Euler-Poisson方程组通常用来描述半导体材料中带电粒子流的输运现象[1, 9, 15, 23].它由描述电子流运动的双极非等熵可压缩Euler方程组和描述电场变化的Poisson方程耦合而成,形式如下
其中 ${\Bbb T}= \left( {\Bbb R}/{\Bbb Z} \right) ^3$表示三维空间的环,指标$\nu = e,i,$分别表示半导体材料中的电子和离子. 未知变量分别为: 密度${n^\nu } > 0,$ 速度${{u}^{\nu }}=\left( u_{1}^{\nu },u_{2}^{\nu },u_{3}^{\nu } \right)$,绝对温度${\theta ^\nu } > 0$,函数$\nabla \phi$表示电场势,函数$b = b(x) \ge{{\rm const}} > 0$表示半导体材料的掺杂浓度,其中 const 表示某个绝对正常数. 这里描述温度变化的方程源自下述能量方程
此处总能量函数${\varpi ^\nu } = {\theta ^\nu } + \frac{1}{2}|{u^\nu }{|^2}$,压差函数${p_\nu } = {n^\nu }{\theta ^\nu }$; 再由Boltzmann方程可知热传导系数${\kappa _\nu }$为温度$\theta ^\nu $的函数,简单起见本文只考查$\kappa _\nu ({\theta ^\nu }) = \theta ^\nu $的情形,由此结合方程组(1.1)的前两个方程即得描述温度变化的第三个方程.
本文研究方程组(1.1)的空间周期问题,其初始条件为
电场势函数初值$\nabla \phi {|_{t = 0}} = \nabla {\phi ^0}$满足
设$({n^\nu },{u^\nu },{\theta ^\nu },\phi ) = ({\bar n^\nu }(x),0,1,\bar \phi (x))$为方程组(1.1)的一个稳态解,则其满足
为保证$\phi$的唯一性,附加条件如下
由(1.4)式的第一式知:$ {\bar n^e} = {{e}^{\bar \phi }},{\bar n^i} = {{e}^{C - \bar \phi }}$,其中常数C > 0,再由其第二式可知:$ \bar \phi$满足严格单调半线性椭圆方程如下
于是借助于经典的Schauder不动点定理或极小化方法可得解$\bar \phi$的存在性[3, 6],唯一性则由函数$f:{\rm{ }}\bar \phi \mapsto {{e}^{C - \bar \phi }} - C{{e}^{\bar \phi }}$的严格单调性保证,进而由最大值原理结合条件$b \ge{{\rm const}} > 0$可知: ${\bar n^\nu } \ge {{\rm const}} > 0.$
众所周知,当${n^\nu },{\theta ^\nu } > 0$时,方程组(1.1)为可对称化的双曲-抛物组. 于是由Kato[10]的结论以及Matsumura-Nishida[16-17]的结果可知: 只要初值光滑,周期问题(1.1)--(1.2)就一定存在局部唯一光滑解.
命题 1.1 (局部存在唯一性[11, 14]) 令整数$s\geq 3$,光滑周期函数b=b(x)满足$b \ge {{\rm const}} > 0$. 若对给定常数$\kappa > 0$,初值满足$({n^{\nu 0}}-{\bar n^\nu }, {u^{\nu 0}},{\theta ^{\nu 0}} - 1) \in {H^s}({\Bbb T})$ 且${n^{\nu 0}},{\theta ^{\nu 0}} \ge 2\kappa $, 则存在T>0使得问题(1.1)--(1.2)存在局部唯一光滑解,满足 $ {n^\nu },{\theta ^\nu } \ge \kappa, (t,x) \in \left[{0,T} \right] \times {\Bbb T} $ 及
此处${H^m}({\Bbb T})$,表示三维环${\Bbb T}$上的m阶Sobolev空间,其范数记为${\left\| \cdot \right\|_m}$.
目前已有一些关于半导体Euler-Poisson模型的相关研究. 2000年,借助于仿微分算子的工具,Cordier和 Grenier[2]解决了一维等熵Euler-Poisson模型的拟中性极限问题. 2001年,关于给定的边界值,Slemrod和 Sternberg[22]获得了一维稳态Euler-Poisson系统的拟中性极限. 2003年Hisao和 Markowich,Wang[7] 证明了高维Euler-Poisson系统的Cauchy问题存在唯一按指数速率衰减至平衡态的小摄动 光滑解. 2004年,Peng和 Wang[19]研究了带有初始层的Euler-Poisson高维位势流的拟中性极限问题. 同年,借助于加权能量方法、 迭代技巧以及紧性方法,Wang[24] 研究了环上黏性与无黏性的Euler-Poisson系统 的拟中性极限问题. 2005年,借助经典能量方法,Loeper[12]严格证明了无压力的Euler-Poisson系统 收敛到不可压Euler方程组. 2005年,应用渐近展开法、迭代技巧以及对称双曲组的性质,Peng和 Wang[20]获得了时变Euler-Poisson系统的 拟中性极限就是不可压的Euler方程组以及不可压的Euler方程组存在局部光滑解. 2006年,借助渐近展开的方法,Peng,Wang和 Yong[21]研究了高维非等熵Euler-Poisson系统的拟中性极限问题. 2008年,Ju,Li和 Wang[8] 研究了环上及全空间上的Navier-Stokes-Poisson方程组的拟中性极限问题. 2009年,Luo和 Smoller[13]研究了可压Euler-Poisson系统旋转星型解的存在性及非线性稳定性问题.
上述工作都是围绕常数稳态解开展的. 2005年,Guo和 Strauss[6]研究了物理边界无耗散项等熵的Euler-Poisson方程组,获得了非常数平衡解附近光滑解的整体存在性. 最近Peng[18],Feng,Peng和 Wang[4],Feng和 Wang[5]运用时空混合导数迭代方法分别研究了单、双极等熵以及单极非等熵Euler-Poisson方程组非常数平衡解的稳定性问题,得到相关解的正则性为
然而目前尚无关于双极非等熵可压缩Euler-Poisson方程组非常数平衡解的稳定性的相关研究. 本文意在研究上述问题.通过研究可以发现双极非等熵模型解的正则性(1.8)--(1.10)式与单极非等熵模型[5]以及双极等熵模型[4]的相关结果存在本质的不同。这是由于这里所研究的双极非等熵模型中同时耦合了带正电的离子方程与温度场方程的缘由.
本文的主要结果如下:
定理 1.1 令整数$s \ge 6$,光滑周期函数b=b(x)满足$b \ge {{\rm const} }> 0$. 设初值满足
那么存在常数${{\delta }_{0}}$ > 0足够小,不依赖于任何时间t>0,使得若
则周期问题(1.1)--(1.2)存在唯一整体光滑解$({n^\nu },{u^\nu },{\theta ^\nu },\phi )$满足
进而有
此处符号$[\cdot]$表示取整数,范数$|||\cdot|||_m$的定义见第二节.
注1.1 方程组(1.1)中速度耗散项- ${u^\nu }$,温度耗散项 - $({\theta ^\nu } - 1)$以及扩散项 $\frac{{{\theta ^\nu }}}{{{n^\nu }}}\Delta {\theta ^\nu }$在证明定理1.1的过程中起关键作用.
定理1.1的证明基于能量方法、对称子技巧以及时空混合导数迭代方法. 首先指出,该迭代方法由Peng[18]使用于单极等熵Euler-Poisson方程组周期问题,随后被Feng,Peng和 Wang[4]推广至双极等熵模型的周期问题,能有效地克服非常数稳态解带来的困难. 其次,双极非等熵Euler-Poisson方程组要比单极非等熵的情形更为复杂,因为它增加了描述带正电离子运动的相关方程; 与双极极等熵Euler-Poisson方程组不同,本文研究的双极非等熵模型增加了描述能量演化的温度方程,这里压差函数不仅依赖密度,而且依赖温度,从而导致在为建立迭代关系式而做的能量估计的过程中出现新的困难,进而解的各个分量的正则性不同。幸运的是,系统(1.1)的能量方程中的温度扩散项克服了这个困难,进而保证了光滑解的整体存在性.
本文其余部分结构如下: 第二节给出准备工作; 第三节给出定理1.1的证明所需的能量估计,进而给出迭代关系式; 第四节,通过迭代给出先验估计,进而证明解的整体存在性.
首先引入一些记号以备后用. 对于常数0 <$ \gamma $ < 1,表达式$f \sim g$意指$\gamma g \le f \le \frac{1}{\gamma }g$. 用$\left\| \cdot \right\|$和${\left\| \cdot \right\|_{{L^\infty }}}$分别表示空间${L^2}\left( {\Bbb T} \right)$和的范数${L^\infty }\left( {\Bbb T} \right). 用\left\langle { \cdot ,\cdot } \right\rangle $表示空间${L^2}\left( {\Bbb T} \right)$上的内积. 对于多重指标$\alpha =\left( {{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}} \right)\in {{\mathbb{N}}^{3}}$,记:${{\partial }^{\alpha }}=\partial _{{{x}_{1}}}^{{{\alpha }_{1}}}\partial _{{{x}_{2}}}^{{{\alpha }_{2}}}\partial _{{{x}_{3}}}^{{{\alpha }_{3}}}=\partial _{1}^{{{\alpha }_{1}}}\partial _{2}^{{{\alpha }_{2}}}\partial _{3}^{{{\alpha }_{3}}}$. 对于两个多重指标$\alpha ,\beta \in {{\Bbb N}}^3,\beta \leqslant \alpha $表示对$1 \le j \le 3$有${\beta _j} \le {\alpha _j}; \beta < \alpha$表示$\beta \leqslant \alpha $且$\beta \neq \alpha.$最后,对于T>0以及$m \ge 1$,引入空间
其范数定义为
显然有$ || \cdot |{|_m} \le ||| \cdot ||{|_m}$.
接下来回顾定理1.1证明过程中常用的公式及引理.
Leibniz 公式
其中常数$C_\alpha ^\beta > 0,C_k^l > 0.$
引理 2.1 (Poincaré不等式) 设$1 \le p < \infty ,\Omega \subset {{\Bbb R}}^d$为具有Lipschitz边界的有界连通开区域,于是存在依赖p与$\Omega$的常数使得下式成立
其中${u_\Omega } = \frac{1}{{\left| \Omega \right|}}\int_\Omega {u(x){d}x}$表示u在$\Omega上$的平均值.
引理 2.2[18] 设整数$m\ge 3$,若 $u,v \in {B_{m,T}}\left( {\Bbb T} \right)$,则
引理 2.3 设整数$m\ge 3$,函数f光滑且f(x,0,0,0) = 0. 若$v \in {B_{m,T}}\left( {\Bbb T} \right)$满足
则对任意$t \in [0,T]$,有
这里正常数C可以连续的依赖于$||v||_m$.
证 该过程与文献[18],引理 2.8的证明类似,故略去详细过程. 证毕.
设$\left( {{n^\nu },{u^\nu },{\theta ^\nu },\phi } \right)$ 为周期问题(1.1)--(1.2)的唯一光滑解. 令
则系统(1.1)改写为
初始条件为
其中 ${N^{\nu 0}} = {n^{\nu 0}} - {\bar n^\nu },{\Theta ^{\nu 0}} = {\theta ^{\nu 0}} - 1.$
直接计算可得
记
其中${\Phi ^0} = {\phi ^0} - \bar \phi$.
于是(3.2)式中的Euler方程可改写为如下矩阵形式
此处
此处$\left( {{e}_{1}},{{e}_{2}},{{e}_{3}} \right)$为${{\Bbb R} }^3$的标准正交基,I3为$3\times 3$单位矩阵.
当${\bar n^\nu } + {N^\nu },{\rm{ }}1 + {\Theta ^\nu } > 0$时,易知(3.6)式是关于$U^\nu$可对称化的双曲-抛物组. 这是因${\bar n^\nu } \ge {{\rm const}} > 0$且由于${N^\nu },{\rm{ }}{\Theta ^\nu } \to 0,$从而有${\bar n^\nu } + {N^\nu },{\rm{ }}1 + {\Theta ^\nu } \ge {{\rm const} }> 0$.
令
则
为一对称矩阵,再由矩阵$A_{0}^{\nu }({{n}^{\nu }},{{\theta }^{\nu }})$,的正定对称性可知,(3.6)式关于$U^\nu$是可对称化的双曲-抛物组.
从现在开始,令T>0,W为命题1.1给出,定义在区间[0,T]上,初值为W0的系统(3.2)的光滑解. 定义
及任意常数C>0不依赖任何时间t,T.
易知,当$m\ge3$时, 嵌入$H^{m-1}({\Bbb T})\hookrightarrow L^\infty({\Bbb T})$连续,于是存在常数C>0使得
因此,若${\omega _T}$充分小,从${\bar n^\nu } \ge {{\rm const}} > 0$即得${\bar n^\nu } + {N^\nu },{\rm{ }}1 + {\Theta ^\nu } \ge{{\rm const} }> 0$.
引理 3.1在定理1.1的条件下,若${\omega _T}$足够小则有
证 分以下两个步骤来完成.
步骤 1 首先,断言下面两式成立
事实上,由连续性嵌入${H^{[s/2] - 1}}\left( {\Bbb T} \right) \hookrightarrow {L^\infty }\left( {\Bbb T} \right)$可知
进而可知
最后计算可得
在$({n^\nu },{u^\nu },{\theta ^\nu }) = ({\bar n^\nu },0,1)$处为一反对称矩阵,由此可知(3.14)式成立.
步骤2 由(3.6)式与$A_{0}^{\nu }({{n}^{\nu }},{{\theta }^{\nu }}){{U}^{\nu }}$在空间$L^2({\Bbb T})$上内积可得
由(3.13)--(3.14)式及(3.10)式可知
于是有
然后由方程组(3.2)的第一、四式并运用分部积分可得
再与(3.15)式联立可知(3.12)式成立. 证毕.
对于$k\in {\Bbb N},\alpha \in {{\Bbb N}}^3$且$1 \le k + |\alpha| \le [s / 2],$对(3.6)式求混合导数$\partial _t^k{\partial ^\alpha }$可得
其中
再由Poisson方程可得
这里$N_{k,\alpha }^\nu = \partial _t^k{\partial ^\alpha }{N^\nu },\nu = e,i$.
定义耗散函数${D_m}( \cdot )$形式如下
引理 3.2 在定理1.1的条件下,若${\omega _T}$足够小,则对任意$k \in {\Bbb N},\alpha \in {{\Bbb N}}^3$且$|\alpha | \ge 1,k + |\alpha | \le [s/2],$存在正常数C0使得$\forall t \in [0,T]$,有
证 分以下三个步骤来完成.
步骤1 对$k\in {\Bbb N},\alpha \in {{\Bbb N}}^3$且$1 \le k + |\alpha | \le [s/2]$,断言下式成立
事实上,对于$1 \le k + |\alpha | \le [s/2]$,由(3.16)式与$A_{0}^{\nu }({{n}^{\nu }},{{\theta }^{\nu }})U_{k,a}^{\nu }$在空间$L^2({\Bbb T})$上内积可得
进而由(3.18)式可得
因而有
显然,不等式右端前三项都能被$C{D_{[s/2]}}|||W||{|_{[s/2]}}$控制,于是(3.21)式成立.
步骤2 对任意$k \in {\Bbb N}$,且 $|\alpha | \ge 1,k + |\alpha | \le [s/2],$断言下面两式成立
这里$u_{k,\alpha }^\nu = \partial _t^k{\partial ^\alpha }{u^\nu },\Theta _{k,\alpha }^\nu = \partial _t^k{\partial ^\alpha }{\Theta ^\nu }$,待定系数$\varepsilon $> 0充分小.
事实上,由(3.9)式可知
由此可得
下面处理(3.25)式右端各项. 首先,对于第三项,由Leibniz公式可知
容易看出,当k=0时${I_{2l\beta }} = {I_{4l}} = 0$. 利用分部积分可得
再由Sobolev嵌入定理可得: 当$l = \left| \beta \right| = 0$时有
当$l + \left| \beta \right| = 1$时有
以及当$l + \left| \beta \right| \ge 2$时有
另一方面,分部积分并结合(3.2)式中的第三个方程可得
其次,估计(3.25)式右端最后一项. 由于$|\alpha | \ge 1$以及当$\omega_T$足够小时,$ n = \bar n + N \ge {const} > 0$. 于是分部积分并进行与[4]中类似的估计可得
这里${{\alpha }_{1}}\in {{\mathbb{N}}^{3}}$且$|{{\alpha }_{1}}|=|\alpha |-1$. 因此,取$\varepsilon > 0$足够小,上述估计联合(3.25)--(3.32)式可知(3.23)式成立.
接下来,由(3.17)式可得
由(3.7)--(3.8)式以及$A_{0}^{\nu }({{n}^{\nu }},{{\theta }^{\nu }})$的定义可得
联合(3.33)--(3.35)式即得(3.24)式.
步骤3 基于上面两个步骤的准备,联合(3.21)式与(3.23)--(3.24)式 并取$\varepsilon>0$足够小即得(3.9)式. 证毕.
引理3.2只对$|\alpha | \ge 1$成立. 下面考察$|\alpha | = 0$时的情形,它为随后第四节的迭代过程提供基础.
引理 3.3 在定理1.1的条件下,若${\omega _T}$足够小,则对任意 $0 \le k \le [s/2],$存在正常数C0使得$\forall t \in [0,T]$,有
证 注意到$n ^\nu,{\theta ^\nu } \ge {const} > 0$. 当k = 0时,估计式(3.36)由引理3.1给出. 当$1 \le k \le [s/2]$时,(3.36)式由(3.21)式的$\alpha $ = 0情形以及下面两个估计给出.
事实上,$\alpha $ = 0时,(3.25)式变为
接下来处理上式右端各项. 由Leibniz公式结合分部积分可得
于是,联合(3.39)--(3.41)式可知(3.37)式成立.
最后,当$\alpha $ = 0时,(3.33)式变为
于是(3.38)式成立. 证毕.
命题 3.1 在定理1.1的条件下,若${\omega _T}$足够小,则对任意$ k \in {\Bbb N},\alpha \in {{\Bbb N}}^3 且 |\alpha| \ge 1,k + |\alpha| \le [s/2],$存在正常数C0使得$\forall t \in [0,T]$,有
证 固定$k \ge 0$. 注意到
于是对(3.20)式关于$|\alpha | \le [s/2] - k$求和并结合(3.36)式即可得到(3.42)式.
估计式(3.42)给出了${u^\nu },{\Theta ^\nu }$及$\nabla {\Theta ^\nu }$的耗散的递推关系式. 但该估计式的左端项仍不足以控制所有右端项,因此必须建立密度${N^\nu }$和电势$\nabla \Phi $的耗散估计进而得出迭代关系式.
引理 3.4 在定理1.1的条件下,若${\omega _T}$足够小,则对任意$ k \in {\Bbb N},\alpha \in {{\Bbb N}}^3 $且$ |\alpha| \ge 1,k + |\alpha| \le [s/2],\forall t \in [0,T],$ 有
证 首先,对于$ k \in {\Bbb N},\beta \in {{\Bbb N}}^3, k + |\beta| \le [s/2] - 1$,对(3.2)式第二式求$\partial _t^k{\partial ^\beta }$,并注意到
可得
由引理2.2可得$ \left\| {R_{\nu 1}^{k,\beta }} \right\| \le C|||U||{|_{[s/2]}}|||W||{|_{[s/2]}}$.
另外,易知$ {\partial ^\beta }\nabla \left( { \frac{{N_k^\nu }}{{{{\bar n}^\nu }}}} \right) = \frac{1}{{{{\bar n}^\nu }}}\nabla N_{k,\beta }^\nu + R_{\nu 2}^{k,\beta }. $此处$ R_{\nu 2}^{k,\beta } = \sum\limits_{\gamma \le \beta } {{d_{k\beta \gamma }}(x)N_{k,\gamma }^\nu } ,$ 其中${d_{k\beta \gamma }}$为一给定光滑函数. 容易看出$\left\| {R_{2\nu }^{k,\beta }} \right\| \le C{\left\| {\partial _t^k{N^\nu }} \right\|_{|\beta |}}$.
然后,注意到${\bar n^\nu } \ge {const}$ > 0,由(3.45)式与 $ \nabla {N_{k,\beta }} $ 在空间L^2({\Bbb T})上内积可得
故
对此不等式关于所有指标$\beta$求和可得
注意到(1.7)式,运用引理2.1,然后更换$\beta$为$\alpha$即得(3.43)式,这里$|\alpha | = 1 + |\beta |. $最终,联合(3.45)式可知
于是,上式关于所有指标$\beta$求和然后再联合(3.43)式可得(3.44)式成立.
注意到${U^\nu } = {({N^\nu },{u^\nu },{\Theta ^\nu })^T}$以及$U = {\left( {{U^e},{U^i}} \right)^T}$并取$\varepsilon>0$充分小可得下面结果.
命题 3.2 在定理1.1的条件下,若${\omega _T}$足够小,则对任意$ k \in {\Bbb N},\alpha \in {{\Bbb N}}^3 $且$ |\alpha| \ge 1,k + |\alpha| \le [s/2],$存在正常数C0使得$\forall t \in [0,T],$ 有
命题3.2只包含$0 \le k \le [s/2] - 1$的情形. 此外为了运用迭代关系式(3.46),还需估计k = [s/2]的情形作为初值以及$\left\| {\partial _t^k{N^\nu }} \right\|$(详见第四节迭代过程). 下面给出这些估计.
命题 3.3 在定理1.1的条件下,若${\omega _T}$足够小,则对任意$ k \in {\Bbb N},0 \le k \le [s/2] - 1 $有
证 首先,对于$ k \in {\Bbb N},k \le [s/2] - 1$,对(3.2)式第二式求$\partial _t^k$可得
定义势函数$\nabla \Psi $满足
于是 $ \nabla \cdot \left( { - \nabla \Phi + \nabla \Psi } \right) = - ({N^e} - {N^i}) + {N^e} - {N^i} = 0,$进而有
从(3.49)式可知
由$\left\langle { - \nabla \partial _t^k\Phi + \nabla \partial _t^k\Psi ,\nabla \eta _k^\nu } \right\rangle = - \left\langle {\nabla \cdot \left( { - \nabla \partial _t^k\Phi + \nabla \partial _t^k\Psi } \right),\eta _k^\nu } \right\rangle = 0,$可得
因$\partial _t^k{N^\nu } = {\bar n^\nu }\eta _k^\nu - {q_\nu }{\bar n^\nu }\partial _t^k\Psi,\Delta \Psi = {N^e} - {N^i},$可得
因此,$ - \Delta \partial _t^k\Psi + \left( {{{\bar n}^e} + {{\bar n}^i}} \right)\partial _t^k\Psi = {\bar n^i}\eta _k^i - {\bar n^e}\eta _k^e.$
因${\bar n^\nu } \ge {const} >$ 0,上式与$ \partial _t^k\Psi$ 在$L^2({\Bbb T})$上做内积可得
这里用到了引理2.1.
从(3.49),(3.51)--(3.52)式以及$\eta _k^\nu $的定义可得
注意到${\bar n^\nu } \ge {const} > 0$时,结合引理2.1可得如下等价关系式
此即完成了对(3.47)式的证明.
接下来,由(3.2)式的第一式可得
由此可得${{\left\| \partial _{t}^{[s/2]}{{N}^{\nu }} \right\|}^{2}}\le C\left\| \partial _{t}^{[s/2]-1}{{u}^{\nu }} \right\|_{1}^{2}+C\left\| U \right\|_{[s/2]}^{3}.$
上式再联合k = [s/2]时的(3.36)式即得(3.48)式. 证毕.
定理1.1的证明基于以下结果,它是上节所有估计的推论.
引理 4.1 在定理1.1的条件下,若${\omega _T}$充分小,则对任意$ k \in {\Bbb N},\alpha \in {{\Bbb N}}^3 $且$ k + |\alpha| \le [s/2]$,存在正常数$ {\lambda _{k,\alpha }}$使得$\forall t \in [0,T]$,有
证 在命题3.2的(3.46)式中取$(k,|\alpha |) = ([s/2] - 1,1)$可得
容易看出,(3.48)式右端项$\left\| \partial _{t}^{[s/2]-1}{{u}^{\nu }} \right\|_{1}^{2}$可以被(4.2)式的左端项$\left\| \partial _{t}^{[s/2]-1}({{U}^{\nu }},\nabla {{\Theta }^{\nu }}) \right\|_{1}^{2}$控制. 于是在(3.46)式中按照k降低,$|\alpha|$升高的规则依次对指标$(k,|\alpha |)$取遍所有可能的值可知: (3.46)式中的右端项$\left\| (\partial _{t}^{k}{{U}^{\nu }},\partial _{t}^{k}\nabla {{\Theta }^{\nu }},\partial _{t}^{k+1}{{u}^{\nu }},\partial _{t}^{k+1}{{\Theta }^{\nu }}) \right\|_{|\alpha |-1}^{2}$(在k降低,$|\alpha|$升高后)可间接被原不等式左端项所控制.于是由(3.46)--(3.48)式以及(4.2)式及整个迭代过程可知: 存在正常数${\lambda _{k,\alpha }}$使得下式成立
再次应用命题3.3并注意到等价关系式$\sum\limits_{k+|\alpha |\le [s/2]}{\sum\limits_{\nu =e,i}{\left\| \partial _{t}^{k}\left( {{U}^{\nu }},\nabla {{\Theta }^{\nu }} \right) \right\|_{|\alpha |}^{2}}}\tilde{\ }{{D}_{[s/2]}}(t),$重整系数(仍然记为${\lambda _{k,\alpha }})$可得
接下来,运用命题3.1并再度重整系数${\lambda _{k,\alpha }}$可得
最后,由${\omega _T}$的小性可知(4.1)式成立. 证毕.
首先给出范数等价性结果以备后用.
引理 4.2 对任意$m\in {\Bbb N}$下述等价关系式成立
证 由(1.5)式及表达式(3.4)及引理2.1知结果成立. 证毕.
现在综合上述估计建立小摄动光滑解的整体存在性及渐近稳定性. 由引理4.1--4.2知
注意到等价关系
可知存在常数$\eta $> 0使得
在[0,T]上积分(4.3)式并应用引理2.3可得
于是可知(1.8)--(1.11)式成立.证毕.