数学物理学报  2017, Vol. 37 Issue (6): 1012-1028   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张利
楚秀娇
$F(p,q,s)$空间到$H^\infty_\mu$空间加权复合算子的差分
张利, 楚秀娇     
南阳师范学院数学与统计学院 河南南阳 473061
摘要:该文根据$F(p,q,s)$空间参数的具体数值, 研究了单位圆盘${\Bbb D}$上从$F(p,q,s)$空间到$H^\infty_\mu$空间加权复合算子差分的有界性与紧致性.
关键词差分    加权复合算子    $F(p,q,s)$空间;    $H^\infty_\mu$    
Difference of Weighted Composition Operators Form $F(p,q,s)$ Space to $H^\infty_\mu$ Space
Zhang Li, Chu Xiujiao     
College of Mathematics and Statistics, Nanyang Normal University, Henan Nanyang 473061
Abstract: In this paper, according to the value of parameters of $F(p,q,s)$, we study the boundedness and compactness of differences of two weighted composition operators from $F(p,q,s)$ to $H^\infty_\mu$ on the unit disk ${\Bbb D}$.
Key words: Differences     Weighted composition operators     $F\left( {p,q,s} \right)$ space     $H^\infty_\mu$ space    
1 背景介绍

${\Bbb D}$ 是复平面 ${\Bbb C}$ 的开单位圆盘, $H({\Bbb D})$ 表示 ${\Bbb D}$ 上全体解析函数构成的空间, $S({\Bbb D})$ 表示 ${\Bbb D}$ 上全体解析自映射构成的集合. ${\rm d}\upsilon$ 为定义在 ${\Bbb D}$ 上的Lebesegue测度, 且满足 $\upsilon({\Bbb D})=1$ .

称定义在区间 $[0,1)$ 上的正值连续函数 $\mu $ 为正规的, 如果存在三个常数 $a$ , $b$ ( $0 < a < b$ ), 和 $\delta \in (0,1)$ , 满足

(ⅰ)   $\frac{{ \mu\left( r \right)}}{{\left( {1 - r} \right)^a }}$ $[\delta ,1)$ 递减, 且 $\mathop {\lim }\limits_{r \to 1^ - } \frac{{\mu \left( r \right)}}{{\left( {1 - r} \right)^a }} = 0$ ;

(ⅱ)  $\frac{{\mu \left( r \right)}}{{\left( {1 - r} \right)^b }}$ $[\delta ,1)$ 递增, 且 $\mathop {\lim }\limits_{r \to 1^ - } \frac{{\mu \left( r \right)}}{{\left( {1 - r} \right)^b }}=\infty$ .

$\mu(z)=\mu(|z|)$ ${\mathbb D}$ 上是正规的, 加权的有界解析函数空间 $H^\infty_\mu$ 定义为

$\begin{eqnarray}H^\infty_\mu=\{f\in H({\mathbb D}):\|f\|_\mu=\sup\limits_{z\in{\mathbb D}}\mu(z)|f(z)|<\infty\}.\end{eqnarray}$

$0<\alpha<\infty,$ $\mu(z)=(1-|z|^2)^\alpha$ , $\alpha$ -Bloch型空间 ${\cal B}_\alpha$ 定义为

$\begin{eqnarray} {\cal B}_\alpha=\{f\in H({\mathbb D}):\|f\|_\alpha=|f(0)|+\sup\limits_{z\in {\Bbb D}} \mu(z) |f'(z)|<\infty\}.\end{eqnarray}$

对于点 $a\in {\Bbb D}$ , 定义 $g(z,a)= \ln|\alpha_a(z)|^{-1}$ ${\Bbb D}$ 上的格林函数, 其中 $\alpha_a$ ${\Bbb D}$ 的Möbius变换.

$0<p,s <\infty,-2<q<\infty$ , $F(p,q,s)$ 空间定义为

$\begin{eqnarray*}F(p,q,s)=\{f\in H({\mathbb D}):\|f\|_{F}^p=|f(0)|^p+ \sup\limits_{a\in{\Bbb D}}\int _{{\Bbb D}}| f'(z)|^p(1-|z|^2)^q g^{s}(z,a){\rm d}\upsilon(z)<\infty\}. \end{eqnarray*}$

当参数 $p,q,s$ 变化时, $F{(p,q,s)}$ 会生成许多经典的函数空间.例如当 $s>1$ 时, $F(p,q,s)={\cal B}_{\frac{q+2}{p}}$ ; $F(2,0,s)=Q_s$ ; $F(2,0,1)=BMOA$ ; Hardy空间 $H^2=F(2,1,0)$ .当 $q+s\leq -1$ , $F(p,q,s)$ 是常值函数空间[12].

$u\in H({\mathbb D}),\varphi\in S({\Bbb D})$ , 加权复合算子 $uC_\varphi$ 定义为

$\begin{eqnarray}(uC_\varphi f)(z)=u(z)f(\varphi(z)),\;\; f\in H({\Bbb D}),\; z\in {\Bbb D}.\end{eqnarray}$

关于加权复合算子的研究有兴趣的读者可参考文献[7-9, 11, 15].

根据文献[15]的主要结果, 可以得到

(ⅰ) 若 $(q+2)/p>1$ , 则 $uC_\varphi:F(p,q,s)\to H^\infty_\mu$ 是有界的等价于

$\begin{eqnarray}\sup\limits_{z\in{\mathbb D} }\frac{\mu(z)|u(z)|}{(1-|\varphi(z)|^2)^{(q+2)/p-1}}<\infty;\end{eqnarray}$

$uC_\varphi:F(p,q,s)\to H^\infty_\mu$ 是紧致的等价于 $u\in H^\infty_\mu$

$\begin{eqnarray}\lim\limits_{|\varphi(z)|\to 1}\frac{\mu(z)|u(z)|}{(1-|\varphi(z)|^2)^{(q+2)/p-1}}=0.\end{eqnarray}$

(ⅱ)若 $(q+2)/p=1$ , 则 $uC_\varphi:F(p,q,s)\to H^\infty_\mu$ 是有界的等价于

$\begin{eqnarray}\sup\limits_{z\in{\mathbb D} }{\mu(z)|u(z)|}\ln{\frac{e}{1-|\varphi(z)|^2}}<\infty;\end{eqnarray}$

$uC_\varphi:F(p,q,s)\to H^\infty_\mu$ 是紧致的等价于 $u\in H^\infty_\mu$

$\begin{eqnarray}\lim\limits_{|\varphi(z)|\to 1}{\mu(z)|u(z)|}\ln{\frac{e}{1-|\varphi(z)|^2}}=0.\end{eqnarray}$

(ⅲ)若 $(q+2)/p<1$ , 则下述三条等价

(a) $uC_\varphi:F(p,q,s)\to H^\infty_\mu$ 是有界的;

(b) $uC_\varphi:F(p,q,s)\to H^\infty_\mu$ 是紧致的;

(c) $u\in H^\infty_\mu$ .

本文中, 我们研究从 $F(p,q,s)$ $H^\infty_\mu$ 加权复合算子的差分.对于两个加权复合算子差分的研究已经有许多的结果, 可参考文献[2-4, 6].为了叙述方便, 我们做如下假设:设 $C$ 表示一个正常数, 其数值根据出现位置的不同而不同.假设 $0<p,s <\infty,-2<q<\infty$ , 且 $q+s>-1$ , 用 $\beta$ 表示常数 $\frac{q+2}{p}$ . $\mu(z)=\mu(|z|)$ ${\mathbb D}$ 上是正规的函数.

2 预备知识

本节中我们将给出部分符号含义以及证明过程中需要用到的引理.

对点 $a\in {\Bbb D}$ , 圆盘 ${\Bbb D}$ 的Möbius变换定义为

$\begin{eqnarray}\alpha _a (z) = \frac{{a - z}}{{1 - \overline a z}},\end{eqnarray}$

很容易验证 $\alpha_a(0)=a,\alpha_a(a)=0$ , $\alpha_a=\alpha_a^{-1}$ .

对于 ${\Bbb D}$ 中点 $z$ , $w$ , 定义它们之间的伪双曲距离为

$\begin{eqnarray}\rho (z,w) = \left| {\alpha _z (w)} \right| = \left| {\frac{{z - w}}{{1 - \overline z w}}} \right|,\end{eqnarray}$

Bergman距离为

$\begin{eqnarray}\beta \left( {z,w} \right) = \mathop {\inf }\limits_\gamma \int\limits_\gamma {\frac{{\left| {{\rm d}\xi } \right|}}{{1 - \left| \xi \right|^2 }}} = \frac{1}{2}\ln \frac{{1 + \rho (z,w)}}{{1 - \rho (z,w)}},\end{eqnarray}$

其中 $\gamma$ ${\Bbb D}$ 中任意从 $z$ $w$ 的逐段光滑曲线.

经过简单计算, 可得

$\begin{eqnarray}1 - \rho^2 (z,w)=\frac{(1 - |z|^2)(1-|w|^2)}{\left|1 - \overline z w\right|^2}.\end{eqnarray}$

对于 $\varphi \in S({\Bbb D})$ , 由Schwarz-Pick引理可得 $\rho \left( {\varphi(z),\varphi(w)}\right) \le \rho(z,w)$ , 并且若对于某些 $z \ne w$ , 等号成立, 则 $\varphi$ 是圆盘的解析自同构.

最后, 我们给出部分引理.

下面的引理是验证算子紧致性的一个准则, 其证明可以根据文献[1, 命题3.11]的证明过程稍作修改得到.

引理2.1 假设 $u,v\in H({\mathbb D})$ , $\varphi,\psi \in S({\Bbb D})$ , 则算子 $uC_\varphi - vC_\psi: F(p,q,s) \to H^\infty_\mu$ 是紧致的等价于 $ uC_\varphi - vC_\psi : F(p,q,s) \to H^\infty_\mu$ 是有界的, 且对于任意在 ${\Bbb D}$ 上内闭一致收敛到0的有界函数列 $\{f_k\}_{k\in {\Bbb N}}\subset F(p,q,s)$ , 当 $k\rightarrow \infty$ 时, 有 $\| {\left( { uC_\varphi - vC_\psi } \right)f_k } \|_\mu \to 0.$

引理2.2[10, 引理2.3] 若 $f\in F(p,q,s),$ $f \in {\cal B}_{(2+q)/p},$ 并且 $\|f\|_{{\cal B}_{(2+q)/p}}\leq C\|f\|_{F}$ .

引理2.3[8, p192] 若 $f\in {\cal B}_\alpha$ , 则存在正常数 $C$ 满足

$\begin{eqnarray} \left| {f(z)} \right| \le C\left\{ {\begin{array}{lll} {\left\| f \right\|_\alpha },& {} & {\alpha \in (0,1),} \\[2mm] \displaystyle {\left\| f \right\|_\alpha \ln \frac{e}{{1 - \left| z \right|^2 }}},& {} & {\alpha = 1,} \\[3mm] \displaystyle {\frac{{\left\| f \right\|_\alpha }}{{(1 - \left| z \right|^2 )^{\alpha - 1} }}},& {} & {\alpha > 1.} \\\end{array}} \right. \end{eqnarray}$

引理2.4 假设 $\beta>1$ .若 $f\in F(p,q,s)$ , 则存在与 $f$ 无关的常数 $C$ 满足对任意 $z,w\in {\mathbb D}$ ,

$\begin{eqnarray}|(1-|z|^2)^{\beta-1} f(z)-(1-|w|^2)^{\beta-1} f(w)|\leq C \|f\|_{F}\rho(z,w).\end{eqnarray}$

 任意的 $f\in F(p,q,s)$ , 由引理2.2和引理2.3可得 $f\in H^\infty_\mu$ , 其中 $\mu(z)=(1-|z|^2)^{\beta-1}$ 是正规的函数, 根据文献[4, 引理1]便得到此引理.

引理2.5[14, 定理3.9] 对任意 ${\mathbb D}$ 中两点 $z$ $w$ , 有 $\beta(z,w)=\sup\{|f(z)-f(w)|:\|f\|_{{\cal B}}\leq 1\},$ 其中 ${\cal B}$ 是经典的Bloch空间.

引理2.6[2, 引理3.4] 存在常数 $M>0$ 满足对任意 $a,b\in {\mathbb D}$ , 有

$\begin{eqnarray}\left|\frac{\ln{\frac{e}{1-\bar{a}b}}}{\ln{\frac{e}{1-|a|^2}}}\right|\leq M.\end{eqnarray}$

引理2.7[13, 引理2.5] 存在常数 $C>0$ 满足对任意 $w \in {\Bbb D}$ , 有

$\begin{eqnarray*} \sup\limits_{a\in {\Bbb D}}\int_{{\Bbb D}}\frac{(1-|w|^2)^p}{|1- \overline{w}z|^{2+q+p}} (1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z)\leq C. \end{eqnarray*}$

引理2.8 设 $0<s\leq 1,\beta=1$ , $x$ 是一个满足 $\max\{1,1/p\}<x<1/(1-s)$ 的常数(当 $s=1$ , 只需使 $x>\max\{1,1/p\}$ ), 对每一个 $w\in{\mathbb D}$ 以及 $i=1,2$ , 令

$\begin{eqnarray}f_{i}(z)=\frac{\left(\ln{\frac{e}{1-\bar{w}z}}\right)^{i+2/{px}}}{\left(\ln{\frac{e}{1-|w|^2}}\right)^{i-1+2/{px}}},\end{eqnarray}$

则存在一个与 $w$ 无关的常数 $C>0$ 满足

$\begin{eqnarray*} \sup\limits_{a\in {\Bbb D}}\int_{{\Bbb D}}|f'_{i}(z)|^p (1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z)\leq C, i=1,2.\end{eqnarray*}$

 当 $i=1$ 时, 根据文献[5, 定理5.1]的证明, 可以找到一个与 $w$ 无关的常数 $C$ 满足

$\begin{eqnarray*} \sup\limits_{a\in {\Bbb D}}\int_{{\Bbb D}}|f'_1(z)|^p(1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z)\leq C. \end{eqnarray*}$

因为证明过程是类似的, 这里不再赘述.

$i=2$ 时, 根据引理2.6, 可得

$\begin{eqnarray*} & &\sup\limits_{a\in {\Bbb D}}\int_{{\Bbb D}}|f'_2(z)|^p(1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z)\\ &\leq& M^p \sup\limits_{a\in{\Bbb D}}\int_{{\Bbb D}}|f'_1(z)|^p(1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z)\\ &\leq& C. \end{eqnarray*}$

证毕.

引理2.9 设 $0<s\leq 1,\beta=1$ , $w,u \in {\Bbb D}$ , 令

$\begin{eqnarray}f_{w,u}(z)=\frac{1-|w|^2}{1-\overline{w}z}\alpha_{u}(z),\end{eqnarray}$

则存在与 $w$ $u$ 无关的常数 $C>0$ 满足

$\begin{eqnarray*} \sup\limits_{a\in {\Bbb D}}\int_{{\mathbb D}}|f'_{w,u}(z)|^p (1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z) \leq C. \end{eqnarray*}$

 

$\begin{eqnarray*} |f'_{w,u}(z)|&=&\left|\frac{\bar{w}(1-|w|^2)}{(1-\bar{w}z)^2}\alpha_u(z)-\frac{(1-|w|^2)(1-|u|^2)}{(1-\bar{w}z)(1-\bar{u}z)^2}\right|\\ &\leq&C \frac{|\bar{w}|(1-|w|^2)}{|1-\bar{w}z|^2}+\frac{(1-|w|^2)(1-|u|^2)}{|1-\bar{w}z||1-\bar{u}z|^2}\\ &\leq&C\left( \frac{1-|w|^2}{|1-\bar{w}z|^2}+\frac{1-|u|^2}{|1-\bar{u}z|^2}\right), \end{eqnarray*}$

最后一个不等式成立是因为 $|1-\bar{a}b|\geq 1-|ab|\geq 1-|a|$ .

由于对任意的 $x>0$ , 有 $(1+x)^p< 2^p (1+x^p)$ , 则

$\begin{eqnarray*} & &\sup\limits_{a\in {\Bbb D}}\int_{{\mathbb D}}|f'_{w,u}(z)|^p(1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z)\\ &\leq& C \sup\limits_{a\in {\Bbb D}}\int_{{\mathbb D}}\left[\left(\frac{1-|w|^2}{|1-\bar{w}z|^2}\right)^p +\left(\frac{1-|u|^2}{|1-\bar{u}z|^2}\right)^p\right](1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z). \end{eqnarray*}$

因此根据引理2.7, 存在与 $w$ $u$ 无关的常数 $C>0$ 满足

$\begin{eqnarray*} \sup\limits_{a\in {\Bbb D}}\int_{{\mathbb D}}|f'_{w,u}(z)|^p(1-|z|^2)^q g^s(z,a){\rm d}\upsilon(z)\leq C. \end{eqnarray*}$

证毕.

3 情形一: $\beta>1$

在本节中, 我们将研究 $\beta>1$ 情形下, 从 $F(p,q,s)$ $H^\infty_\mu$ 加权复合算子差分 $uC_\varphi - vC_\psi$ 的有界性与紧致性.

定理3.1 假设 $\varphi,\psi \in S({\Bbb D})$ , 则 $ uC_\varphi - vC_\psi :F\left( {p,q,s} \right) \to H^\infty_\mu $ 是有界的等价于(3.1), (3.2)和(3.3)式成立, 其中

$\begin{eqnarray}\sup\limits_{ z \in {\Bbb D} }\frac{ \mu(z)|u(z)|}{ \left( {1 - \left| {\varphi \left( z \right)} \right|^2 } \right)^{\beta-1}} \rho(\varphi(z),\psi(z))<\infty,\label{2} \end{eqnarray}$ (3.1)
$\begin{eqnarray}\sup\limits_{ z \in {\Bbb D} }\frac{ \mu(z)|v(z)|}{ \left( {1 - \left| {\psi \left( z \right)} \right|^2 } \right)^{\beta-1}} \rho(\varphi(z),\psi(z))<\infty,\label{3} \end{eqnarray}$ (3.2)
$\begin{eqnarray}\sup\limits_{z \in {\Bbb D}}\left|\frac{\mu(z)u(z)} {(1-|\varphi (z)|^2)^{\beta-1 }}- \frac{ \mu(z)v(z)}{{(1-|\psi (z)|^2)^{\beta-1}}} \right|<\infty.\label{4}\end{eqnarray}$ (3.3)

 必要性. 假设 $ uC_\varphi - vC_\psi$ 是有界的, 则对任意的 $f\in F(p,q,s)$ , 存在正常数 $M$ 满足 $\|(uC_\varphi-vC_\psi)f\|_\mu\leq M\|f\|_F$ .对任意固定的一点 $w\in {\Bbb D},$ 定义两个函数

$\begin{eqnarray}f_w(z)=\frac{1-|\varphi(w)|^2}{(1-\overline {\varphi(w)}z)^{\beta}},   h_w(z)=\frac{1-|\varphi(w)|^2}{(1-\overline {\varphi(w)}z)^{\beta}}\alpha_{\varphi(w)}(z),\end{eqnarray}$

则其导数分别为

$\begin{eqnarray}|f'_w(z)|\\ =\left|\frac{\beta\overline{\varphi(w)}(1-|\varphi(w)|^2)}{(1-\overline{\varphi(w)}z)^{\beta+1}}\right|,\end{eqnarray}$
$\begin{eqnarray*}|h'_w(z)|&=&\left|\frac{\beta\overline{\varphi(w)}(1-|\varphi(w)|^2)\alpha_{\varphi(w)}(z)}{(1-\overline{\varphi(w)}z)^{\beta+1}} -\frac{(1-|\varphi(w)|^2)^2}{(1-\overline{\varphi(w)}z)^{\beta+2}}\right|\\ &\leq& C\frac{1-|\varphi(w)|^2}{|1-\overline{\varphi(w)}z|^{\beta+1}}. \end{eqnarray*}$

根据引理2.7, 显然 $f_w$ $h_w$ 属于 $F( p,q,s)$ , 并且存在与 $w$ 无关的正常数 $C$ 使得 $\|f_w\|_{F}< C,$ $\|h_w\|_{F}< C$ .因此有

$\begin{eqnarray} MC&>&\|(uC_\varphi-vC_\psi)f_w\|_\mu\nonumber\\ &\geq&\sup\limits_{z\in {\mathbb D}}\mu(z)|u(z)f_w(\varphi(z))-v(z)f_w(\psi(z))|\nonumber\\ &\geq&\mu(w)|u(w)f_w(\varphi(w))-v(w)f_w(\psi(w))|\nonumber\\ &=&\mu(w)\left|\frac{u(w)}{(1-|\varphi(w)|^2)^{\beta-1}}-\frac{v(w)(1-|\varphi(w)|^2)}{(1-\overline{\varphi(w)}\psi(w))^{\beta}}\right|,\label{5} \end{eqnarray}$ (3.4)

以及

$\begin{eqnarray}MC&>&\|(uC_\varphi-vC_\psi)h_w\|_\mu\nonumber\\ &\geq&\sup\limits_{z\in {\mathbb D}}\mu(z)|u(z)h_w(\varphi(z))-v(z)h_w(\psi(z))|\nonumber\\ &\geq&\mu(w)|u(w)h_w(\varphi(w))-v(w)h_w(\psi(w))|\nonumber\\ &=&{\mu(w)}\left|\frac{v(w)(1-|\varphi(w)|^2)}{(1-\overline{\varphi(w)}\psi(w))^{\beta}}\right|\rho(\varphi(w),\psi(w)).\label{6} \end{eqnarray}$ (3.5)

由于 $0\leq \rho(\varphi(w),\psi(w))\leq 1$ , 根据(3.4)和(3.5)式, 可得

$\begin{eqnarray}\frac{\mu(w)|u(w)|\rho(\varphi(w),\psi(w))}{(1-|\varphi(w)|^2)^{\beta-1}}<C.\end{eqnarray}$

由于 $w$ ${\Bbb D}$ 中任意的点, 不等式(3.1)成立.同理可证(3.2)式成立.

下面证明(3.3)式成立.对于给定的点 $w\in {\Bbb D}$ , 考虑函数

$\begin{eqnarray*} Q_w(z)=\frac{1-|\psi(w)|^2}{(1-\overline{\psi(w)}z)^\beta}, \end{eqnarray*}$

由引理2.7得, $Q_w\in F(p,q,s)$ $\|Q_w\|_{F}< C$ , $C$ 是与 $w$ 无关的常数, 则

$\begin{eqnarray} MC &>& \left\| {\left( {uC_\varphi - vC_\psi } \right) Q_w } \right\|_{\mu }\nonumber \\ &\ge& \mu (w) \left| { {\left( {u C_\varphi - v C_\psi } \right)Q_w}\left( w \right)} \right| \nonumber \\ &=& \mu (w) |u(w)Q_w(\varphi(w)) -v(w)Q_w(\psi(w))| \nonumber \\ &=& \left| \frac{{\mu(w)u(w) \left( {1 - \left| {\psi \left( w \right)} \right|^2 } \right) }}{ \left( {1 - \overline{\psi(w)}\varphi(w) } \right)^{ \beta }} - \frac{\mu (w)v(w) }{ \left( {1 - \left| {\psi \left( w \right)} \right|^2 } \right)^{\beta-1}} \right| \nonumber \\ &=&\left| {I\left( w \right) + J\left( w \right)} \right|\nonumber\\ &\geq&\left| {I\left( w \right)}\right| -\left|{ J\left( w \right)} \right|,\label{8} \end{eqnarray}$ (3.6)

其中

$\begin{eqnarray} I(w) =\frac{ \mu( w )u(w)}{{ ( {1 - \left| {\varphi ( w )} \right|^2 } )^{\beta-1} }}- \frac{ \mu(w)v(w)}{{ ( {1 - \left| {\psi \left( w \right)} \right|^2 } )^{\beta-1} }}, \end{eqnarray}$
$\begin{eqnarray*} J(w)&=&\frac{\mu(w)u(w)(1-|\psi(w)|^2)}{(1-\overline{\psi(w)} \varphi(w))^{\beta}}-\frac{\mu(w)u(w)}{(1-|\varphi(w)|^2)^{\beta-1}}\\ &=&\frac{\mu(w)u(w)}{(1-|\varphi(w)|^2)^{\beta-1}}[(1-|\varphi(w)|^2)^{\beta-1} Q_w(\varphi(w))-(1-|\psi(w)|^2)^{\beta-1} Q_w(\psi(w))]. \end{eqnarray*}$

根据引理2.4, 有

$\begin{eqnarray*} |J(w)|&\leq&C\frac{\mu(w)|u(w)|}{(1-|\varphi(w)|^2)^\beta}\rho(\varphi(w),\psi(w))\|Q_w\|_{F}\\ &<&C\frac{\mu(w)|u(w)|}{(1-|\varphi(w)|^2)^\beta}\rho(\varphi(w),\psi(w)). \end{eqnarray*}$

因此对于任意 $w\in {\Bbb D}$ , 根据不等式(3.1), 可以推出 $|J(w)|<C$ .再根据不等式(3.6), 有 $|I(w)|< C$ .

$w$ 的任意性可知(3.3)式成立.

充分性.假设(3.1), (3.2)和(3.3)式成立.对任意函数 $ f \in F(p,q,s)$ , 有

$\begin{eqnarray*}\|(uC_\varphi-vC_\psi)f\|_\mu =\sup\limits_{z\in {\mathbb D}}\mu (z)|u(z)f(\varphi(z))-v(z)f(\psi(z))|. \end{eqnarray*}$

根据引理2.4, 可得

$\begin{eqnarray*}&&\sup\limits_{z\in {\mathbb D}}\mu (z)|u(z)f(\varphi(z))-v(z)f(\psi(z))|\\ &\leq&\sup\limits_{z\in{\mathbb D}}\frac{\mu(z)|u(z)|}{(1-|\varphi(z)|^2)^{\beta-1}}|(1-|\varphi(z)|^2)^{\beta-1} f(\varphi(z))-(1-|\psi(z)|^2)^{\beta-1} f(\psi(z))|\\ &&+\sup\limits_{z\in{\mathbb D}}\left|\frac{\mu(z)u(z)}{(1-|\varphi(z)|^2)^{\beta-1}}-\frac{\mu(z)v(z)}{(1-|\psi(z)|^2)^{\beta-1}}\right|(1-|\psi(z)|^2)^{\beta-1} |f(\psi(z))|\\ &\leq&C\left[\sup\limits_{z\in{\mathbb D}}\frac{\mu(z)|u(z)|\rho(\varphi(z),\psi(z))}{(1-|\varphi(z)|^2)^{\beta-1}} +\sup\limits_{z\in{\mathbb D}}\left|\frac{\mu(z)u(z)}{(1-|\varphi(z)|^2)^{\beta-1}}-\frac{\mu(z)v(z)}{(1-|\psi(z)|^2)^{\beta-1}}\right|\right]\|f\|_F\\ &\le& C\left\| f \right\|_{F}. \end{eqnarray*}$

因此 $uC_\varphi - vC_\psi: F( p,q,s) \to H^\infty_\mu$ 是有界的.

从定理证明可以得出, 只要(3.1)和(3.3)式成立, 或者(3.2)和(3.3)式成立, $uC_\varphi-vC_\psi$ 就是有界的.接下来研究 $uC_\varphi-vC_\psi$ 的紧致性.

定理3.2 假设 $\varphi,\psi \in S({\Bbb D})$ , $u,v\in H^\infty_\mu$ , 则 $u C_\varphi -v C_\psi :F\left( {p,q,s} \right) \to H^\infty_\mu$ 是紧致的等价于 $u C_\varphi -v C_\psi$ 是有界的, 并且不等式(3.7), (3.8), (3.9)成立, 其中

$\begin{eqnarray}\lim\limits_{ |\varphi(z)|\to 1}\frac{ \mu(z)|u(z)|}{ ( {1 - \left| {\varphi \left( z \right)} \right|^2 } )^{\beta-1}} \rho(\varphi(z),\psi(z))=0,\label{9} \end{eqnarray}$ (3.7)
$\begin{eqnarray}\lim\limits_{|\psi(z)|\to 1}\frac{ \mu(z)|v(z)|}{ ( {1 - \left| {\psi \left( z \right)} \right|^2 } )^{\beta-1} } \rho(\varphi(z),\psi(z))=0,\label{10}\end{eqnarray}$ (3.8)
$\begin{eqnarray}\lim\limits_{\min\{|\varphi(z)|,|\psi(z)|\}\to 1}\left|\frac{\mu(z)u(z)} {(1-|\varphi (z)|^2)^{\beta -1}}- \frac{ \mu(z)v(z)}{{(1-|\psi (z)|^2)^{\beta-1}}} \right|=0.\label{11}\end{eqnarray}$ (3.9)

  必要性. 假设 $uC_\varphi-vC_\psi$ 是紧致的, 则 $uC_\varphi-vC_\psi$ 一定是有界的.对任意满足 $|\varphi(w_n)|\to 1 (n\to \infty)$ 的点列 $\{w_n\}_{n=1}^\infty$ (若这样的点列不存在, 则(3.7)式自然成立).取

$\begin{eqnarray}f_n(z)=\frac{1-|\varphi(w_n)|^2}{(1-\overline{\varphi(w_n)}z)^{\beta}}.\end{eqnarray}$

根据引理2.7, 可以证明 $\|f_n\|_{F}\leq C$ , 且函数列 $\{f_n\}_{n=1}^{\infty}$ ${\mathbb D}$ 上内闭一致收敛到0, 则由引理2.1得 $\|(uC_\varphi-vC_\psi)f_n\|_{\mu}\to 0$ as $n\to \infty$ .因此

$\begin{eqnarray} 0&=&\lim\limits_{n\to \infty}\sup\limits_{z\in {\mathbb D}}\mu(z)|u(z)f_n(\varphi(z))-v(z)f_n(\psi(z))| \nonumber\\ &\geq&\lim\limits_{n\to \infty}\mu(w_n)|u(w_n)f'_n(\varphi(w_n))-v(w_n)f_n(\psi(w_n))| \nonumber\\ &=&\lim\limits_{n\to \infty}\mu(w_n)\left|\frac{u(w_n)}{(1-|\varphi(w_n)|^2)^{\beta-1}}-\frac{v(w_n)(1-|\varphi(w_n)|^2)}{(1-\overline{\varphi(w_n)}\psi(w_n))^{\beta}}\right|.\label{19} \end{eqnarray}$ (3.10)

$0\leq \rho(\varphi(w_n),\psi(w_n))\leq 1$ , 有

$\begin{eqnarray} \lim\limits_{n\to \infty}\mu(w_n)\rho(\varphi(w_n),\psi(w_n))\left|\frac{u(w_n)}{(1-|\varphi(w_n)|^2)^{\beta-1}}-\frac{v(w_n)(1-|\varphi(w_n)|^2)}{(1-\overline{\varphi(w_n)}\psi(w_n))^{\beta}}\right|=0.\label{12} \end{eqnarray}$ (3.11)

同理, 对于函数列 $\{g_n\}_{n=1}^\infty$ , 有

$\begin{eqnarray}g_n(z)= \frac{1-|\varphi(w_n)|^2}{(1-\overline {\varphi(w_n)}z)^{\beta}}\alpha_{\varphi(w_n)}(z),\end{eqnarray}$

可以推出

$\begin{eqnarray} \lim\limits_{n\to \infty}\frac{\mu(w_n)|v(w_n)|(1-|\varphi(w_n)|^2)}{|1-\overline{\varphi(w_n)}\psi(w_n)|^{\beta}}\rho(\varphi(w_n),\psi(w_n))=0.\label{13} \end{eqnarray}$ (3.12)

根据(3.11)和(3.12)式, 可证(3.7)式成立.同理可证(3.8)式成立.

下面证明(3.9)式成立, 设 $\{w_n\}_{n=1}^\infty$ 是满足当 $n\to \infty$ 时, $|\varphi(w_n)|$ $|\psi(w_n)|$ 都趋于1的点列.令

$\begin{eqnarray}Q_n(z)=\frac{1-|\psi(w_n)|^2}{(1-\overline{\psi(w_n)}z)^{\beta}}, \end{eqnarray}$

$\{Q_n\}_{n=1}^\infty$ $F(p,q,s)$ 中的有界函数列, 且在 ${\mathbb D}$ 上内闭一致收敛到0.因此

$\begin{eqnarray*} 0&=&\lim\limits_{n\to \infty}\|(uC_\varphi-vC_\psi)Q_n\|_\mu\nonumber\\ &\geq&\lim\limits_{n\to\infty}\left|\frac{\mu(w_n)u(w_n)(1-|\psi(w_n)|^2)}{(1-\overline{\psi(w_n)}\varphi(w_n))^{\beta}}-\frac{\mu(w_n)v(w_n)}{(1-|\psi(w_n)|^2)^{\beta-1}}\right|\nonumber\\ &\geq&\lim\limits_{n\to\infty}\left|\left|\frac{\mu(w_n)u(w_n)}{(1-|\varphi(w_n)|^2)^{\beta-1}}-\frac{\mu(w_n)v(w_n)}{(1-|\psi(w_n)|^2)^{\beta-1}}\right|\right.\\ & & \left.-\left|\frac{\mu(w_n)u(w_n)}{(1-|\varphi(w_n)|^2)^{\beta-1}}[(1-|\varphi(w_n)|^2)^{\beta-1} Q_w(\varphi(w_n))-(1-|\psi(w_n)|^2)^{\beta-1} Q_w(\psi(w_n))]\right|\right|\\ &\geq&\lim\limits_{n\to\infty}\left|\left|\frac{\mu(w_n)u(w_n)}{(1-|\varphi(w_n)|^2)^{\beta-1}}-\frac{\mu(w_n)v(w_n)}{(1-|\psi(w_n)|^2)^{\beta-1}}\right| -C\frac{\mu(w_n)u(w_n)\rho(\varphi(w_n),\psi(w_n))}{(1-|\varphi(w_n)|^2)^{\beta-1}}\right|, \end{eqnarray*}$

由(3.7)式可得(3.9)式.

充分性.假设(3.7), (3.8)和(3.9)式成立.设 $\{f_n\}_{n=1}^\infty$ $F(p,q,s)$ 中的函数列, 且满足 $\|f\|_{F}\leq 1$ , $f_n$ ${\mathbb D}$ 上内闭一致收敛到0, 我们需要证明 $\|(uC_\varphi-vC_\psi)f_n\|_\mu\to 0$ .假设它不成立, 且不失一般性, 我们设存在 $\varepsilon>0$ , 使得对每个 $n$ , $\|(uC_\varphi-vC_\psi)f_n\|>\varepsilon$ , 因此对每个 $n(n=1,2,\cdots)$ , 存在 $z_n\in {\mathbb D}$ 满足

$\begin{eqnarray} \left|{ \mu(z_n)u(z_n)} f_n(\varphi(z_n))-{ \mu(z_n)v(z_n)} f_n(\psi(z_n))\right|>\varepsilon. \end{eqnarray}$

由于 $u$ $v$ 属于 $H^\infty_\mu$ , $f_n$ ${\mathbb D}$ 上内闭一致收敛到0, 可得 $|\varphi(z_n)|$ 或者 $|\psi(z_n)|$ 趋于1.下证 $|\varphi(z_n)|$ $|\psi(z_n)|$ 都趋于1, 如若不然, 不妨设 $|\varphi(z_n)|\to 1$ $|\psi(z_n)|\not\rightarrow 1$ , 则存在子列 $\{z_{n_k}\}$ 满足 $|\psi(z_{n_k})|<1$ , 因此 $\liminf\limits_{k\to \infty}\rho(\varphi(z_{n_k}),\psi(z_{n_k}))> 0$ .根据(3.7)式, 有

$\begin{eqnarray}\frac{ \mu(z_{n_k})|u(z_{n_k})|}{( {1-| {\varphi(z_{n_k})}|^2})^{\beta-1}}\to 0  (k\to\infty).\end{eqnarray}$

另一方面, 若 $|\psi(z_{n_k})|<1$ , 则 $|f_{n_k}(\psi(z_{n_k}))|\to 0$ $(k\to\infty)$ , 因此

$\begin{eqnarray*} &&\left|{ \mu(z_{n_k})u(z_{n_k})} f_{n_k}(\varphi(z_{n_k}))-{ \mu(z_{n_k})v(z_{n_k})} f_{n_k}(\psi(z_{n_k}))\right|\\ &\leq& \left|\frac{\mu(z_{n_k})|u(z_{n_k})|}{(1-|\varphi(z_{n_k})|^2)^{\beta-1}}(1-|\varphi(z_{n_k})|^2)^{\beta-1} f_{n_k}(\varphi(z_{n_k}))\right|+|{\mu(z_{n_k})v(z_{n_k})} f_{n_k}(\psi(z_{n_k}))|\\ &\leq& C\frac{\mu(z_{n_k})|u(z_{n_k})|}{(1-|\varphi(z_{n_k})|^2)^{\beta-1}}\|f_{n_k}\|_F+|{\mu(z_{n_k})v(z_{n_k})} f_{n_k}(\psi(z_{n_k}))|\\ &\to& 0  (k\to\infty), \end{eqnarray*}$

这与(3.13)式矛盾.所以 $|\psi(z_n)|\to 1$ $(n\to\infty)$ , 则点列 $\{z_n\}$ 满足 $|\varphi(z_n)|\to 1$ , $|\psi(z_n)|\to 1$ $(n\to\infty)$ .从而有

$\begin{eqnarray*} &&\left|{ \mu(z_n)u(z_n)} f_{n_k}(\varphi(z_n))-{ \mu(z_n)v(z_n)} f_{n_k}(\psi(z_n))\right|\\ &\leq& \frac{\mu(z_n)|u(z_n)|\rho(\varphi(z_n),\psi(z_n))}{(1-|\varphi(z_n)|^2)^{\beta-1}}+\left|\frac{\mu(z_n)u(z_n)}{(1-|\varphi(z_n)|^2)^{\beta-1}}-\frac{\mu(z_n)v(z_n)}{(1-|\psi(z_n)|^2)^{\beta-1}}\right|\\ &\to& 0  (n\to\infty). \end{eqnarray*}$

而这又与(3.13)式矛盾, 所以 $\|(uC_\varphi-vC_\psi)f_n\|_\mu\to 0$ , 定理得证.

4 情形二: $\beta=1$

$\beta=1$ , 且 $s>1$ 时, $F(p,q,s)$ 就是经典的Bloch空间 ${\cal B}$ , 而 $0<s\leq 1$ 时, $F(p,q,s)$ ${\cal B}$ 的真子集.我们给出如下定理, 其证明依赖于 $s$ 的取值.

定理4.1 假设 $\varphi,\psi \in S({\Bbb D})$ , 则 $ uC_\varphi - vC_\psi :F\left( {p,q,s} \right) \to H^\infty_\mu $ 是有界的等价于(4.1)与(4.2) (或(4.3)与(4.4))式成立, 其中

$\begin{eqnarray}\sup\limits_{ z \in {\Bbb D} }\mu(z)|u(z)-v(z)|\ln{\frac{e}{1-|\varphi(z)|^2}}<\infty,\label{20} \end{eqnarray}$ (4.1)
$\begin{eqnarray}\sup\limits_{z \in {\Bbb D}}\mu(z)|v(z)|\beta(\varphi(z),\psi(z))<\infty.\label{21}\end{eqnarray}$ (4.2)
$\begin{eqnarray} \sup\limits_{ z \in {\Bbb D} }\mu(z)|u(z)-v(z)|\ln{\frac{e}{1-|\psi(z)|^2}}<\infty,\label{22} \end{eqnarray}$ (4.3)
$\begin{eqnarray}\sup\limits_{z \in {\Bbb D}}\mu(z)|u(z)|\beta(\varphi(z),\psi(z))<\infty.\label{23}\end{eqnarray}$ (4.4)

  必要性. 假设 $uC_\varphi-vC_\psi$ 是有界的, 则存在正数 $M$ , 使得对任意的 $f\in F(p,q,s)$ , 有 $\|(uC_\varphi-vC_\psi)f\|_\mu\leq M\|f\|_F$ .

对于固定的点 $w\in {\Bbb D},$ $f_w(z)=\ln{\frac{e}{1-|\varphi(w)|^2}}$ , $f_w$ 是常值函数, 因此属于 $F(p,q,s)$ .且

$\begin{eqnarray*} C&\geq& \|(uC_\varphi-vC_\psi)f_w\|_\mu\\ &=&\sup\limits_{z\in{\mathbb D}}\mu(z)|u(z)-v(z)|f_w(z)\\ &\geq& \mu(w)|u(w)-v(w)|\ln{\frac{e}{1-|\varphi(w)|^2}}, \end{eqnarray*}$

$w\in{\mathbb D}$ 的任意性可得(4.1)式.

下面根据 $s$ 的取值证明(4.2)式成立.

$s>1$ 时.由于 $F(p,q,s)={\cal B}$ , 则对任意满足 $\|f\|_{{\cal B}}\leq 1$ 的函数 $f$ 以及点 $w\in{\mathbb D}$ , 存在常数 $C$ , 使得

$\begin{eqnarray*} C&\geq&\|(uC_\varphi-vC_\psi)f\|_{\mu}\\ &\geq&\sup\limits_{z\in{\mathbb D}}\mu(z)|u(z)f(\varphi(z))-v(z)f(\psi(z))|\nonumber\\ &\geq&\mu(w)|v(w)||f(\varphi(w))-f(\psi(w))|-\mu(w)|u(w)-v(w)||f(\varphi(w))|, \end{eqnarray*}$

$\begin{eqnarray}\mu(w)|v(w)||f(\varphi(w))-f(\psi(w))|\leq C+\mu(w)|u(w)-v(w)|\ln{\frac{e}{1-|\varphi(w)|^2}},\end{eqnarray}$

根据引理2.5, 对所有满足 $\|f\|_{{\cal B}}\leq 1$ $f$ 取上确界, 可得

$\begin{eqnarray}\mu(w)|v(w)|\beta(\varphi(w),\psi(w))\leq C+\mu(w)|u(w)-v(w)|\ln{\frac{e}{1-|\varphi(w)|^2}},\end{eqnarray}$

再对 $w\in{\mathbb D}$ 取上确界, 由(4.1)式可以得到(4.2)式成立.

$0<s\leq 1$ 时, 有

$\begin{eqnarray} & & \mu(z)|v(z)|\beta(\varphi(z),\psi(z))\nonumber\\ &=&\frac{1}{2}\mu(z)|v(z)|\ln{\frac{1+\rho(\varphi(z),\psi(z))}{1-\rho(\varphi(z),\psi(z))}}\nonumber\\ &=&\frac{1}{2}\mu(z)|v(z)|\ln{\frac{(1+\rho(\varphi(z),\psi(z)))^2}{1-\rho^2(\varphi(z),\psi(z))}}\nonumber\\ &=&\frac{1}{2}\mu(z)|v(z)|\left[\ln{(1+\rho(\varphi(z),\psi(z)))^2}+\ln{\frac{1}{1-\rho^2(\varphi(z),\psi(z))}}\right]\nonumber\\ &\leq&\frac{1}{2}\mu(z)|v(z)|\left[2\ln{(1+\rho(\varphi(z),\psi(z)))}+\left|\ln{\frac{1-\overline{\varphi(z)}\psi(z)}{1-|\varphi(z)|^2}}\right|+\left|\ln{\frac{1-\overline{\psi(z)}\varphi(z)}{1-|\psi(z)|^2}}\right|\right]\nonumber\\ &\leq&\mu(z)|v(z)|\left[C\rho(\varphi(z),\psi(z))+ \frac{1}{2}\left|\ln{\frac{1-\overline{\varphi(z)}\psi(z)}{1-|\varphi(z)|^2}}\right|+\frac{1}{2}\left|\ln{\frac{1-\overline{\psi(z)}\varphi(z)}{1-|\psi(z)|^2}}\right|\right].\label{32} \end{eqnarray}$ (4.5)

固定点 $w\in{\mathbb D}$ , 令 $g_w(z)=\frac{1-|\psi(w)|^2}{1-\overline{\psi(w)}z} \alpha_{\varphi(w)}(z)$ , 则由引理知 $g_w\in F(p,q,s)$ , 因此

$\begin{eqnarray*} \infty&>&\sup\limits_{z\in{\mathbb D}}\mu(z)|u(z)g_w(\varphi(z))-v(z)g_w(\psi(z))|\\ &\geq&\mu(w)|v(w)|\rho(\varphi(w),\psi(w)). \end{eqnarray*}$

$\begin{eqnarray}h_w(z)=\frac{(\ln{\frac{e}{1-\overline{\varphi(w)}z}})^{1+\frac{2}{px}}}{(\ln{\frac{e}{1-|\varphi(w)|^2}})^{\frac{2}{px}}},  l_w(z)=\frac{(\ln{\frac{e}{1-\overline{\varphi(w)}z}})^{2+\frac{2}{px}}}{(\ln{\frac{e}{1-|\varphi(w)|^2}})^{1+\frac{2}{px}}},\end{eqnarray}$

根据引理2.8, 可得 $h_w,l_w\in F(p,q,s)$ , 则

$\begin{eqnarray} \infty&>&\|(uC_\varphi-vC_\psi)h_w\|_\mu\nonumber\\ &\geq&\mu(w)\left|u(w)\ln{\frac{e}{1-|\varphi(w)|^2}}-v(w)\frac{(\ln{\frac{e}{1-\overline{\varphi(w)}\psi(w)}})^{1+\frac{2}{px}}}{(\ln{\frac{e}{1-|\varphi(w)|^2}})^{\frac{2}{px}}}\right|,\label{30} \end{eqnarray}$ (4.6)
$\begin{eqnarray} \infty&>&\|(uC_\varphi-vC_\psi)l_w\|_\mu\nonumber\\ &\geq&\mu(w)\left|u(w)\ln{\frac{e}{1-|\varphi(w)|^2}}-v(w)\frac{(\ln{\frac{e}{1-\overline{\varphi(w)}\psi(w)}})^{2+\frac{2}{px}}}{(\ln{\frac{e}{1-|\varphi(w)|^2}})^{1+\frac{2}{px}}}\right|. \label{31} \end{eqnarray}$ (4.7)

(4.6)式乘以 $\frac{\ln{\frac{e}{1-\overline{\varphi(w)}\psi(w)}}}{\ln{\frac{e}{1-|\varphi(w)|^2}}}$ , 再结合(4.7)式, 可得

$\begin{eqnarray}\mu(w)|u(w)|\left|\ln{\frac{e}{1-|\varphi(w)|^2}}-\ln{\frac{e}{1-\overline{\varphi(w)}\psi(w)}}\right|\\ =\mu(w)|u(w)|\left|\ln{\frac{1-\overline{\varphi(w)}\psi(w)}{1-|\varphi(w)|^2}}\right|<\infty.\end{eqnarray}$

$h_w$ $l_w$ 定义中, 将 $\varphi(w)$ 改为 $\psi(w)$ , 可推出

$\begin{eqnarray}\mu(w)|v(w)|\left|\ln{\frac{1-\overline{\psi(w)}\varphi(w)}{1-|\psi(w)|^2}}\right|<\infty.\end{eqnarray}$

根据(4.1)式和引理2.6, 有

$\begin{eqnarray*} & &\mu(w)|u(w)-v(w)|\left|\ln{\frac{1-\overline{\varphi(w)}\psi(w)}{1-|\varphi(w)|^2}}\right|\\ &=&\mu(w)|u(w)-v(w)|\ln{\frac{e}{1-|\varphi(w)|^2}}\left|1-\frac{\ln{\frac{e}{1-\overline{\varphi(w)}\psi(w)}}}{\ln{\frac{e}{1-|\varphi(w)|^2}}}\right|\\ &<&\infty, \end{eqnarray*}$

因此

$\begin{eqnarray*} & &\mu(w)|v(w)|\left|\ln{\frac{1-\overline{\varphi(w)}\psi(w)}{1-|\varphi(w)|^2}}\right|\\ &\leq&\mu(w)[|u(w)-v(w)|+|u(w)|]\left|\ln{\frac{1-\overline{\varphi(w)}\psi(w)}{1-|\varphi(w)|^2}}\right|\\ &<&\infty. \end{eqnarray*}$

再由(4.5)式可得到 $0<s\leq 1$ 情形下(4.2)式成立.

充分性.假设(4.1)和(4.2)式成立.对任意的 $f\in F(p,q,s)$ , 有

$\begin{eqnarray*} & &\|(uC_\varphi-vC_\psi)f(z)\|_\mu\\ &=&\sup\limits_{z\in{\mathbb D}}\mu(z)|u(z)f(\varphi(z))-v(z)f(\psi(z))|\\ &\leq&\sup\limits_{z\in{\mathbb D}}\mu(z)|u(z)-v(z)||f(\varphi(z))|+\sup\limits_{z\in{\mathbb D}}\mu(z)|v(z)||f(\varphi(z))-f(\psi(z))|\\ &\leq&\sup\limits_{z\in{\mathbb D}}\mu(z)|u(z)-v(z)|\ln{\frac{e}{1-|\varphi(z)|^2}}\|f\|_F+\sup\limits_{z\in{\mathbb D}}\mu(z)|v(z)|\beta(\varphi(z),\psi(z))\|f\|_F. \end{eqnarray*}$

因此 $uC_\varphi-vC_\psi$ 是有界的.

同理可证, (4.3)和(4.4)式成立等价于 $uC_\varphi-vC_\psi$ 是有界的.

现在, 我们研究 $uC_\varphi-vC_\psi$ 的紧致性, 首先介绍几个特殊集合的定义.

对于 $\varphi\in S({\mathbb D})$ , 令 $\Gamma(\varphi)$ 是所有满足 $|\varphi(z_k)|\to 1$ 的点列 $\{z_k\}$ 构成的集合, $\Gamma_{u,\varphi}$ $\Gamma(\varphi)$ 的子集, 且其元素满足 $\lim\limits_{k\to\infty}|\mu(z_k)u(z_k)|\ln{\frac{e}{1-|\varphi(z_k)|^2}}$ 存在但不为0或者发散到无穷.应用这些集合, 可得到如下定理.

定理4.2 设 $\varphi\in S({\Bbb D})$ , $u\in H^\infty_\mu$ , 则 $uC_\varphi$ 是紧致的等价于 $\Gamma_{u,\varphi}=\emptyset$ .

 如果 $u\in H^\infty_\mu$ , 且 $uC_\varphi$ 是紧致的, 则 $\lim\limits_{|\varphi(z)|\to 1}{\mu(z)|u(z)|}\ln{\frac{e}{1-|\varphi(z)|^2}}=0,$ 显然 $\Gamma_{u,\varphi}=\emptyset$ .

如果 $\Gamma_{u,\varphi}=\emptyset$ , 假设 $uC_\varphi$ 不是紧致的, 由于 $u\in H^\infty_\mu$ , 则存在点列 $\{z_k\}\in \Gamma_\varphi$ 满足 ${\mu(z_k)|u(z_k)|}\ln{\frac{e}{1-|\varphi(z_k)|^2}}\not\rightarrow 0$ .若对每个 $k$ , ${\mu(z_k)|u(z_k)|}\ln{\frac{e}{1-|\varphi(z_k)|^2}}<\infty$ , 则存在子列 $\{z_{k_m}\}$ 满足 $\lim\limits_{m\to\infty}|\mu(z_{k_m})u(z_{k_m})|\ln{\frac{e}{1-|\varphi(z_{k_m})|^2}}$ 存在但不为0, 则 $\{z_{k_m}\}\in \Gamma_{u,\varphi}$ , 这与 $\Gamma_{u,\varphi}=\emptyset$ 矛盾, 因此 ${\mu(z_k)|u(z_k)|}\ln{\frac{e}{1-|\varphi(z_k)|^2}}$ 是无界的, 则存在子列 $\{z_{k_i}\}$ 满足 $|\mu(z_{k_i})u(z_{k_i})|\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}$ 发散到无穷, 则 $\{z_{k_i}\}\in \Gamma_{u,\varphi}$ , 这也与 $\Gamma_{u,\varphi}=\emptyset$ 矛盾, 因此 $uC_\varphi$ 是紧致的.

定理4.3 设 $\varphi,\psi \in S({\Bbb D})$ , $u,v\in H^\infty_\mu$ , 则 $ uC_\varphi - vC_\psi :F\left( {p,q,s} \right) \to H^\infty_\mu $ 是紧致的等价于 $ uC_\varphi - vC_\psi$ 是有界的, 且下面两条成立

(ⅰ) $\Gamma_{u,\varphi}=\Gamma_{v,\psi}$ .

(ⅱ)对任意点列 $\{z_k\}\in \Gamma_{u,\varphi}$ , 有 $\lim\limits_{k\to\infty}\mu(z_k)|u(z_k)-v(z_k)|\ln{\frac{e}{1-|\varphi(z_k)|^2}}=0,$

$\begin{eqnarray}\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\beta(\varphi(z_k),\psi(z_k))=0.\end{eqnarray}$

 必要性. 假设 $uC_\varphi-vC_\psi$ 是紧致的, 则 $uC_\varphi-vC_\psi$ 有界, 因此只需证明条件(ⅰ)和(ⅱ)成立.

$s>1$ 时.若 $\Gamma_{u,\varphi}=\emptyset$ , 则 $uC_\varphi$ 是紧致的, 则 $vC_\psi=uC_\varphi-(uC_\varphi-vC_\psi)$ 也是紧致的, 所以 $\Gamma_{v,\psi}=\emptyset$ , 因此得到(ⅰ)成立.条件(ⅱ)自然成立.

$\Gamma_{u,\varphi}\neq\emptyset$ , 对于点列 $\{z_k\}\in \Gamma_{u,\varphi}$ , 令

$\begin{eqnarray}f_k(z)=\left(\ln\frac{e}{1-|\varphi(z_k)|^2}\right)^{-1}\left(\ln\frac{e}{1- \overline{\varphi(z_k)}z}\right)^{2},\end{eqnarray}$

对任意的 $k$ , 显然存在常数 $C>0$ 满足 $\|f_{k}\|_{{\cal B}}\leq C$ , 因此 $\{f_k\}$ $F(p,q,s)$ 中的有界函数列.并且 $f_{k}$ ${\mathbb D}$ 上内闭一致收敛到0, 由引理2.1可得 $\lim\limits_{k\to\infty}\|(uC_\varphi-vC_\psi)f_k\|_\mu=0$ .从而

$\begin{eqnarray} 0&=&\lim\limits_{k\to\infty}\sup\limits_{z\in{\mathbb D}}\mu(z)\left|u(z)\frac{(\ln\frac{e}{1- \overline{\varphi(z_k)}\varphi(z)})^{2}}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}-v(z)\frac{(\ln\frac{e}{1- \overline{\varphi(z_k)}\psi(z)})^{2}}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|\nonumber\\ &\geq&\lim\limits_{k\to\infty}\mu(z_k)\left|u(z_k)\ln\frac{e}{1-|\varphi(z_k)|^2}-v(z_k)\frac{(\ln\frac{e}{1- \overline{\varphi(z_k)}\psi(z_k)})^{2}}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|.\label{24} \end{eqnarray}$ (4.8)

$\begin{eqnarray}g_k(z)=\left(\ln\frac{e}{1-|\varphi(z_k)|^2}\right)^{-2}\left(\ln\frac{e}{1- \overline{\varphi(z_k)}z}\right)^{3},\end{eqnarray}$

$\{g_k\}$ 也是 $F(p,q,s)$ 的有界函数列, 且 $\{g_k\}$ 也在 ${\mathbb D}$ 上内闭一致收敛到0, 则

$\begin{eqnarray} 0&=&\lim\limits_{k\to\infty}\|(uC_\varphi-vC_\psi)g_k\|_\mu\nonumber\\ &=&\lim\limits_{k\to\infty}\sup\limits_{z\in{\mathbb D}}\mu(z)\left|u(z)\frac{(\ln\frac{e}{1- \overline{\varphi(z_k)}\varphi(z)})^{3}}{(\ln{\frac{e}{1-|\varphi(z_k)|^2}})^2}-v(z)\frac{(\ln\frac{e}{1- \overline{\varphi(z_k)}\psi(z)})^{3}}{(\ln{\frac{e}{1-|\varphi(z_k)|^2}})^2}\right|\nonumber\\ &\geq&\lim\limits_{k\to\infty}\mu(z_k)\left|u(z_k)\ln\frac{e}{1-|\varphi(z_k)|^2}-v(z_k)\frac{(\ln\frac{e}{1- \overline{\varphi(z_k)}\psi(z_k)})^{3}}{(\ln{\frac{e}{1-|\varphi(z_k)|^2}})^2}\right|.\label{25} \end{eqnarray}$ (4.9)

(4.8)式两端乘以 $(\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}})/(\ln{\frac{e}{1-|\varphi(z_k)|^2}})$ , 再结合(4.9)式, 可得

$\begin{eqnarray} \lim\limits_{k\to\infty}\mu(z_k)|u(z_k)|\ln{\frac{e}{1-|\varphi(z_k)|^2}} \left|1-\frac{\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}}}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|=0.\label{26} \end{eqnarray}$ (4.10)

因为 $\{z_k\}\in \Gamma_{u,\varphi}$ , 可得

$\begin{eqnarray}\lim\limits_{k\to\infty}\left|1-\frac{\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}}}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|=0.\label{27}\end{eqnarray}$ (4.11)

因此 $\lim\limits_{k\to\infty}|\psi(z_k)|=1$ , $\{z_k\}\in \Gamma_\psi$ , 根据(4.8)和(4.9)式, 有

$\begin{eqnarray} \lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}})^2}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|\left|1-\frac{\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}}}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|=0.\label{29} \end{eqnarray}$ (4.12)

现在, 证明极限 $\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\ln{\frac{e}{1-|\psi(z_k)|^2}}$ 是非0数值或是发散到无穷.

若上述两条均不成立, 则存在 $\{z_k\}$ 的两个子列 $\{z_{k_j}\}$ $\{z_{k_i}\}$ 以及两个常数 $a,b(a\neq b)$ 满足

$\begin{eqnarray}\lim\limits_{i\to\infty}\mu(z_{k_i})|v(z_{k_i})|\ln{\frac{e}{1-|\psi(z_{k_i})|^2}}=a,   \lim\limits_{j\to\infty}\mu(z_{k_j})|v(z_{k_j})|\ln{\frac{e}{1-|\psi(z_{k_j})|^2}}=b,\end{eqnarray}$

这里, $a,b$ 可以是 $+\infty$ .

因为 $\{z_{k_i}\}$ $\{z_k\}$ 的子列, 由(4.8)和(4.11)式可得

$\begin{eqnarray}\lim\limits_{i\to\infty}\mu(z_{k_i})|v(z_{k_i})|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}})^2}{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}}\right|= \lim\limits_{k\to\infty}\mu(z_{k})|v(z_{k})|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_{k})}\psi(z_{k})}})^2}{\ln{\frac{e}{1-|\varphi(z_{k})|^2}}}\right|=c>0,\end{eqnarray}$
$\begin{eqnarray}\lim\limits_{i\to\infty}\frac{|\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}}|}{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}} =\lim\limits_{k\to\infty}\frac{|\ln{\frac{e}{1-\overline{\varphi(z_{k})}\psi(z_{k})}}|}{\ln{\frac{e}{1-|\varphi(z_{k})|^2}}}=1,\end{eqnarray}$

这里 $c$ 也可以是 $+\infty$ .根据引理2.6有

$\begin{eqnarray*} & &\mu(z_{k_i})|v(z_{k_i})|\ln{\frac{e}{1-|\psi(z_{k_i})|^2}}\\ &=&\mu(z_{k_i})|v(z_{k_i})|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}})^2}{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}}\right| \cdot\left|\frac{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}}{\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}}}\right|\cdot\left|\frac{\ln{\frac{e}{1-|\psi(z_{k_i})|^2}}}{\ln{\frac{e}{1-\overline{\psi(z_{k_i})}\varphi(z_{k_i})}}}\right|\\ &\geq&C\mu(z_{k_i})|v(z_{k_i})|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}})^2}{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}}\right|, \end{eqnarray*}$

因此 $a>0$ .

同理可得 $b>0$ .这意味着 $\{z_{k_i}\}\in \Gamma_{v,\psi}$ , $\{z_{k_j}\}\in \Gamma_{v,\psi}$ .当 $a=+\infty$ (或者 $b=+\infty$ )时, 显然有 $\{z_{k_i}\}\in \Gamma_{v,\psi}$ (或者 $\{z_{k_j}\}\in \Gamma_{v,\psi}$ ).

对于点列 $\{z_{k_i}\}\in \Gamma_{v,\psi}$ , 构造两类不同的函数

$\begin{eqnarray}h_{i,l}=\left(\ln\frac{e}{1-|\psi(z_{k_i})|^2}\right)^{-l}\left(\ln\frac{e}{1-\overline{\psi(z_{k_i})} z }\right)^{l+1},\;\; l=1,2.\end{eqnarray}$

类似于(4.11)式的讨论, 可得

$\begin{eqnarray}\lim\limits_{i\to\infty}\frac{\left|\ln{\frac{e}{1-\overline{\psi(z_{k_i})}\varphi(z_{k_i})}}\right|}{\ln{\frac{e}{1-|\psi(z_{k_i})|^2}}}=1.\end{eqnarray}$

因此

$\begin{eqnarray*} a&=&\lim\limits_{i\to\infty}\mu(z_{k_i})|v(z_{k_i})|\ln{\frac{e}{1-|\psi(z_{k_i})|^2}}\\ &=&\lim\limits_{i\to\infty}\mu(z_{k_i})|v(z_{k_i})|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}})^2}{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}}\right| \cdot\left|\frac{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}}{\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}}}\right|\cdot\left|\frac{\ln{\frac{e}{1-|\psi(z_{k_i})|^2}}}{\ln{\frac{e}{1-\overline{\psi(z_{k_i})}\varphi(z_{k_i})}}}\right|\\ &=&\lim\limits_{i\to\infty}\mu(z_{k_i})|v(z_{k_i})|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_{k_i})}\psi(z_{k_i})}})^2}{\ln{\frac{e}{1-|\varphi(z_{k_i})|^2}}}\right|\\ &=&c. \end{eqnarray*}$

而对于点列 $\{z_{k_j}\}$ , 用相同的方法可得 $b=c$ , 从而 $a=b$ .这与假设 $a\neq b$ 矛盾, 因此 $\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\ln{\frac{e}{1-|\psi(z_k)|^2}}$ 是非零数或者无穷, 则 $\{z_k\}\in\Gamma_{v,\psi}$ .

因为 $\{z_k\}\in\Gamma_{u,\varphi}$ 是任意的, 可得 $\Gamma_{u,\varphi}\subset\Gamma_{v,\psi}$ .

同理可证 $\Gamma_{v,\psi}\subset\Gamma_{u,\varphi}$ , 条件(ⅰ)成立.

接下来证明(ⅱ)成立, 设 $\{z_k\}\in \Gamma_{u,\varphi}$ , 由(4.8), (4.11)和(4.12)式得

$\begin{eqnarray*} & &\lim\limits_{k\to\infty}\mu(z_k)|u(z_k)-v(z_k)|\ln{\frac{e}{1-|\varphi(z_k)|^2}}\\ &\leq&\lim\limits_{k\to\infty}\mu(z_k)\left|u(z_k)\ln{\frac{e}{1-|\varphi(z_k)|^2}}-v(z_k)\frac{(\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}})^2}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|\\ &&+\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\left|\frac{(\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}})^2}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|\left|\left(\frac{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}{\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}}}\right)^2-1\right|\\ &=&0. \end{eqnarray*}$

下面估计 $\mu(z_k)|v(z_k)|\beta(\varphi(z_k),\psi(z_k))$ .根据(4.10)式有

$\begin{eqnarray}\lim\limits_{k\to\infty}\mu(z_k)|u(z_k)|\left|\ln{\frac{1-\overline{\varphi(z_k)}\psi(z_k)}{1-|\varphi(z_k)|^2}}\right|=0,\end{eqnarray}$

类似的有

$\begin{eqnarray}\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\left|\ln{\frac{1-\overline{\psi(z_k)}\varphi(z_k)}{1-|\psi(z_k)|^2}}\right|=0.\end{eqnarray}$

并且

$\begin{eqnarray*} & &\lim\limits_{k\to\infty}\mu(z_k)|u(z_k)-v(z_k)|\left|\ln{\frac{1-\overline{\varphi(z_k)}\psi(z_k)}{1-|\varphi(z_k)|^2}}\right|\\ &=&\lim\limits_{k\to\infty}\mu(z_k)|u(z_k)-v(z_k)|\ln{\frac{e}{1-|\varphi(z_k)|^2}}\left|1-\frac{\ln{\frac{e}{1-\overline{\varphi(z_k)}\psi(z_k)}}}{\ln{\frac{e}{1-|\varphi(z_k)|^2}}}\right|\\ &=&0, \end{eqnarray*}$

因此

$\begin{eqnarray*} & &\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\left|\ln{\frac{1-\overline{\varphi(z_k)}\psi(z_k)}{1-|\varphi(z_k)|^2}}\right|\\ &\leq&\lim\limits_{k\to\infty}\mu(z_k)[|u(z_k)-v(z_k)|+|u(z_k)|]\left|\ln{\frac{1-\overline{\varphi(z_k)}\psi(z_k)}{1-|\varphi(z_k)|^2}}\right|\\ &=&0. \end{eqnarray*}$
$\begin{eqnarray*} & &\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\ln{\frac{|1-\overline{\varphi(z_k)}\psi(z_k)|^2}{(1-|\varphi(z_k)|^2)(1-|\psi(z_k)|^2)}}\\ &\leq&\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\left|\ln{\frac{1-\overline{\varphi(z_k)}\psi(z_k)}{1-|\varphi(z_k)|^2}}+\ln{\frac{1-\overline{\psi(z_k)}\varphi(z_k)}{1-|\psi(z)|^2}}\right|\\ &=&0. \end{eqnarray*}$

$\begin{eqnarray}l_k(z)=\frac{1-|\psi(z_k)|^2}{1-\overline{\psi(z_k)}z}\alpha_{\varphi(z_k)}(z),\end{eqnarray}$

$l_k\in {\cal B}=F(p,q,s)$ , 且 $l_k$ ${\mathbb D}$ 上内闭一致收敛到0, 因此

$\begin{eqnarray*} 0&=&\lim\limits_{k\to\infty}\|(uC_\varphi-vC_\psi)l_k\|_{\mu} \geq\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)\alpha_{\varphi(z_k)}(\psi(z_k))|\\ &=&\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)\rho(\varphi(z_k),\psi(z_k))|. \end{eqnarray*}$

从而

$\begin{eqnarray*} & &\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)\beta(\varphi(z_k),\psi(z_k))|\\ &=&\lim\limits_{k\to\infty}\frac{1}{2}\mu(z_k)|v(z_k)|\left|\ln{\frac{1+\rho(\varphi(z_k),\psi(z_k))}{1-\rho(\varphi(z_k),\psi(z_k))}}\right|\\ &=&\lim\limits_{k\to\infty}\frac{1}{2}\mu(z_k)|v(z_k)|\left|\ln{\frac{[1+\rho(\varphi(z_k),\psi(z_k))]^2}{1-\rho^2(\varphi(z_k),\psi(z_k))}}\right|\\ &\leq&\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\ln[{1+\rho(\varphi(z_k),\psi(z_k))}]+\lim\limits_{k\to\infty}\frac{1}{2}\mu(z_k)|v(z_k)|\ln{\frac{1}{1-\rho^2(\varphi(z_k),\psi(z_k))}}\\ &\leq&C\lim\limits_{k\to\infty}\mu(z_k)|v(z_k)|\rho(\varphi(z_k),\psi(z_k))+\lim\limits_{k\to\infty}\frac{1}{2}\mu(z_k)|v(z_k)|\ln{\frac{|1-\overline{\varphi(z_k)}\psi(z_k)|^2}{(1-|\varphi(z_k)|^2)(1-|\psi(z_k)|^2)}}\\ &=&0. \end{eqnarray*}$

$0<s\leq 1$ 时.当 $\Gamma_{u,\varphi}=\emptyset$ , 用与情形 $s>1$ 相同的方法, 可得 $vC_\psi$ 是紧致的, 故有 $\Gamma_{v,\psi}=\emptyset$ .

$\Gamma_{u,\varphi}\neq\emptyset$ , 设

$\begin{eqnarray}f_{k,i}(z)=\frac{(\ln{\frac{e}{1-\overline{\varphi(z_k)}z}})^{i+\frac{2}{px}}}{(\ln{\frac{e}{1-|\varphi(z_k)|^2}})^{(i-1)+\frac{2}{px}}}, i=1,2\end{eqnarray}$
$\begin{eqnarray}g_{k,i}(z)=\frac{(\ln{\frac{e}{1-\overline{\psi(z_k)}z}})^{i+\frac{2}{px}}}{(\ln{\frac{e}{1-|\psi(z_k)|^2}})^{(i-1)+\frac{2}{px}}}, i=1,2\end{eqnarray}$
$\begin{eqnarray}l_{k}(z)=\frac{1-|\psi(z_k)|^2}{1-\overline{\psi(z_k)}z}\alpha_{\varphi(z_k)}(z).\end{eqnarray}$

它们均属于 $F(p,q,s)$ , 且都在 ${\mathbb D}$ 上内闭一致收敛到0, 类似于情形 $s>$ 的证明过程, 可得条件(ⅰ)和(ⅱ)成立.

充分性.假设 $uC_\varphi-vC_\psi$ 是有界的, 且条件(ⅰ)和(ⅱ)成立, 证明 $uC_\varphi-vC_\psi$ 是紧致的.

假设 $uC_\varphi-vC_\psi$ 是非紧致的, 则存在常数 $\varepsilon>0$ 以及有界函数列 $\{f_n\}$ , 且 $\{f_n\}$ ${\mathbb D}$ 上内闭一致收敛到0, 满足 $\|(uC_\varphi-vC_\psi)f_n\|_\mu>\varepsilon$ .选取 $z_n\in{\mathbb D}$ 使得对任意的 $n$ , 有

$\begin{eqnarray} \mu(z_n)|u(z_n)f_n(\varphi(z_n))-v(z_n)f_n(\psi(z_n))|>\varepsilon.\label{28} \end{eqnarray}$ (4.13)

首先证明当 $n\to \infty$ 时, $|\varphi(z_n)|$ $|\psi(z_n)|$ 都趋于1.

如果 $\lim\limits_{n\to\infty}|\varphi(z_n)|$ 不存在, 由于 $|\varphi(z_n)|\leq 1$ , 则存在两个常数 $a,b(a\neq b)$ 以及两个子列 $\{z_{n_i}\}$ $\{z_{n_j}\}$ 满足 $|\varphi(z_{n_i})|\to a$ , $|\varphi(z_{n_j})|\to b$ .

$a<1$ , 则根据 $u\in H^\infty_\mu$ 和(4.13)式, 存在 $I$ 使得对任意 $i>I$ , 有

$\begin{eqnarray}\mu(z_{n_i})|v(z_{n_i})f_n(\psi(z_{n_i}))|>0,\end{eqnarray}$

因此当 $i\to\infty$ 时, $|\psi(z_{n_i})|\to 1$ , 并且对于 $i>I$ , $\mu(z_{n_i})|v(z_{n_i})|\ln{\frac{e}{1-|\psi(z_{n_i})|^2}}>0$ , 从而存在 $\{z_{n_i}\}$ 的子列 $\{z_{i_k}\}$ 满足 $\{z_{i_k}\}$ 属于 $\Gamma_{v,\psi}$ .因为 $\Gamma_{v,\psi}=\Gamma_{u,\varphi}$ , 所以 $|\varphi(z_{i_k})|\to 1$ , 这与 $a<1$ 矛盾.从而有 $a=1$ .

类似可得 $b=1$ , 则 $a=b$ , 这与假设 $a\neq b$ 矛盾, 从而 $\lim\limits_{n\to\infty}|\varphi(z_n)|=1$ .同理可得当 $n\to\infty$ 时, $|\psi(z_n)|\to 1$ .

由(4.13)式得

$\begin{eqnarray*} \varepsilon&<&\mu(z_n)|u(z_n)f_n(\varphi(z_n))-v(z_n)f_n(\psi(z_n))|\\ &<&C\mu(z_n)|u(z_n)|\ln{\frac{e}{1-|\varphi(z_n)|^2}}+C\mu(z_n)|v(z_n)|\ln{\frac{e}{1-|\psi(z_n)|^2}}. \end{eqnarray*}$

故存在子列 $\{z_{n_k}\}$ 满足 $\mu(z_{n_k})|u(z_{n_k})|\ln{\frac{e}{1-|\varphi(z_{n_k})|^2}}>\frac{\varepsilon}{2C}$ $\mu(z_{n_k})|v(z_{n_k})|\ln{\frac{e}{1-|\psi(z_{n_k})|^2}}>\frac{\varepsilon}{2C}$ .这里不妨设 $\mu(z_{n_k})|u(z_{n_k})|\ln{\frac{e}{1-|\varphi(z_{n_k})|^2}}>\frac{\varepsilon}{2C}$ , 则存在 $\{z_{n_k}\}$ 的子列 $\{z_{k_i}\}$ 满足 $\{z_{k_i}\}\in \Gamma_{u,\varphi}$ .

其次, 由(ⅰ)和(ⅱ)可得当 $\{z_{k_i}\}\in \Gamma_{u,\varphi}$ 时, 有

$\begin{eqnarray*} & &\mu(z_{k_i})|u(z_{k_i})f_{k_i}(\varphi(z_{k_i}))-v(z_{k_i})f_{k_i}(\psi(z_{k_i}))|\\ &\leq&C\mu(z_{k_i})|u(z_{k_i})-v(z_{k_i})|\ln{\frac{e}{1-|\varphi(z_{k_i})|}}+C\mu(z_{k_i})|v(z_{k_i})|\beta(\varphi(z_{k_i}),\psi(z_{k_i}))\\ &\to&0, \end{eqnarray*}$

这与(4.13)式矛盾.因此 $uC_\varphi-vC_\psi$ 是紧致的.

同理, 可得如下定理.

定理4.4 假设 $\varphi,\psi \in S({\Bbb D})$ , $u,v\in H^\infty_\mu$ , 则 $ uC_\varphi - vC_\psi :F\left( {p,q,s} \right) \to H^\infty_\mu $ 是紧致的等价于下面条件成立

(ⅰ) $\Gamma_{u,\varphi}=\Gamma_{v,\psi}$ .

(ⅱ)对任意点列 $\{z_k\}\in \Gamma_{u,\varphi}$ , 有

$\begin{eqnarray}\lim\limits_{k\to\infty}\mu(z_k)|u(z_k)-v(z_k)|\ln{\frac{e}{1-|\psi(z_k)|^2}}=0, \end{eqnarray}$
$\begin{eqnarray}\lim\limits_{k\to\infty}\mu(z_k)|u(z_k)|\beta(\varphi(z_k),\psi(z_k))=0.\end{eqnarray}$
5 情形三: $\beta<1$

$\beta<1$ , 若 $u\in H^\infty_\mu$ , 则 $uC_\varphi$ 是紧致的, 因此如果我们假设 $u,v\in H^\infty_\mu$ , 则差分 $uC_\varphi-vC_\psi$ 是紧致的, 从而也是有界的.

参考文献
[1] Cowen C C, MacCluer B D. Composition Operators on Spaces of Analytic Functions. Boca Raton: RC Press, 1995.
[2] Hosokawa T. Differences of weighted composition operators on the Bloch spaces. Compl Anal Oper Theory, 2009, 3: 847–866. DOI:10.1007/s11785-008-0062-1
[3] Hosokawa T, Izuchi K, Ohno S. Topological structure of the space of weighted composition operators on H. Integr Equ Oper Theory, 2005, 53: 509–526. DOI:10.1007/s00020-004-1337-1
[4] Lindstöm M, Wolf E. Essential norm of the difference of weighted composition operators. Monatsh Math, 2008, 153: 133–143. DOI:10.1007/s00605-007-0493-1
[5] Lv X F. Weighted composition operators from F(p, q, s) spaces to Bers-type spaces in the unit ball. Appl Math J Chinese Univ, 2009, 24(4): 462–472. DOI:10.1007/s11766-009-1745-8
[6] Manhas J S. Compact differences of weighted composition operators on weighted Banach spaces of analytic functions. Integr Equ Oper Theory, 2008, 62: 419–428. DOI:10.1007/s00020-008-1630-5
[7] Ohno S. Weighted composition operators between H and the Bloch space. Taiwanese J Math, 2001, 5(3): 555–563. DOI:10.11650/twjm/1500574949
[8] Ohno S, Stroethoff K, Zhao R. Weighted composition operators between Bloch-type spaces. Rocky Mountain J Math, 2003, 33(1): 191–215. DOI:10.1216/rmjm/1181069993
[9] Ye S L. Weighted composition operator from F(p, q, s) into Logarithmic Bloch space. J Korean Math Soc, 2008, 45(4): 977–991. DOI:10.4134/JKMS.2008.45.4.977
[10] Zhang X J. The multipliers on several holomorphic function theory. Chinese Ann Math Ser A (in Chinese), 2005, 26(4): 477–486.
[11] Zhang X J, Xiao J. Weighted composition operator between two analytic function spaces. Adv Math (China), 2006, 35(4): 453–462.
[12] Zhao R H. On a general family of function space. Ann Acad Sci Fenn Math Dissertationes, 1996, 105: 1–56.
[13] Zhou Z H, Chen R Y. Weighted composition operators fom F(p, q, s) to Bloch type spaces on the unit ball. Internat J Math, 2008, 19(8): 899–926. DOI:10.1142/S0129167X08004984
[14] Zhu K H. Operator Theory in Function Spaces. New York: Marcel Dekker Inc, 1990.
[15] Zhu X L. Weighted composotion operators from F(p, q, s) space to $H_μ^∞$ space. Abstract and Applied Analysis, 2009, 2009: 1–14.