{t}_{T}\frac{\lambda^{\lambda}}{(\lambda+1)^{\lambda+1}}(\rho'(s))^{\lambda+1}\frac{R(s)}{(\lambda m\sigma'(s)\rho(s))^{\lambda}}{\rm d}s \\ &\leq&\rho(T)W(T)+\int^{t}_{T}\frac{(\rho'(s))^{\lambda+1}R(s)}{(\lambda+1)^{\lambda+1}(m\sigma'(s)\rho(s))^{\lambda}}{\rm d}s, t\geq T, \end{eqnarray*}$

$\begin{eqnarray} \int^{\infty}_{t_{0}}\bigg[\rho(s)\overline{Q}(s)-\frac{(\rho'(s))^{\lambda+1}R(s)}{(\lambda+1)^{\lambda+1}(m\sigma'(s)\rho(s))^{\lambda}}\bigg]{\rm d}s<\infty. \end{eqnarray}$

上式与条件 $(C_{2})$ 矛盾, 故 $x(t)$ 是方程 $(E)$ 的振动解.证毕.

推论1 当 $p(t)=0$ 时, 方程 $(E)$ 可化为Emden-Fowler型微分方程

$\begin{eqnarray}(r(t)|z'(t)|^{\alpha-1}z'(t))'+q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t))=0,\end{eqnarray}$

此时, 方程的振动条件 $(C_{2})$ 变为

$\begin{eqnarray}\int^{\infty}_{t_{0}}\bigg[\rho(t)\widetilde{Q}(t)-\frac{r(t)(\rho'(t))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m\rho(t)\sigma'(t))^{\lambda}}\bigg]{\rm d}t=\infty ,\end{eqnarray}$

其中 $\lambda=\min\{\alpha,\beta\},0<m\leq1,\widetilde{Q}(t)=q(t)[1-g(\sigma(t))]^{\beta}$ .

注1 文献[4]中的定理2.1和定理3.1是我们定理1的特例.推论1也包含且统一了文献[4]中的定理2.1和定理3.1的结果.推论1推广并改进了文献[1]中定理2.1的结果.文献[1]中的定理2.1仅得到当 $\alpha\geq\beta>0$ 时方程的解振动或渐近趋向于零的结果, 而我们得到对任意 $\alpha>0,\beta>0$ 时方程的一切解振动的条件.

推论2 当 $\rho(t)=1$ 时, 方程的振动条件 $(C_{2})$ 变为

$\begin{eqnarray}\int^{\infty}_{t_{0}}\overline{Q}(t){\rm d}t=\infty ,\end{eqnarray}$

其中 $\overline{Q}(t)=Q(t)[1-g(\sigma(t))]^{\beta}$ .

注2 推论2推广了文献[2]中的定理A和文献[3]中的定理B.定理1推广、改进并统一了著名的Leighton振动准则和Grammatikopoulos振动准则.

定理2 设 $(H_{1})$ -- $(H_{4})$ 和条件 $(C_{1})$ 成立, 且

$\begin{eqnarray}\liminf\limits_{t\rightarrow\infty}\frac{1}{Q_{1}(t)}\int^{\infty}_{t}[Q_{1}(s)]^{\frac{\lambda+1}{\lambda}}\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}{\rm d}s>\frac{\lambda}{(\lambda+1)^{\frac{\lambda+1}{\lambda}}} ,\tag{$C_{3}$}\end{eqnarray}$

其中 $Q_{1}(t)=\int^{\infty}_{t}\overline{Q}(s){\rm d}s,\lambda=\min\{\alpha,\beta\},0<m\leq1$ , 则方程 $(E)$ 振动.

 设 $x(t)$ 是方程 $(E)$ 的非振动解.不失一般性, 设 $x(t)$ $[t_{0},\infty)$ 上的最终正解( $x(t)<0$ 的情况类似的分析成立).令

$\begin{eqnarray}W(t)=\frac{R(t)(z'(t))^{\alpha}}{z^{\beta}(\sigma(t))}, \end{eqnarray}$

则由引理2, 有

$\begin{eqnarray} W'(t) +\overline{Q}(t)+\frac{\lambda m\sigma'(t)}{R^{\frac{1}{\lambda}}(t)} W^{\frac{\lambda+1}{\lambda}}(t)\leq0 ,t\geq T. \end{eqnarray}$

$t$ $\infty$ 积分上式, 可得

$\begin{eqnarray} W(\infty)-W(t) +\int^{\infty}_{t}\overline{Q}(s){\rm d}s+\int^{\infty}_{t}\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)} W^{\frac{\lambda+1}{\lambda}}(s){\rm d}s \leq0,t\geq T.\end{eqnarray}$

由上式, 得

$\begin{eqnarray} W(t) \geq\int^{\infty}_{t}\overline{Q}(s){\rm d}s+\int^{\infty}_{t}\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)} W^{\frac{\lambda+1}{\lambda}}(s){\rm d}s ,t\geq T.\end{eqnarray}$ (2.9)

$Q_{1}(t)=\int^{\infty}_{t}\overline{Q}(s){\rm d}s$ , 则上式两边同时除以 $Q_{1}(t),$ 可得

$\begin{eqnarray}\frac{W(t)}{Q_{1}(t)} \geq1+\frac{1}{Q_{1}(t)}\int^{\infty}_{t} \frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}[Q_{1}(s)]^{\frac{\lambda+1} {\lambda}}\bigg [\frac{W(s)}{Q_{1}(s)}\bigg]^{\frac{\lambda+1}{\lambda}}{\rm d}s ,t\geq T.\end{eqnarray}$ (2.10)

$\begin{eqnarray}\inf\limits_{t\geq T}\frac{W(t)}{Q_{1}(t)}=\varphi, \delta=\frac{\lambda}{(\lambda+1)^{\frac{\lambda+1}{\lambda}}}.\end{eqnarray}$

由条件 $(C_{3}),$ 可得

$\begin{eqnarray}\liminf\limits_{t\rightarrow\infty}\frac{1}{Q_{1}(t)}\int^{\infty}_{t}[Q_{1}(s)]^{\frac{\lambda+1}{\lambda}}\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}{\rm d}s>\delta=\frac{\lambda}{(\lambda+1)^{\frac{\lambda+1}{\lambda}}},\end{eqnarray}$

则由(2.10)式, 得

$\begin{eqnarray}\varphi>1+\varphi^{\frac{\lambda+1}{\lambda}}\delta, \end{eqnarray}$

$\begin{eqnarray}\varphi-\varphi^{\frac{\lambda+1}{\lambda}}\delta>1.\end{eqnarray}$

又根据不等式

$\begin{eqnarray}Bu-Au^{\frac{\lambda+1}{\lambda}}\leq\frac{\lambda^{\lambda}}{(\lambda+1)^{\lambda+1}}\frac{B^{\lambda+1}}{A^{\lambda}},A>0,B\geq0, \end{eqnarray}$

可得

$\begin{eqnarray}\varphi-\varphi^{\frac{\lambda+1}{\lambda}}\delta\leq\frac{\lambda^{\lambda}}{(\lambda+1)^{\lambda+1}}\frac{1}{\delta^{\lambda}}=1, \end{eqnarray}$

这与 $\varphi-\varphi^{\frac{\lambda+1}{\lambda}}\delta>1$ 矛盾.假设不成立.证毕.

注3 文献[1]中的定理2和文献[4]中的定理3.2是我们定理2的特例.它们分别得到当 $\alpha\geq\beta>0$ $0<\alpha\leq\beta$ 时方程的解振动或渐近趋向于零的结果, 而我们得到对任意 $\alpha>0,\beta>0$ 时方程的一切解振动的条件.

定理3 设 $(H_{1})$ -- $(H_{4})$ 和条件 $(C'_{1})$ 成立, $\tau'(t)>0,g'(t)\geq0$ 且存在如同定理1中 $\rho (t)\in C^{1}([t_{0},\infty), {\Bbb R}^{+})$ 使得条件 $(C_{2})$ 成立, 还存在正数 $M$ 及函数 $\phi(t)\in C^{1}([t_{0},\infty),{\Bbb R}^{+})$ 满足 $\phi'(t)\geq0$ , 使得

$\begin{eqnarray}\int^{\infty}_{t_{0}} \bigg[\frac{1}{R(t)\phi(t)}\int^{t}_{t_{0}}\phi(s)Q(s){\rm d}s\bigg]^{\frac{1}{\alpha}}=\infty\tag{$C'_{2}$} \end{eqnarray}$

成立, 则方程 $(E)$ 振动或 $\lim\limits_{ t\rightarrow\infty}x(t)=0$ .

 设 $x(t)$ 是方程 $(E)$ 的非振动解.不失一般性, 设 $x(t)$ $[t_{0},\infty)$ 上的最终正解( $x(t)<0$ 的情况类似的分析成立), 则 $z(t)>0$ .由(2.1)式知, $z'(t)$ 最终保号且仅有两种可能.

情况1  $z'(t)>0$ .我们又回到定理1的情况.由定理1的证明得出矛盾知方程 $(E)$ $[t_{0},\infty)$ 上无最终正解.

情况2  $z'(t)<0$ .因为 $\tau'(t)>0,g'(t)\geq0,z'(t)=x'(t)+g'(t)x(\tau(t))+g(t)x'(\tau(t))\tau'(t)<0,$ 所以 $x'(t)<0$ .又 $z(t)>0, z'(t)<0,$ 故有 $\lim\limits_{ t\rightarrow\infty}z(t)=a\geq0.$ 我们可判断 $a=0.$ 否则 $\lim\limits_{ t\rightarrow\infty}x(t)=\frac{a}{1+c}>0,$ 即存在正数 $M$ 使得 $x^{\beta}(\sigma(t))>M$ .由上式, 可得

$\begin{eqnarray}(R(t)(-z'(t))^{\alpha})'=Q(t)x^{\beta}(\sigma(t))\geq M Q(t).\end{eqnarray}$

定义 $V(t)=\phi(t)R(t)(-z'(t))^{\alpha},$ 显然有 $V(t)\geq0,$

$\begin{eqnarray}V'(t)=\phi'(t)R(t)(-z'(t))^{\alpha}+\phi(t)(R(t)(-z'(t))^{\alpha})'\geq \phi(t)M Q(t).\end{eqnarray}$ (2.11)

$T$ $t$ 积分(2.11)式, 可得

$\begin{eqnarray}V(t)\geq V(T)+M \int^{t}_{T}\phi(s) Q(s){\rm d}s\geq M \int^{t}_{T}\phi(s) Q(s){\rm d}s, \end{eqnarray}$

$\begin{eqnarray}\phi(t)R(t)(-z'(t))^{\alpha}\geq M \int^{t}_{T}\phi(s) Q(s){\rm d}s. \end{eqnarray}$ (2.12)

由(2.12)式, 可得

$\begin{eqnarray}-z'(t)\geq M^{\frac{1}{\alpha}} \bigg(\frac{1}{\phi(t)R(t)}\int^{t}_{T}\phi(s) Q(s){\rm d}s\bigg)^{\frac{1}{\alpha}}. \end{eqnarray}$

$T$ $t$ 积分上式, 可得

$\begin{eqnarray}z(t)\leq z(T) -M^{\frac{1}{\alpha}}\int^{t}_{T} \bigg[\frac{1}{\phi(s)R(s)}\int^{s}_{T}\phi(\xi) Q(\xi){\rm d}\xi)\bigg]^{\frac{1}{\alpha}}{\rm d}s. \end{eqnarray}$

由上式可得条件 $(C'_{2})$ $z(t)>0$ 矛盾.故有 $\lim\limits_{ t\rightarrow\infty}z(t)=0$ $\lim\limits_{ t\rightarrow\infty}x(t)=0$ .证毕.

推论3 在定理3中取 $\rho(t)=1$ 时, 方程的振动条件 $(C_{2})$ 变为

$\begin{eqnarray}\int^{\infty}_{t_{0}}\overline{Q}(t){\rm d}t=\infty ,\end{eqnarray}$

其中 $\overline{Q}(t)=Q(t)[1-g(\sigma(t))]^{\beta}$ .取 $\phi(t)=1$ 时, 方程的振动条件 $(C'_{2})$ 变为

$\begin{eqnarray}\int^{\infty}_{t_{0}}\bigg[\frac{1}{R(t)}\int^{t}_{t_{0}}Q(s){\rm d}s\bigg]^{\frac{1}{\alpha}}=\infty. \end{eqnarray}$

注4 文献[1]中的定理3和文献[4]中的定理2.3是我们定理3的特例.但本文定理3中的 $\rho(t),\phi(t)$ 可以不取1.

参考文献
[1] Liu H D, Meng F W, Liu P C. Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl Math Comput, 2012, 219: 2739–2748.
[2] Leighton W. The detection of the oscillations of solutions of a second order linear differential equation. Duke Math J, 1950, 17: 57–62. DOI:10.1215/S0012-7094-50-01707-8
[3] Grammatikopoulos M K, Ladas G, Meimaridou A. Oscillations of second order neutral delay differential equations. Rad Math, 1985, 1: 267–274.
[4] 曾云辉, 罗李平, 俞元洪. 中立型Emden-Fowler时滞微分方程的振动性. 数学物理学报, 2015, 35A(4): 803–814.
Zeng Y H, Lou L P, Yu Y H. Oscillation for Emden-Fowler delay differential equations of neutral type. Mathematica Scientia, 2015, 35A(4): 803–814.
[5] Erbe L, Hassan T S, Peterson A. Oscillation of second-order neutral differential equations. Adv Dynam Syst Appl, 2008, 3(1): 53–71.
[6] Xu R, Meng F W. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl Math Comput, 2007, 192: 216–222.
[7] Bohner M, Saker S H. Oscillation of damped second order nonlinear delay differential equations of Emden-Fowler type. Adv Dynam Syst Appl, 2006, 1(2): 163–182.
[8] Takasi K, Yoshida N. Nonoscillation theorems for a class of quasiliear differential equations of second order. J Math Anal Appl, 1995, 189: 115–127. DOI:10.1006/jmaa.1995.1007
[9] Xu R, Meng F W. Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl Math Comput, 2006, 182: 797–803.
[10] Li T X, Han Z L, Zhang C H. On the oscillation of second-order Emden-Fowler neutral differential equations. J Appl Math Comput, 2011, 37: 601–610. DOI:10.1007/s12190-010-0453-0