数学物理学报  2016, Vol. 36 Issue (4): 795-808   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
孙云
吴建光
王东
唐绪兵
关于厄米特多项式的新微分公式及其在量子光学中的应用
孙云1, 吴建光1, 王东1, 唐绪兵1,2     
1. 安徽工业大学 数理科学与工程学院 安徽马鞍山 243032 ;
2. 中科院合肥物质科学研究院智能所 合肥 230031
摘要:基于量子光学厄米特多项式和Weyl对应规则,该文给出了一类双变量厄米特多项式的生成函数.考虑到Weyl编序的相似变换不变性特征,还得到了另一个厄米特多项式广义生成函数,这些生成函数能被用于研究量子光场的非经典特征.
关键词Weyl对应规则     厄米特多项式     相似变换    
New Differential Formulae Related to Hermite Polynomials and Their Applications in Quantum Optics
Sun Yun1, Wu Jianguang1, Wang Dong1, Tang Xubing1,2     
1. School of Mathematics and Physics Science and Engineering, Anhui University of Technology, Anhui Ma'anshan 243032 ;
2. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031
Abstract: In this work, based on quantum operator Hermite polynomials and Weyl's mapping rule, we find a generation function of the two-variable Hermite polynomials. And then, noting that the Weyl ordering is invariant under the similar transformations, we obtain another generalized differential expression related to the Hermite polynomials. Those identites can be applied to investigate the nonclasscial properties of quantum optical fields.
Key words: Weyl mapping rule     Hermite polynomials     Similar transformation    
1 引言

作为量子力学的“语言”, 狄拉克符号俨然诠释了量子世界的抽象思想和普遍概念, 并促进了人们对量子力学的深刻理解.同时, 量子力学中的很多概念全然不同于经典力学, 为了阐释特定的物理意义, 量子力学必须发展其自身的数学语言.例如, 在数学上第一类Fredholm方程[1]$g\left( t\right) =\int_{-a}^{b}k\left( t, s\right) f\left( s\right){\rm d}s, $连续函数$ k\left( t, s\right) $为积分核.在文献[2-3]中算符Fredholm方程定义为$G\left( a, {{a}^{\dagger }}\right) =\int_{-a}^{b}K\left( a, {{a}^{\dagger }}, q\right) F\left( q\right){\rm d}q, $其中积分核$K\left( a,{{a}^{\dagger }} ,q \right)$是一个量子力学算符, $q$为实变量, $a$${{a}^{\dagger }}$表示量子辐射场的湮灭与产生算符.众所周知, 牛顿-莱布尼兹(Newton-Leibniz)积分规则并不能直接应用于形如$\left \vert {}\right \rangle \left \langle {}\right \vert $的算符积分.考虑到如上算符积分的问题, 文献[4]介绍了范洪义教授提出的有序算符内积分技术(the technique of integration within an ordered product of operators, IWOP), 在该积分规则下能直接将牛顿-莱布尼兹积分规则应用于狄拉克(Dirac)的算符积分.有序算符内积分技术表明如果算符$K\left( a, {{a}^{\dagger }}, q\right) $是编序算符, 则算符Fredholm方程就能被直接积分.例如, $K\left( a, {{a}^{\dagger }}, q\right) =\colon \exp \left( q-Q\right) \colon, $

$ \int_{-\infty }^{\infty }{\frac{\text{d}q}{\sqrt{\pi }}}:\exp \left[ -{{\left( q-Q \right)}^{2}} \right]:f\left( q \right)=:G\left( Q \right):,\text{ }\ \ Q=\frac{a+{{a}^{\dagger }} }{\sqrt{2}}, $ (1.1)

这里$\colon \exp \left[-\left( q-Q\right) ^{2}\right] \colon $是积分核, 在正规编序算符“$\colon \colon $”内, 算符$a$${{a}^{\dagger }}$是对易的.注意到$\frac{1}{\sqrt{\pi }}\colon \exp \left[-\left( q-Q\right) ^{2}\right] \colon =\left \vert q\right \rangle \left \langle q\right \vert $和坐标表象的完备性关系$\int_{-\infty }^{\infty }{\rm d}q\left \vert q\right \rangle \left \langle q\right \vert =1, $得到

$ \begin{eqnarray} \int_{-\infty }^{\infty }\frac{{\rm d}q}{\sqrt{\pi }}\colon \exp \left[-\left( q-Q\right) ^{2}\right] \colon f\left( q\right) &=&\int_{-\infty }^{\infty }{\rm d}q\left \vert q\right \rangle \left \langle q\right \vert f\left( q\right) \nonumber\\ &=&\int_{-\infty }^{\infty }{\rm d}q\left \vert q\right \rangle \left \langle q\right \vert f\left( Q\right) =f\left( Q\right), \label{eq:a2} \end{eqnarray} $ (1.2)

这里$\left| q \right\rangle ={{\pi }^{-1/4}}\exp \left( -{{q}^{2}}/2+\sqrt{2}q{{a}^{\dagger }}-{{a}^{\dagger }}^{2}/2 \right)\left| 0 \right\rangle $为坐标表象, 坐标算符$Q$的本征方程为$Q\left \vert q\right \rangle =q\left \vert q\right \rangle, $ $\colon G\left( Q\right) \colon $是算符$f\left( Q\right) $的正规乘积编序形式.当$f\left( q\right) =H_{n}\left( q\right), $则有

$ \begin{equation} \int_{-\infty }^{\infty }\frac{{\rm d}q}{\sqrt{\pi }}\colon \exp \left[-\left( q-Q\right) ^{2}\right] \colon H_{n}\left( q\right) =2^{n}\colon Q^{n}\colon, \label{eq:a3} \end{equation} $ (1.3)

这里$2^{n}\colon Q^{n}\colon $是算符厄米特多项式$H_{n}\left( Q\right) $的正规乘积形式. $H_{n}\left( q\right) $为单变量的厄米特多项式, 其产生函数为

$ \begin{equation} \sum_{n=0}^{\infty }\frac{q^{n}}{n!}H_{n}\left( t\right) =\exp \left( 2tq-q^{2}\right) . \label{eq:a4} \end{equation} $ (1.4)

$H_{n}\left( q\right) $张开了一个正交和完备的函数空间, 即$\int_{-\infty }^{\infty }\frac{{\rm d}q}{\sqrt{\pi }} {\rm e}^{-q^{2}}H_{n}\left( q\right) H_{m}\left( q\right) =2^{n}n!\delta _{nm}.$注意到湮灭算符$a= \left( Q+{\rm i}P\right) /\sqrt{2}$$ \left \langle q\right \vert {{a}^{\dagger }}=2^{-1/2}\left( q-\frac{\rm d}{{\rm d}q}\right) \left \langle q\right \vert, $$H_{n}\left( Q\right) $在坐标表象与真空态中的矩阵元表示为

$ \begin{eqnarray*} \left \langle q\right \vert H_{n}\left( Q\right) \left \vert 0\right \rangle =2^{n}\left \langle q\right \vert \colon Q^{n}\colon \left \vert 0\right \rangle, \end{eqnarray*} $

进而有

$ \begin{matrix} {{H}_{n}}\left( q \right)\text{ }={{2}^{n/2}}{{\text{e}}^{{{q}^{2}}/2}}\langle q|:{{\left( {{a}^{\dagger }}+a \right)}^{n}}:\left| 0 \right\rangle ={{2}^{n/2}}{{\text{e}}^{{{q}^{2}}/2}}\langle q|{{a}^{\dagger 2}}\left| 0 \right\rangle \\ ={{\text{e}}^{{{q}^{2}}/2}}{{\left( q-\frac{\text{d}}{\text{d}q} \right)}^{n}}{{\text{e}}^{-{{q}^{2}}/2}}={{\left( -1 \right)}^{n}}{{\text{e}}^{{{q}^{2}}}}\frac{{{\text{d}}^{n}}}{\text{d}{{q}^{n}}}{{\text{e}}^{-{{q}^{2}}}}, \\ \end{matrix} $ (1.5)

这正是单模厄米特多项式的微分表示形式.上述推掉表明了狄拉克符号与它的自身运算法则能促进基本量子理论的不断发展.

文献[5]作者介绍了一个定义于复空间的双变量厄米特多项式

$ {{H}_{m,n}}\left( \alpha ,{{\alpha }^{*}} \right)=\sum\limits_{l=0}^{\min \left( m,n \right)}{\frac{m!n!}{l!\left( m-l \right)!\left( n-l \right)!}}{{\left( -1 \right)}^{l}}{{\alpha }^{m-l}}{{\alpha }^{*n-l}},\text{ }\alpha =q+\text{i}p, $ (1.6)

它的生成函数为

$ \begin{equation} \sum_{m, n=0}^{\infty }\frac{t^{m}\tau ^{n}}{m!n!}H_{m, n}\left( \alpha, \alpha ^{\ast }\right) =\exp \left( -t\tau +t\alpha +\tau \alpha ^{\ast }\right) . \label{eq:a7} \end{equation} $ (1.7)

双变量厄米特多项式可在物理学的多个领域得到应用, 如已得到证明$H_{m, n}\left( \alpha, \alpha ^{\ast }\right) $复分数傅里叶变换的本征模[6-8], 该本征模能在梯度折射率介质中的光传播中观察到, 且梯度折射率介质中的两维太保(Talbot)效应中也能观察到这个本征模[9].

由于在单变量厄米特多项式与双变量复厄米特多项式间存在着很多相似性, 那么单、双变量厄米特多项式的微分形式是否也具有相似性呢?本文借助Weyl编序规则和量子算符厄米特多项式, 得到了双变量厄米特多项式的微分表示和一个交叉性的广义微分形式, 在形式上, 该表示类似于单变量厄米特多项式.本文内容如下:第2节简要介绍基于Weyl编序和Weyl编序乘积算符积分技术(the technique of integration within Weyl ordered product of operators, IWWP)的Weyl对应规则, 该对应规则揭示了经典函数$f\left( p, q\right) $的量子对应算符可通过$Q$$P$直接代替$q$$p$而得到, 且保持函数的形式不变.第3节主要介绍双变量厄米特多项式, 通过Weyl对应规则的公式化, 可以推导厄米特多项式$H_{m, n}\left( \alpha, \alpha ^{\ast }\right) $的微分表示.由于Weyl对应具有相似变换不变的特征, 一类广义的厄米特多项式微分表示将会在第4节中得到.第5节将利用上述微分等式研究激发压缩真空场的非经典特征, 该量子光场一般可在受限量子体系中产生.

2 Weyl编序与Weyl对应规则

众所周知, Weyl对应规则[10-11], 即

$ \begin{equation} F\left( P, Q\right) =\int\!\!\! \int {\rm d}q{\rm d}pf\left( p, q\right) \Delta \left( q, p\right) \label{eq:b1} \end{equation} $ (2.1)

为经典相空间函数$f\left( p, q\right) $与其量子对应算符$F\left( P, Q\right) $间建立了一座桥梁, $\Delta \left( q, p\right) $表示Wigner算符[12], 定义为

$ \begin{equation} \Delta \left( p, q\right) =\int_{-\infty }^{\infty }\frac{{\rm d}u}{2\pi } {\rm e}^{{\rm i}pu}\left \vert q+\frac{u}{2}\right \rangle \left \langle q-\frac{u}{2} \right \vert . \label{eq:b2} \end{equation} $ (2.2)

$f\left( p, q\right) =q^{m}p^{r}$, 等式(2.1)得到其对应的量子算符为

$ \begin{eqnarray} q^{m}p^{r} &\rightarrow &\left( \frac{1}{2}\right) ^{m}\sum_{l=0}^{m}\frac{m!}{ l!\left( m-l\right) !}Q^{m-l}P^{r}Q^{l}\nonumber\\ &=&\left( \frac{1}{2}\right) ^{m}\sum_{l=0}^{m}\frac{m!}{l!\left( m-l\right) !} \begin{array}{c} \colon \\ \colon \\ \end{array} Q^{m-l}P^{r}Q^{l} \begin{array}{c} \colon \\ \colon \\ \end{array} = \begin{array}{c} \colon \\ \colon \\ \end{array} Q^{m}P^{r} \begin{array}{c} \colon \\ \colon \\ \end{array} , \label{eq:b3} \end{eqnarray} $ (2.3)

这里$ \begin{array}{c} \colon \\\colon \\ \end{array} $ $\begin{array}{c} \colon \\\colon \\ \end{array} $表示Weyl编序, 从等式(2.3)可以看出:经典函数$f\left( p, q\right) $的量子对应算符可保持函数形式不变的情况下, 由$Q$$P$直接代替变量$q$$p$而得到.在量子力学中, 算符编序有多种(正规编序、反正规编序和Weyl编序), 而Weyl编序非常特殊且有重要的应用, 特别是利用有序算符内的积分技术(IWOP), 文献[13]提出了Weyl编序算符的积分技术(IWWP).公式(2.2) Wigner算符的Weyl编序为

$ \begin{equation} \Delta \left( p, q\right) = \begin{array}{c} \colon \\ \colon \\ \end{array} \delta \left( p-P\right) \delta \left( q-Q\right) \begin{array}{c} \colon \\ \colon \\ \end{array}% . \label{eq:b4} \end{equation} $ (2.4)

因此, 直接用$q\rightarrow Q, $ $p\rightarrow P $替换$h\left( p, q\right) $, 即可得经典函数$f\left( p, q\right) $的量子对应算符

$ \begin{equation} F\left( P, Q\right) =% \begin{array}{c} \colon \\ \colon \\ \end{array}% h\left( P, Q\right) \begin{array}{c} \colon \\ \colon \\ \end{array}% =\int\!\!\! \int_{-\infty }^{\infty }{\rm d}p{\rm d}qh\left( p, q\right) \Delta \left( p, q\right) . \label{eq:b5} \end{equation}% $ (2.5)

对比式(1.1), 不难看出Weyl对应规则是一个算符Fredholm方程(OFE).注意到

$ \begin{eqnarray} \mbox{Tr}\left[\Delta \left( p_{1}, q_{1}\right) \Delta \left( p_{2}, q_{2}\right) \right] &=&\int \frac{{\rm d}^{2}z}{\pi }\left \langle z\right \vert \left[\Delta \left( p_{1}, q_{1}\right) \Delta \left( p_{2}, q_{2}\right) \right] \left \vert z\right \rangle \nonumber \\ &=&\frac{1}{2\pi }\delta \left( q_{1}-q_{2}\right) \delta \left( p_{1}-p_{2}\right), \label{eq:b6} \end{eqnarray}% $ (2.6)

同时, Weyl对应规则的逆变换为

$ 2\pi \text{Tr}\left[ F\left( P,Q \right)\Delta \left( q,p \right) \right]=2\pi \text{Tr}\left[ \int{}\int{\text{d}}{{q}_{1}}\text{d}{{p}_{1}}h\left( {{p}_{1}},{{q}_{1}} \right)\Delta \left( {{p}_{1}},{{q}_{1}} \right)\Delta \left( p,q \right) \right]=h\left( p,q \right). $ (2.7)

在多数情况下, 取$\alpha =\left( q+{\rm i}p\right) /\sqrt{2}$, 式(2.2)的Wigner算符可表示为

$ \begin{eqnarray} \Delta \left( p, q\right) &\rightarrow &\Delta \left( \alpha, \alpha ^{\ast }\right) =\int \frac{{\rm d}^{2}z}{\pi ^{2}}\left \vert \alpha +z\right \rangle \left \langle \alpha -z\right \vert {\rm e}^{\alpha z^{\ast }-\alpha ^{\ast }z} \nonumber \\ &=&\frac{1}{\pi }\colon \exp \left[-2\left( a^{\dagger }-\alpha ^{\ast }\right) \left( a-\alpha \right) \right] \colon =\frac{1}{2}% \begin{array}{c} \colon \\ \colon \\ \end{array}% \delta \left( a^{\dagger }-\alpha ^{\ast }\right) \delta \left( a-\alpha \right) \begin{array}{c} \colon \\ \colon \\ \end{array}% . \label{eq:b8} \end{eqnarray}% $ (2.8)

以致于(2.5)式的Weyl对应规则可表示为

$ \begin{equation} G\left( a, a^{\dagger }\right) =% \begin{array}{c} \colon \\ \colon \\ \end{array}% f\left( a, a^{\dagger }\right) \begin{array}{c} \colon \\ \colon \\ \end{array}% =2\int\!\!\! \int {\rm d}q{\rm d}pf\left( \alpha, \alpha ^{\ast }\right) \Delta \left( \alpha , \alpha ^{\ast }\right), \label{eq:b9} \end{equation}% $ (2.9)

于是, 其逆变换的公式为

$ \begin{equation} 2\pi {\rm Tr}\left[G\left( a, a^{\dagger }\right) \Delta \left( \alpha, \alpha ^{\ast }\right) \right] =2\pi {\rm Tr}\left[ \begin{array}{c} \colon \\ \colon \\ \end{array}% f\left( a, a^{\dagger }\right) \begin{array}{c} \colon \\ \colon \\ \end{array}% \Delta \left( \alpha, \alpha ^{\ast }\right) \right] =f\left( \alpha, \alpha ^{\ast }\right) . \label{eq:b10} \end{equation}% $ (2.10)

$G\left( a, a^{\dagger }\right) =\rho \left( a, a^{\dagger }\right) $, 即描述了量子系统的密度算符, 则有上式的逆变换关系可得

$ \begin{equation} 2\pi {\rm Tr}\left[\rho \left( a, a^{\dagger }\right) \Delta \left( \alpha, \alpha ^{\ast }\right) \right] =W\left( \alpha, \alpha ^{\ast }\right), \label{eq:b11} \end{equation} $ (2.11)

$W\left( \alpha, \alpha ^{\ast }\right) $表示准概率分布Wigner函数, 式(2.11)也称为Wigner-Weyl对应规则.

3 双变量厄米特多项式的新微分表示

在双体连续纠缠表象的量子理论中[14], 双变量厄米特多项式$H_{m, n}\left( \alpha, \alpha ^{\ast }\right) $是双模粒子数态的广义Bargmann表示, 即

$ \begin{eqnarray*} \left \vert m, n\right \rangle =\frac{a^{\dagger m}b^{\dagger m}}{\sqrt{m!n!}} \left \vert 0, 0\right \rangle \rightarrow \frac{1}{\sqrt{m!n!}}H_{m, n}\left( \xi, \xi ^{\ast }\right) {\rm e}^{-\frac{\left \vert \xi \right \vert ^{2}}{2}}, \end{eqnarray*} $

且该表示构成了一个正交完备的函数空间

$ \begin{equation} 2\int\!\!\! \int \frac{{\rm d}^{2}\xi }{\pi }{\rm e}^{-2\left \vert \xi \right \vert ^{2}}H_{m, n}\left( \sqrt{2}\xi, \sqrt{2}\xi ^{\ast }\right) H_{m^{\prime }, n^{\prime }}^{\ast }\left( \sqrt{2}\xi, \sqrt{2}\xi ^{\ast }\right) =\sqrt{% m!n!m^{\prime }!n^{\prime }!}\delta _{m, m^{\prime }}\delta _{n, n^{\prime }}. \label{eq:c1} \end{equation} $ (3.1)

式(3.1)表明任意函数$f\left( \alpha, \alpha ^{\ast }\right) $都可在该正交基下进行展开

$ \begin{equation} f\left( \alpha, \alpha ^{\ast }\right) =\sum_{m, n=0}^{\infty }C_{m, n}H_{m, n}^{\ast }\left( \sqrt{2}\alpha, \sqrt{2}\alpha ^{\ast }\right), \label{eq:c2} \end{equation} $ (3.2)

这里系数$C_{m, n}$可由下面的推导得到.由双变量厄米特多项式的生成函数(式(1.7)), 并考虑Wigner算符的正规乘积编序, 可以得到

$ \begin{matrix} {} \\ . \\ \end{matrix}\begin{matrix} \Delta \left( \alpha ,{{\alpha }^{*}} \right)\text{ }=\frac{1}{\pi }:\exp \left[ -2\left( {{a}^{\dagger }}-{{\alpha }^{*}} \right)\left( a-\alpha \right) \right]: \\ =\frac{1}{\pi }{{\text{e}}^{-2{{\left| \alpha \right|}^{2}}}}:\sum\limits_{m,n=0}^{\infty }{\frac{\sqrt{{{2}^{m+n}}}{{a}^{\dagger m}}{{a}^{n}}}{m!n!}}{{H}_{m,n}}\left( \sqrt{2}\alpha ,\sqrt{2}{{\alpha }^{*}} \right):. \\ \end{matrix} $ (3.3)

将式(3.2)和(3.3)代入式(2.9)得

$ \begin{eqnarray} G\left( {{a}^{\dagger }}, a\right) &=&2\int \frac{{\rm d}^{2}\alpha }{\pi }{\rm e}^{-2\left \vert \alpha \right \vert ^{2}}\colon \sum_{m, n=0}^{\infty }\frac{\sqrt{ 2^{m+n}}{{a}^{\dagger m}}a^{n}}{m!n!}H_{m, n}\left( \sqrt{2}\alpha, \sqrt{2}\alpha ^{\ast }\right) \colon \nonumber \\ &&\sum_{m^{\prime }, n^{\prime }=0}^{\infty }C_{m^{\prime }, n^{\prime }}H_{m^{\prime }, n^{\prime }}^{\ast }\left( \sqrt{2 }\alpha, \sqrt{2}\alpha ^{\ast }\right) \nonumber \\ &=&2\ \colon \sum_{m, n=0}^{\infty }\sum_{m^{\prime }, n^{\prime }=0}^{\infty }C_{m^{\prime }, n^{\prime }}\frac{\sqrt{2^{m+n}}{{a}^{\dagger m}}a^{n}}{m!n!}\ \colon \nonumber \\ && \int \frac{{\rm d}^{2}\alpha }{\pi }{\rm e}^{-2\left \vert \alpha \right \vert ^{2}}H_{m, n}\left( \sqrt{2}\alpha, \sqrt{2}\alpha ^{\ast }\right) H_{m^{\prime }, n^{\prime }}^{\ast }\left( \sqrt{2}\alpha, \sqrt{2}\alpha ^{\ast }\right) \nonumber\\ &=&\colon \sum_{m, n=0}^{\infty }C_{m, n}\sqrt{2^{m+n}}{{a}^{\dagger m}}a^{n}\colon \equiv \colon F\left( {{a}^{\dagger }}, a\right) \colon . \label{eq:c4} \end{eqnarray}% $ (3.4)

求解式(3.4)算符在相干表象中的期望值, 得

$ \begin{eqnarray*} \left \langle \alpha \right \vert \colon F\left( {{a}^{\dagger }}, a\right) \colon \left \vert \alpha \right \rangle &=&F\left( \alpha ^{\ast }, \alpha \right) =\left \langle \alpha \right \vert \colon \sum_{m, n=0}^{\infty }C_{m, n}\sqrt{% 2^{m+n}}{{a}^{\dagger m}}a^{n}\colon \left \vert \alpha \right \rangle \\ &=&\sum_{m, n=0}^{\infty }C_{m, n}\sqrt{2^{m+n}}\left( \alpha ^{\ast }\right) ^{m}\alpha ^{n}, \end{eqnarray*}% $

并且

$ \begin{eqnarray*} C_{m, n}=\frac{1}{m!n!\sqrt{2^{m+n}}}\left. \frac{\partial {}^{m}}{\partial \alpha ^{\ast }{}^{m}}\frac{\partial {}^{n}}{\partial \alpha {}^{n}}F\left( \alpha ^{\ast }, \alpha \right) \right \vert _{\alpha =0}. \end{eqnarray*}% $

于是, 由式(3.2)得

$ F\left( \alpha, \alpha ^{\ast }\right) =\sum_{m, n=0}^{\infty }H_{m, n}\left( \sqrt{2}\alpha, \sqrt{2}\alpha ^{\ast }\right) \frac{1}{m!n!\sqrt{2^{m+n}}}% \left. \frac{\partial {}^{m}}{\partial \alpha ^{\ast }{}^{m}}\frac{\partial {}^{n}}{\partial \alpha {}^{n}}F\left( \alpha ^{\ast }, \alpha \right) \right \vert _{\alpha =0}. $ (3.5)

上式是推导正规乘积算符的Weyl经典对应函数的新公式.若以$G_{1}\left( {{a}^{\dagger }}, a\right) =\colon F_{1}\left( {{a}^{\dagger }}, a\right) \colon =\colon {{a}^{\dagger m}}a^{n}\colon $为例, 从式(3.5)得

$ g_{1}\left( \alpha, \alpha ^{\ast }\right) =\frac{1}{\sqrt{2^{m+n}}}% H_{m, n}\left( \sqrt{2}\alpha, \sqrt{2}\alpha ^{\ast }\right) . $ (3.6)

同时, 考虑到(2.10)式中的逆变换关系, 则有

$ \begin{eqnarray*} g_{1}\left( \alpha, \alpha ^{\ast }\right)&=&2\pi \mbox{Tr}\left[G_{1}\left( {{a}^{\dagger }}, a\right) \Delta \left( \alpha, \alpha ^{\ast }\right) \right] =2\pi \mbox{Tr}\left[{{a}^{\dagger m}}a^{n}\Delta \left( \alpha, \alpha ^{\ast }\right) \right] \\ &=&\frac{1}{\sqrt{2^{m+n}}}H_{m, n}\left( \sqrt{2}\alpha, \sqrt{2}\alpha ^{\ast }\right). \end{eqnarray*} $

另一方面, 若给定任意算符$F\left( {{a}^{\dagger }}, a\right) $, 其经典对应函数可通过下面公式得到(具体推导过程见附录)

$ f\left( \alpha ^{\ast }, \alpha \right) ={\rm e}^{2\left \vert \alpha \right \vert ^{2}}\int \frac{{\rm d}^{2}\beta }{\pi }\left \langle -\beta \right \vert F\left( a^{\dagger }, a\right) \left \vert \beta \right \rangle {\rm e}^{2\left( \alpha \beta ^{\ast }-\alpha ^{\ast }\beta \right) }. $ (3.7)

$G_{1}\left( {{a}^{\dagger }}, a\right) =\colon {{a}^{\dagger m}}a^{n}\colon $代入到式(3.7)中, 得

$ \begin{matrix} {{g}_{1}}\left( \alpha ,{{\alpha }^{*}} \right)\text{ }={{\text{e}}^{2{{\left| \alpha \right|}^{2}}}}\int{\frac{{{\text{d}}^{2}}\beta }{\pi }}\langle -\beta |{{G}_{1}}\left( {{a}^{\dagger }},a \right)\left| \beta \right\rangle {{\text{e}}^{2\left( \alpha {{\beta }^{*}}-{{\alpha }^{*}}\beta \right)}} \\ ={{\text{e}}^{2{{\left| \alpha \right|}^{2}}}}\int{\frac{{{\text{d}}^{2}}\beta }{\pi }}\langle -\beta |:{{a}^{\dagger m}}{{a}^{n}}:\left| \beta \right\rangle {{\text{e}}^{2\left( \alpha {{\beta }^{*}}-{{\alpha }^{*}}\beta \right)}} \\ ={{\text{e}}^{2{{\left| \alpha \right|}^{2}}}}\int{\frac{{{\text{d}}^{2}}\beta }{\pi }}{{\left( -{{\beta }^{*}} \right)}^{m}}{{\beta }^{n}}{{\text{e}}^{-2{{\left| \beta \right|}^{2}}+2\left( \alpha {{\beta }^{*}}-{{\alpha }^{*}}\beta \right)}}. \\ \end{matrix} $

考虑$\sqrt{2}\beta \rightarrow \beta, \sqrt{2}\beta ^{\ast }\rightarrow \beta ^{\ast }, $则上式变为

$ \begin{matrix} g_{1}\left( \alpha, \alpha ^{\ast }\right) &=&\frac{\left( -1\right) ^{m}{\rm e}^{2\left \vert \alpha \right \vert ^{2}}}{\left( \sqrt{2}\right) ^{m+n}}% \int \frac{{\rm d}^{2}\beta }{\pi }\beta ^{\ast m}\beta ^{n}\exp \left[-\left \vert \beta \right \vert ^{2}+\sqrt{2}\left( \alpha \beta ^{\ast }-\alpha ^{\ast }\beta \right) \right] \\ &=&\frac{\left( -1\right) ^{m-n}{\rm e}^{2\left \vert \alpha \right \vert ^{2}}}{% 2^{m+n}}\frac{\partial {}^{m}}{\partial \alpha {}^{m}}\frac{\partial {}^{n}}{% \partial \alpha ^{\ast }{}^{n}}\int \frac{{\rm d}^{2}\beta }{\pi }\exp \left[ -\left \vert \beta \right \vert ^{2}+\sqrt{2}\left( \alpha \beta ^{\ast }-\alpha ^{\ast }\beta \right) \right] . \end{matrix} $

利用如下积分公式

$ \int{\frac{{{\text{d}}^{2}}\alpha }{\pi }}\exp \left[ h{{\left| \alpha \right|}^{2}}+s\alpha +\eta {{\alpha }^{*}} \right]=\frac{1}{h}\exp \left[ -\frac{s\eta }{h} \right],\text{ }Re\left[ h \right] < 0, $

则有

$ g_{1}\left( \alpha, \alpha ^{\ast }\right) =\frac{\left( -1\right) ^{m-n}{\rm e}^{2\left \vert \alpha \right \vert ^{2}}}{2^{m+n}}\frac{\partial {}^{m}}{\partial \alpha {}^{m}}\frac{\partial {}^{n}}{\partial \alpha ^{\ast }{}^{n}}\exp \left( -2\left \vert \alpha \right \vert ^{2}\right) . $ (3.8)

比较式(3.6)和(3.8), 并令$\sqrt{2} \alpha \rightarrow \alpha, \sqrt{2}\alpha ^{\ast }\rightarrow \alpha ^{\ast } $, 则

$ H_{m, n}\left( \alpha, \alpha ^{\ast }\right) =\left( -1\right) ^{m-n}{\rm e}^{\left \vert \alpha \right \vert ^{2}}\frac{\partial {}^{m}}{ \partial \alpha ^{\ast }{}^{m}}\frac{\partial {}^{n}}{\partial \alpha {}^{n}} \exp \left( -\left \vert \alpha \right \vert ^{2}\right), $ (3.9)

这正是双变量厄米特多项式生成函数的微分形式, 若$m=n$

$ H_{m, m}\left( \alpha, \alpha ^{\ast }\right) =\exp \left( \left \vert \alpha \right \vert ^{2}\right) \frac{\partial {}^{2m}}{\partial \alpha ^{\ast }{}{}^{m}\alpha ^{m}}\exp \left( -\left \vert \alpha \right \vert ^{2}\right) . $
4 厄米特多项式的一类广义微分表示

为了产生非对称量子力学表象, 文献[18]引入非幺正算符$\hat{U}$, 其定义为

$ \begin{matrix} \hat{U}=\frac{1}{\sqrt{\mu }}\int{\frac{{{\text{d}}^{2}}z}{\pi }}\left| \left( \begin{matrix} \mu \nu \\ \sigma \tau \\ \end{matrix} \right)\left( \begin{matrix} z \\ {{z}^{*}} \\ \end{matrix} \right) \right\rangle \langle \left( \begin{matrix} z \\ {{z}^{*}} \\ \end{matrix} \right)|\text{ } \\ =\frac{1}{\sqrt{\mu }}:\exp \left[ -\frac{\nu }{2\mu }{{a}^{\dagger 2}}+\left( \frac{1}{\mu }-1 \right){{a}^{\dagger }}a+\frac{\sigma }{2\mu }{{a}^{2}} \right]:, \\ \end{matrix} $ (4.1)

这是经典相空间辛变换$\left( z, z^{\ast }\right) \rightarrow \left( \mu z+\nu z^{\ast }, \sigma z+\tau z^{\ast }\right) $的量子对应算符, 上式中的$\left| \left( \begin{matrix} z \\ {{z}^{*}} \\ \end{matrix} \right) \right\rangle =\exp \left( z{{a}^{\dagger }}-{{z}^{*}}a \right)\left| 0 \right\rangle $表示相干态[19-20], 且

$ \left| \left( \begin{matrix} \mu & \nu \\ \sigma & \tau \\ \end{matrix} \right)\left( \begin{matrix} z \\ {{z}^{*}} \\ \end{matrix} \right) \right\rangle =\left| \left( \begin{matrix} \mu z+\nu {{z}^{*}} \\ \sigma z+\tau {{z}^{*}} \\ \end{matrix} \right) \right\rangle =\exp \left[ \left( \mu z+\nu {{z}^{*}} \right){{a}^{\dagger }}-\left( \sigma z+\tau {{z}^{*}} \right)a \right]\left| 0 \right\rangle . $

$\hat{U}$的逆算符定义为

$ \begin{matrix} {{{\hat{U}}}^{-1}}\text{ }=\sqrt{\mu }\int{\frac{{{\text{d}}^{2}}z}{\pi }}\left| \left( \begin{matrix} z \\ {{z}^{*}} \\ \end{matrix} \right) \right\rangle \langle \left( \begin{matrix} \tau & -\nu \\ -\sigma & \mu \\ \end{matrix} \right)\left( \begin{matrix} z \\ {{z}^{*}} \\ \end{matrix} \right)|\text{ } \\ \ \ \ =\frac{1}{\sqrt{\tau }}:\exp \left[ \frac{\nu }{2\tau }{{a}^{\dagger 2}}+\left( \frac{1}{\tau }-1 \right){{a}^{\dagger }}a-\frac{\sigma }{2\tau }{{a}^{2}} \right]:. \\ \end{matrix}$ (4.2)

从式(4.1)和(4.2)不难发现:${{\hat{U}}^{\dagger }}\ne {{\hat{U}}^{-1}}$, 且$\hat{U}$产生的相似变换为

$ \hat{U}a{{\hat{U}}^{-1}}=\mu a+\nu {{a}^{\dagger }},\ \hat{U}{{a}^{\dagger }}{{\hat{U}}^{-1}}=\sigma a+\tau {{a}^{\dagger }} $ (4.3)

和它的逆变换

$ {{\hat{U}}^{-1}}a\hat{U}=\tau a-\nu {{a}^{\dagger }},\ {{\hat{U}}^{-1}}{{a}^{\dagger }}\hat{U}=\mu {{a}^{\dagger }}-\sigma a, $ (4.4)

这里四个复参量满足$\mu \tau -\nu \sigma =1$, 从而保证等式的幺正性, 即$\left[\mu a+\nu a^{\dagger }, \ \sigma a+\tau a^{\dagger }\right] =1.$需要着重指出的是:文献[4, 15-16]中已经证明了Weyl编序具有相似变换不变的性质, 即

$ \hat{U}G\left( {{a}^{\dagger }},a \right){{\hat{U}}^{-1}}=\hat{U}\begin{matrix} : \\ : \\ \end{matrix}g\left( {{a}^{\dagger }},a \right)\begin{matrix} : \\ : \\ \end{matrix}{{\hat{U}}^{-1}}=\begin{matrix} : \\ : \\ \end{matrix}g\left( \sigma a+\tau {{a}^{\dagger }},\mu a+\nu {{a}^{\dagger }} \right)\begin{matrix} : \\ : \\ \end{matrix}. $ (4.5)
4.1 两个单变量厄米特多项式乘积的一类广义微分表示

假定$G_{2}\left( {{a}^{\dagger }}, a\right) =a^{\dagger m}\hat{U} \left \vert 0\right \rangle \left \langle 0\right \vert \hat{U}^{-1}a^{n}, $由式(4.4)和(2.10)可得$G_{2}\left( a^{\dagger }, a\right) $的Weyl经典对应是

$ {{g}_{2}}\left( {{\alpha }^{*}},\alpha \right)\text{ }=2\pi \text{Tr}\left[ {{G}_{2}}\left( {{a}^{\dagger }},a \right)\Delta \left( \alpha ,{{\alpha }^{*}} \right) \right]=2\pi \text{Tr}\left[ {{a}^{\dagger m}}\hat{U}\left| 0 \right\rangle \langle 0|{{{\hat{U}}}^{-1}}{{a}^{n}}\Delta \left( \alpha ,{{\alpha }^{*}} \right) \right]\text{ } \\ =2\pi \text{Tr}\left[ \hat{U}{{\left( \mu {{a}^{\dagger }}-\sigma a \right)}^{m}}\left| 0 \right\rangle \langle 0|{{\left( \tau a-\nu {{a}^{\dagger }} \right)}^{n}}{{{\hat{U}}}^{-1}}\Delta \left( \alpha ,{{\alpha }^{*}} \right) \right]. $ (4.6)

参考公式

$ \left( fa+g{{a}^{\dagger }}\right) ^{n}=\left( -{\rm i}\sqrt{\frac{fg}{2}}\right) ^{n}\colon H_{n}\left( {\rm i}\sqrt{\frac{f}{2g}}a+{\rm i}\sqrt{\frac{g}{2f}}{{a}^{\dagger }}\right) \colon, $

则得到

$ {{\left( \mu {{a}^{\dagger }}-\sigma a \right)}^{m}}\text{ }={{\left( \sqrt{\frac{\sigma \mu }{2}} \right)}^{m}}:{{H}_{m}}\left( -\sqrt{\frac{\sigma }{2\mu }}a-\sqrt{%\frac{\mu }{2\sigma }}{{a}^{\dagger }} \right):, $ (4.7)
$ {{\left( \tau a-\nu {{a}^{\dagger }} \right)}^{n}}\text{ }={{\left( \sqrt{\frac{\nu \tau }{2%}} \right)}^{n}}:{{H}_{n}}\left( -\sqrt{\frac{\tau }{2\nu }}a-\sqrt{\frac{%\nu }{2\tau }}{{a}^{\dagger }} \right):. $ (4.8)

于是

$ {{\left( -\sigma a+\mu {{a}^{\dagger }} \right)}^{m}}\left| 0 \right\rangle \langle 0|{{\left( \tau a-\nu {{a}^{\dagger }} \right)}^{n}} \\ ={{\left( \sqrt{\frac{\sigma \mu }{2}} \right)}^{m}}{{\left( \sqrt{\frac{\nu \tau }{2}} \right)}^{n}}:{{H}_{m}}\left( -\sqrt{\frac{\mu }{2\sigma }}{{a}^{\dagger }} \right)\exp \left[ -{{a}^{\dagger }}a \right]{{H}_{n}}\left( -\sqrt{\frac{%\tau }{2\nu }}a \right):, $ (4.9)

这里真空投影算符$\left| 0 \right\rangle \langle 0|=:\exp \left[ -{{a}^{\dagger }}a \right]:.$利用公式(该公式推导详见附录)得

$ \begin{equation} F\left( a^{\dagger }, a\right) = \begin{array}{c} \colon \\ \colon \\ \end{array}% f\left( a^{\dagger }, a\right) \begin{array}{c} \colon \\ \colon \\ \end{array}% =2\int \frac{{\rm d}^{2}z}{\pi }% \begin{array}{c} \colon \\ \colon \\ \end{array}% \left \langle -z\right \vert F\left( a^{\dagger }, a\right) \left \vert z\right \rangle \exp \left[2\left( az^{\ast }-{{a}^{\dagger }}z+{{a}^{\dagger }}a\right) % \right] \begin{array}{c} \colon \\ \colon \\ \end{array}% , \label{eq:d10} \end{equation}% $ (4.10)

$\left( -\sigma a+\mu a^{\dagger }\right) ^{m}\left \vert 0\right \rangle \left \langle 0\right \vert \left( \tau a-\nu a^{\dagger }\right) ^{n}$的Weyl编序形式为

$ \begin{eqnarray} &&\left( -\sigma a+\mu a^{\dagger }\right) ^{m}\left \vert 0\right \rangle \left \langle 0\right \vert \left( \tau a-\nu a^{\dagger }\right) ^{n}=2\left( \sqrt{\frac{\sigma \mu }{2}}\right) ^{m}\left( -\sqrt{\frac{\nu \tau }{2}}\right) ^{n} \nonumber \\ &&\times \begin{array}{c} \colon \\ \colon \\ \end{array}% \int \frac{{\rm d}^{2}z}{\pi }H_{m}\left( \sqrt{\frac{\mu }{2\sigma }}z^{\ast }\right) H_{n}\left( \sqrt{\frac{\tau }{2\nu }}z\right) \exp \left[-\left \vert z\right \vert ^{2}-2{{a}^{\dagger }}z+2az^{\ast }+2{{a}^{\dagger }}a\right] \begin{array}{c} \colon \\ \colon \\ \end{array}% . \label{eq:d11} \end{eqnarray}% $ (4.11)

文献[11]中曾证明

$ \begin{eqnarray} &&\int \frac{{\rm d}^{2}z}{\pi }H_{m}\left( z^{\ast }\right) H_{n}\left( z\right) \exp \left[-\left( z-\lambda \right) \left( z^{\ast }-\lambda ^{\ast }\right) \right] \nonumber \\ &=&\sum_{l=0}^{\min \left[m, n\right] }\frac{2^{2l}m!n!}{% l!\left( m-l\right) !\left( n-l\right) !}H_{m-l}\left( \lambda ^{\ast }\right) H_{n-l}\left( \lambda \right), \label{eq:d12} \end{eqnarray} $ (4.12)

运用上述公式可进一步获得如下积分公式

$ \begin{eqnarray} &&\int \frac{{\rm d}^{2}z}{\pi }H_{m}\left( \alpha z^{\ast }\right) H_{n}\left( \beta z\right) \exp \left[-\left( z-\lambda \right) \left( z^{\ast }-\lambda ^{\ast }\right) \right] \nonumber \\ &=&\sum_{l=0}^{\min \left[m, n\right] }\frac{% \left( 4\alpha \beta \right) ^{l}m!n!}{l!\left( m-l\right) !\left( n-l\right) !}H_{m-l}\left( \alpha \lambda ^{\ast }\right) H_{n-l}\left( \beta \lambda \right), \label{eq:d13} \end{eqnarray} $ (4.13)

于是

$ \begin{eqnarray} &&\left( -\sigma a+\mu a^{\dagger }\right) ^{m}\left \vert 0\right \rangle \left \langle 0\right \vert \left( \tau a-\nu a^{\dagger }\right) ^{n}=2m!n!\left( -\sqrt{\frac{\sigma \mu }{2}}\right) ^{m}\left( -\sqrt{% \frac{\nu \tau }{2}}\right) ^{n} \nonumber \\ &&\times \begin{array}{c} \colon \\ \colon \\ \end{array}% \sum_{l=0}^{\min \left[m, n\right] }\frac{\left( -2\sqrt{\frac{\mu \tau }{% \sigma \nu }}\right) ^{l}}{l!\left( m-l\right) !\left( n-l\right) !}% H_{m-l}\left( \sqrt{\frac{2\mu }{\sigma }}{{a}^{\dagger }}\right) H_{n-l}\left( \sqrt{\frac{2\tau }{\nu }}a\right) \exp \left[-2{{a}^{\dagger }}a\right] \begin{array}{c} \colon \\ \colon \\ \end{array}% . \label{eq:d14} \end{eqnarray}% $ (4.14)

注意到Weyl编序的相似变换不变性特征(见(4.5)式), 并利用式(2.10)中的Weyl对应规则, 可推导算符$G_{2}\left( {{a}^{\dagger }}, a\right) $的经典对应

$ \begin{eqnarray} && g_{2}\left( \alpha ^{\ast }, \alpha \right)\nonumber \\ &=&2\pi \mbox{Tr}\left[ G_{2}\left( a^{\dagger }, a\right) \Delta \left( \alpha, \alpha ^{\ast }\right) \right] =2\pi \mbox{Tr}\left[a^{\dagger m}\hat{U}\left \vert 0\right \rangle \left \langle 0\right \vert \hat{U}^{-1}a^{n}\Delta \left( \alpha, \alpha ^{\ast }\right) \right] \nonumber \\ &=&2m!n!\left( -\sqrt{\frac{\sigma \mu }{2}}\right) ^{m}\left( -\sqrt{\frac{% \nu \tau }{2}}\right) ^{n}\sum_{l=0}^{\min \left[m, n\right] }\frac{\left( -2% \sqrt{\frac{\mu \tau }{\sigma \nu }}\right) ^{l}}{l!\left( m-l\right) !\left( n-l\right) !}H_{m-l}\left[\sqrt{\frac{2\mu }{\sigma }}\left( \sigma \alpha +\tau \alpha ^{\ast }\right) \right] \nonumber \\ &&\times H_{n-l}\left[\sqrt{\frac{2\tau }{\nu }}\left( \mu \alpha +\nu \alpha ^{\ast }\right) \right] \exp \left[-2\left( \sigma \alpha +\tau \alpha ^{\ast }\right) \left( \mu \alpha +\nu \alpha ^{\ast }\right) \right] .~~ \label{eq:d15} \end{eqnarray} $ (4.15)

再由式(3.7)得

$ \begin{eqnarray} && g_{2}\left( \alpha ^{\ast }, \alpha \right)\nonumber \\ &=&{\rm e}^{2\left \vert \alpha \right \vert ^{2}}\int \frac{{\rm d}^{2}\beta }{\pi }\left \langle -\beta \right \vert a^{\dagger m}\hat{U}\left \vert 0\right \rangle \left \langle 0\right \vert \hat{U}^{-1}a^{n}\left \vert \beta \right \rangle {\rm e}^{2\left( \alpha \beta ^{\ast }-\alpha ^{\ast }\beta \right) } \nonumber \\ &=&\frac{1}{\sqrt{\mu \tau }}{\rm e}^{2\left \vert \alpha \right \vert ^{2}}\int \frac{{\rm d}^{2}\beta }{\pi }\left( -\beta ^{\ast }\right) ^{m}\beta ^{n}\exp % \left[-\left \vert \beta \right \vert ^{2}-2\alpha ^{\ast }\beta +2\alpha \beta ^{\ast }-\frac{\sigma }{2\tau }\beta ^{2}-\frac{\nu }{2\mu }\beta ^{\ast }{}^{2}\right] \nonumber \\ &=&\frac{{\rm e}^{2\left \vert \alpha \right \vert ^{2}}}{\sqrt{\mu \tau }}\frac{ \left( -1\right) ^{m+n}}{2^{m+n}}\frac{\partial ^{m}}{\partial \alpha ^{m}} \frac{\partial ^{n}}{\partial \alpha ^{\ast n}}\int \frac{{\rm d}^{2}\beta }{\pi } \exp \left[-\left \vert \beta \right \vert ^{2}-2\alpha ^{\ast }\beta +2\alpha \beta ^{\ast }-\frac{\sigma }{2\tau }\beta ^{2}-\frac{\nu }{2\mu } \beta ^{\ast }{}^{2}\right] .~~ \label{eq:d16} \end{eqnarray} $ (4.16)

利用满足收敛条件Re$\left( h\pm f\pm g\right) <0$和Re$ \left( \frac{h^{2}-4fg}{h\pm f\pm g}\right) <0$的积分公式

$ \begin{eqnarray*} \int \frac{{\rm d}^{2}\alpha }{\pi }\exp \left[h\left \vert \alpha \right \vert ^{2}+s\alpha +\eta \alpha ^{\ast }+f\alpha ^{2}+g\alpha ^{\ast 2}\right] = \frac{1}{\sqrt{h^{2}-4fg}}\exp \left[\frac{-hs\eta +s^{2}g+\eta ^{2}f}{ h^{2}-4fg}\right] \end{eqnarray*}% $

得到

$ \begin{equation} g_{2}\left( \alpha ^{\ast }, \alpha \right) ={\rm e}^{2\left \vert \alpha \right \vert ^{2}}\frac{\left( -1\right) ^{m+n}}{2^{m+n}}\frac{\partial ^{m}}{ \partial \alpha ^{m}}\frac{\partial ^{n}}{\partial \alpha ^{\ast n}}\exp \left[-4\mu \tau \left \vert \alpha \right \vert ^{2}-2\nu \tau \alpha ^{\ast 2}-2\sigma \mu \alpha ^{2}\right] . \label{eq:d17} \end{equation}% $ (4.17)

对比式(4.15)与(4.17)得

$ \begin{eqnarray} &&\exp \left[4\mu \tau \left \vert \alpha \right \vert ^{2}+2\nu \tau \alpha ^{\ast 2}+2\sigma \mu \alpha ^{2}\right] \frac{\partial ^{m}}{% \partial \alpha ^{m}}\frac{\partial ^{n}}{\partial \alpha ^{\ast n}}\exp % \left[-4\mu \tau \left \vert \alpha \right \vert ^{2}-2\nu \tau \alpha ^{\ast 2}-2\sigma \mu \alpha ^{2}\right] \nonumber \\ &=&2\left( 2\mu \sigma \right) ^{\frac{m}{2}}\left( 2\tau \nu \right) ^{% \frac{n}{2}}\sum_{l=0}^{\min \left[m, n\right] }\left(\begin{array}{c}m\\ l\end{array}\right)\left(\begin{array}{c}n\\ l\end{array}\right)% l!\left( -\sqrt{\frac{4\mu \tau }{\sigma \nu }}\right) ^{l} \nonumber \\ &&\times H_{m-l}\left[\sqrt{\frac{2\mu }{\sigma }}\left( \sigma \alpha +\tau \alpha ^{\ast }\right) \right] H_{n-l}\left[\sqrt{\frac{2\tau }{\nu }% }\left( \mu \alpha +\nu \alpha ^{\ast }\right) \right] . \label{eq:d18} \end{eqnarray}% $ (4.18)

这是两个单变量厄米特多项式乘积的广义微分生成函数.如果取$\tau =\mu ^{\ast }, $ $\sigma =\nu ^{\ast }$满足$\left \vert \mu \right \vert ^{2}-\left \vert \nu \right \vert ^{2}=1, $保证算符$ \hat{U}$的幺正性, 则上式可简写为

$ \begin{eqnarray} &&\exp \left[4\left \vert \mu \right \vert ^{2}\left \vert \alpha \right \vert ^{2}+2\mu ^{\ast }\nu \alpha ^{\ast 2}+2\mu \nu ^{\ast }\alpha ^{2}% \right] \frac{\partial ^{m}}{\partial \alpha ^{m}}\frac{\partial ^{n}}{% \partial \alpha ^{\ast n}}\exp \left[-4\left \vert \mu \right \vert ^{2}\left \vert \alpha \right \vert ^{2}-2\mu ^{\ast }\nu \alpha ^{\ast 2}-2\mu \nu ^{\ast }\alpha ^{2}\right] \nonumber \\ &=&2\left( 2\mu \nu ^{\ast }\right) ^{\frac{m}{2}}\left( 2\mu ^{\ast }\nu \right) ^{\frac{n}{2}}\sum_{l=0}^{\min \left[m, n\right] }\left(\begin{array}{c}m\\ l\end{array}\right)% \left(\begin{array}{c}n\\ l\end{array}\right)l!\left( -\frac{2\left \vert \mu \right \vert }{\left \vert \nu \right \vert }\right) ^{l} \nonumber \\ &&\times H_{m-l}\left[\sqrt{\frac{2\mu }{\nu ^{\ast }}}\left( \nu ^{\ast }\alpha +\mu ^{\ast }\alpha ^{\ast }\right) \right] H_{n-l}\left[\sqrt{ \frac{2\mu ^{\ast }}{\nu }}\left( \mu \alpha +\nu \alpha ^{\ast }\right) \right] . \label{eq:d19} \end{eqnarray}% $ (4.19)

$m=n$时, 上式则进一步简化为

$ \exp \left[ 4{{\left| \mu \right|}^{2}}{{\left| \alpha \right|}^{2}}+2{{\mu }^{*}}\nu {{\alpha }^{*2}}+2\mu {{\nu }^{*}}{{\alpha }^{2}} \right]\frac{{{\partial }^{m}}}{\partial {{\alpha }^{m}}}\frac{{{\partial }^{m}}}{\partial {{\alpha }^{*m}}}\exp \left[ -4{{\left| \mu \right|}^{2}}{{\left| \alpha \right|}^{2}}-2{{\mu }^{*}}\nu {{\alpha }^{*2}}-2\mu {{\nu }^{*}}{{\alpha }^{2}} \right]\text{ } \\ ={{2}^{m+1}}{{\left| \mu \right|}^{m}}{{\left| \nu \right|}^{m}}\sum\limits_{l=0}^{m}{\left( \begin{matrix} m \\ l \\ \end{matrix} \right)}\left( \begin{matrix} m \\ l \\ \end{matrix} \right)l!{{\left( -\frac{2\left| \mu \right|}{\left| \nu \right|} \right)}^{l}}{{\left| {{H}_{m-l}}\left[ \sqrt{\frac{2\mu }{{{\nu }^{*}}}}\left( {{\nu }^{*}}\alpha +{{\mu }^{*}}{{\alpha }^{*}} \right) \right] \right|}^{2}}. $ (4.20)
4.2 双变量厄米特多项式的广义微分生成函数

本节将推导一类双变量厄米特多项式的广义微分生成函数.由式(4.7)与(4.8), 算符$G_{2}\left( {{a}^{\dagger }}, a\right) =a^{\dagger m}\hat{U}\left \vert 0\right \rangle \left \langle 0\right \vert \hat{U}^{-1}a^{n}\ $的经典对应为

$ \begin{eqnarray*} && g_{2}\left( \alpha ^{\ast }, \alpha \right)\\ &=&2\pi {\rm Tr}\left[\hat{U}\left( \mu a^{\dagger }-\sigma a\right) ^{m}\left \vert 0\right \rangle \left \langle 0\right \vert \left( \tau a-\nu a^{\dagger }\right) ^{n}\hat{U}% ^{-1}\Delta \left( \alpha, \alpha ^{\ast }\right) \right] \\ &=&2\pi \left( -\sqrt{\frac{\sigma \mu }{2}}\right) ^{m}\left( -\sqrt{\frac{% \nu \tau }{2}}\right) ^{n}\mbox{Tr}\left[\hat{U}H_{m}\left( \sqrt{\frac{\mu }{2\sigma }}{{a}^{\dagger }}\right) \left \vert 0\right \rangle \left \langle 0\right \vert H_{n}\left( \sqrt{\frac{\tau }{2\nu }}a\right) \hat{U}% ^{-1}\Delta \left( \alpha, \alpha ^{\ast }\right) \right] . \end{eqnarray*}% $

由于

$ \begin{eqnarray*} H_{m}\left( x\right) =\sum_{k=0}^{\left[m/2\right] }\frac{\left( -1\right) ^{k}m!}{k!\left( m-2k\right) !}\left( 2x\right) ^{m-2k}, \end{eqnarray*}% $

$ {{g}_{2}}\left( {{\alpha }^{*}},\alpha \right)\text{ }=2\pi {{\left( -\frac{\mu }{2} \right)}^{m}}{{\left( -\frac{\tau }{2} \right)}^{n}}\sum\limits_{k=0}^{\left[ m/2 \right]}{\sum\limits_{l=0}^{\left[ n/2 \right]}{\frac{{{\left( -\frac{\sigma }{2\mu } \right)}^{k}}m!}{k!\sqrt{\left( m-2k \right)!}}}}\frac{{{\left( -\frac{\nu }{2\tau } \right)}^{l}}n!}{l!\sqrt{\left( n-2l \right)!}} \\ \times \text{Tr}\left[ \hat{U}\left| m-2k \right\rangle \langle n-2l|{{{\hat{U}}}^{-1}}\Delta \left( \alpha ,{{\alpha }^{*}} \right) \right]. $ (4.21)

对于粒子数投影算符$\left \vert m\right \rangle \left \langle n\right \vert \ $来说, 利用式(4.10)可得其Weyl编序乘积形式

$ \begin{align} & \left| m \right\rangle \langle n|\text{ }=2\int{\frac{{{\text{d}}^{2}}z}{\pi }}\begin{matrix} : \\ : \\ \end{matrix}\langle -z|\left. m \right\rangle \left\langle n \right.\left| z \right\rangle \exp \left[ 2\left( a{{z}^{*}}-{{a}^{\dagger }}z+{{a}^{\dagger }}a \right) \right]\begin{matrix} : \\ : \\ \end{matrix}\ \ \\ & \ \ \ \ \ \ \ \ \ \ \ \ =2\int{\frac{{{\text{d}}^{2}}z}{\pi }}\begin{matrix} : \\ : \\ \end{matrix}\frac{{{\left( -{{z}^{*}} \right)}^{m}}{{z}^{n}}}{\sqrt{n!m!}}\exp \left[ -2{{\left| z \right|}^{2}}+2\left( a{{z}^{*}}-{{a}^{\dagger }}z+{{a}^{\dagger }}a \right) \right]\begin{matrix} : \\ : \\ \end{matrix}. \\ \end{align} $ (4.22)

利用积分公式

$ \begin{eqnarray*} \int \frac{{\rm d}^{2}\beta }{\pi }\beta ^{\ast k}\beta ^{l}\exp \left[-h\left \vert \beta \right \vert ^{2}+s\beta +f\beta ^{\ast }\right] =\left( -{\rm i}\right) ^{k+l}h^{-\frac{k+l}{2}-1}{\rm e}^{\frac{sf}{h}}H_{k, l}\left( \frac{{\rm i}s}{ \sqrt{h}}, \frac{{\rm i}f}{\sqrt{h}}\right), \end{eqnarray*} $

$ \left| m \right\rangle \langle n|=\frac{2}{\sqrt{n!m!}}\begin{matrix} : \\ : \\ \end{matrix}{{H}_{m,n}}\left( 2{{a}^{\dagger }},2a \right)\exp \left( -2{{a}^{\dagger }}a \right)\begin{matrix} : \\ : \\ \end{matrix}. $ (4.23)

将式(4.5)与(4.23)比较, 得

$ \begin{eqnarray*} g_{2}\left( \alpha ^{\ast }, \alpha \right) &=&4\pi \left( -\frac{\mu }{2}% \right) ^{m}\left( -\frac{\tau }{2}\right) ^{n}\sum_{k=0}^{\left[m/2\right] }\sum_{l=0}^{\left[n/2\right] }\frac{\left( -\frac{\sigma }{2\mu }\right) ^{k}m!}{k!\left( m-2k\right) !}\frac{\left( -\frac{\nu }{2\tau }\right) ^{l}n!}{l!\left( n-2l\right) !} \\ &&\times \mbox{Tr}\Big[ \begin{array}{c} \colon \\ \colon \\ \end{array}% H_{m-2k, n-2l}\left[2\left( \sigma a+\tau a^{\dagger }\right), 2\left( \mu a+\nu a^{\dagger }\right) \right] \\ &&\times \exp \left[-2\left( \sigma a+\tau a^{\dagger }\right) \left( \mu a+\nu a^{\dagger }\right) \right] \begin{array}{c} \colon \\ \colon \\ \end{array}% \Delta \left( \alpha, \alpha ^{\ast }\right) \Big] . \end{eqnarray*}% $

利用Weyl对应规则(式(2.10))可得出$G_{2}\left( {{a}^{\dagger }}, a\right) $的经典对应为

$ {{g}_{2}}\left( {{\alpha }^{*}},\alpha \right)\text{ }=2{{\left( -\frac{\mu }{2} \right)}^{m}}{{\left( -\frac{\tau }{2} \right)}^{n}}\exp \left[ -2\left( \sigma \alpha +\tau {{\alpha }^{*}} \right)\left( \mu \alpha +\nu {{\alpha }^{*}} \right) \right]\text{} \\ \times \sum\limits_{k=0}^{\left[ m/2 \right]}{\sum\limits_{l=0}^{\left[ n/2 \right]}{\frac{{{\left( -\frac{\sigma }{2\mu } \right)}^{k}}m!}{k!\left( m-2k \right)!}}}\frac{{{\left( -\frac{\nu }{2\tau } \right)}^{l}}n!}{l!\left( n-2l \right)!}{{H}_{m-2k,n-2l}}\left[ 2\left( \sigma \alpha +\tau {{\alpha }^{*}} \right),2\left( \mu \alpha +\nu {{\alpha }^{*}} \right) \right].\text{ } $ (4.24)

比较式(4.24)与(4.17), 可得一个简约的表达式, 即

$ \exp \left[ 4\mu \tau {{\left| \alpha \right|}^{2}}+2\nu \tau {{\alpha }^{*2}}+2\sigma \mu {{\alpha }^{2}} \right]\frac{{{\partial }^{m}}}{\partial {{\alpha }^{m}}}\frac{{{\partial }^{n}}}{\partial {{\alpha }^{*n}}}\exp \left[ -4\mu \tau {{\left| \alpha \right|}^{2}}-2\nu \tau {{\alpha }^{*2}}-2\sigma \mu {{\alpha }^{2}} \right] \\ =2{{\mu }^{m}}{{\tau }^{n}}\sum\limits_{k=0}^{\left[ m/2 \right]}{\sum\limits_{l=0}^{\left[ n/2 \right]}{\frac{{{\left( -\frac{\sigma }{2\mu } \right)}^{k}}m!}{k!\left( m-2k \right)!}}}\frac{{{\left( -\frac{\nu }{2\tau } \right)}^{l}}n!}{l!\left( n-2l \right)!}{{H}_{m-2k,n-2l}}\left[ 2\left( \sigma \alpha +\tau {{\alpha }^{*}} \right),2\left( \mu \alpha +\nu {{\alpha }^{*}} \right) \right]. $ (4.25)

式(4.24)的右边为双变量厄米特多项式的求和形式, 而式(4.17)则为两个单变量厄米特多项式的乘积形式, 式(4.17)和(4.24)都为一类新的厄米特多项式的广义微分生成函数.对于$m=n$情况下, 式(4.24)可简化为

$ \begin{eqnarray} &&\exp \left[4\mu \tau \left \vert \alpha \right \vert ^{2}+2\nu \tau \alpha ^{\ast 2}+2\sigma \mu \alpha ^{2}\right] \frac{\partial ^{m}}{% \partial \alpha ^{m}}\frac{\partial ^{m}}{\partial \alpha ^{\ast m}}\exp % \left[-4\mu \tau \left \vert \alpha \right \vert ^{2}-2\nu \tau \alpha ^{\ast 2}-2\sigma \mu \alpha ^{2}\right] \nonumber \\ &=&2\left( \mu \tau \right) ^{m}\sum_{k, l=0}^{\left[m/2\right] }\frac{% \left( -\frac{\sigma }{2\mu }\right) ^{k}m!}{k!\left( m-2k\right) !}\frac{% \left( -\frac{\nu }{2\tau }\right) ^{l}m!}{l!\left( m-2l\right) !}% H_{m-2k, m-2l}\left[2\left( \sigma \alpha +\tau \alpha ^{\ast }\right) , 2\left( \mu \alpha +\nu \alpha ^{\ast }\right) \right] . \nonumber \end{eqnarray}% $

如果幺正算符$\hat{U}=\exp \left[ \frac{r}{2}\left( {{a}^{\dagger 2}}-{{a}^{2}} \right) \right] $, 并令$\ \tau =\mu ^{\ast }=\cosh r, $ $\sigma =\nu ^{\ast }=\sinh r$, 则

$ \begin{eqnarray*} &&\exp \left[4\cosh ^{2}r\left \vert \alpha \right \vert ^{2}+2\sinh r\cosh r\left( \alpha ^{2}+\alpha ^{\ast 2}\right) \right] \frac{\partial ^{m}}{% \partial \alpha ^{m}}\frac{\partial ^{n}}{\partial \alpha ^{\ast n}}\\ &&\times \exp % \left[-4\cosh ^{2}r\left \vert \alpha \right \vert ^{2}-2\sinh r\cosh r\left( \alpha ^{2}+\alpha ^{\ast 2}\right) \right] \nonumber \\ &=&2\cosh ^{m+n}r\sum_{k=0}^{\left[m/2\right] }\sum_{l=0}^{\left[n/2\right] }\frac{\left( -\frac{\tanh r}{2}\right) ^{k+l}}{k!\left( m-2k\right) !}\frac{% m!n!}{l!\left( n-2l\right) !}H_{m-2k, n-2l} \\ &&\times \left[2\left( \alpha ^{\ast }\cosh r+\alpha \sinh r\right), 2\left( \alpha \cosh r+\alpha ^{\ast }\sinh r\right) \right] . \nonumber \end{eqnarray*} $
5 式(4.17)在量子光场非线性特征研究中的应用

对于弱相干场驱动的多能级原子或者量子点腔系统, 原子与腔的相互作用吸收与辐射光子过程中, 也伴随着原子激发态与基态的变化[21-24].文献[25]中, 作者利用弱相干输入场, 输出光场的量子态可以表示为一系列激发相干叠加态形式$\sum_{m}C_{m}{{a}^{\dagger m}}\left \vert \alpha \right \rangle $, 或者也可表示为粒子态的叠加态形式$ \left \vert \psi \right \rangle =\sum_{n}C_{n}\left \vert n\right \rangle $(由于$\left \vert \alpha \right \rangle =\sum_{n}\frac{\alpha ^{n}}{\sqrt{ n!}}\left \vert n\right \rangle $).在强耦合相互作用情况下, 输入态单模压缩真空态, 基于对输出光场的有效测量(如光子数统计方法), 由非线性相互作用引起的多光子过程输出状态可表示为

$ \rho \left( r,n \right)=C_{n}^{-1}{{a}^{\dagger }}^{n}S\left( r \right)\left| 0 \right\rangle \langle 0|{{S}^{-1}}\left( r \right){{a}^{n}}. $ (5.1)

该输出态体现了与激发量子态(如${{a}^{\dagger m}}\left \vert \varphi \right \rangle $), 归一化常数

$ C_{n}={\rm Tr}\left[\rho \left( r, n\right) \right] =n!\cosh ^{n}rP_{n}\left( \cosh r\right), $

$P_{n}\left( \cosh r\right) $为勒让德(Legendre)多项式, $S\left( r \right)=\exp \left[ \frac{r}{2}\left( {{a}^{\dagger 2}}-{{a}^{2}} \right) \right] $为幺正算符, 其幺正变换关系为

$ {{S}^{-1}}\left( r \right)aS\left( r \right)=a\cosh r+{{a}^{\dagger }}\sinh r, \\ \text{ }{{S}^{-1}}\left( r \right){{a}^{\dagger }}S\left( r \right)={{a}^{\dagger }}\cosh r+a\sinh r. $ (5.2)

为了研究$\rho \left( r, n\right) $的非经典性质, 利用式(2.11)得其准概论分布Wigner函数为

$ W\left( \alpha ,{{\alpha }^{*}} \right)\text{ }=2\pi \text{Tr}\left[ \rho \left( r,n \right)\Delta \left( \alpha ,{{\alpha }^{*}} \right) \right]\text{ } \\ =2\pi C_{n}^{-1}\text{Tr}[S\left( r \right){{\left( {{a}^{\dagger }}\cosh r+a\sinh r \right)}^{n}}\left| 0 \right\rangle \langle 0| \\ \times {{\left( a\cosh r+{{a}^{\dagger }}\sinh r \right)}^{n}}{{S}^{-1}}\left( r \right)\Delta \left( \alpha ,{{\alpha }^{*}} \right)]. $ (5.3)

通过对比式(5.2)和(4.4), 则变量关系为$\mu =\tau \rightarrow \cosh r, $ $\sigma =\nu \rightarrow -\sinh r$.再由式(5.3)和(4.6)得算符$\rho \left( r, n\right) $的Wigner函数为

$ \begin{matrix} W\left( \alpha ,{{\alpha }^{*}} \right)\text{ }=\frac{1}{{{P}_{n}}\left( \cosh r \right)}{{\left( \frac{-\sinh r}{2} \right)}^{n}}\exp \left[ -2{{\left| \alpha \sinh r-{{\alpha }^{*}}\cosh r \right|}^{2}} \right] \\ \times \sum\limits_{l=0}^{n}{\left( \begin{matrix} n \\ l \\ \end{matrix} \right)}\frac{{{2}^{l}}{{\left( -\coth r \right)}^{l}}}{\left( n-l \right)!}{{\left| {{H}_{n-l}}\left[ \text{i}\sqrt{\frac{2}{\tanh r}}\left( {{\alpha }^{*}}\cosh r-\alpha \sinh r \right) \right] \right|}^{2}}. \\ \end{matrix} $
图 1 激发压缩真空态(固定压缩度)的Wigner分布函数

从图中可以看出, 相空间某些特定区域的负值说明了光子增加弱压缩辐射场体现出了明显的非经典光场特征, 在压缩度固定时, 压缩真空态随着增加光子数的变化体现了不同的非经典特征, 这种变化在相互正交的X和Y方向均有展现.上行三个图表示有偶数光子在压缩真空场中产生, 下行则表示奇数个光子在压缩真空场中产生.

6 附录:式(4.10)的推导

作为最为重要的量子相空间理论之一-Glauber-Sudarshan P-表示, 是一种准概论分布函数, 其物理可观测量能被表示成正规乘积形式, 借助相干态表象$\left \vert z\right \rangle =\exp \left( z{{a}^{\dagger }}-z^{\ast }a\right) \left \vert 0\right \rangle$, 量子密度矩阵$\rho $$P$表示定义为

$ \begin{equation} \rho =\int \frac{{\rm d}^{2}z}{\pi }P\left( z, z^{\ast }\right) \left \vert z\right \rangle \left \langle z\right \vert. \label{eq:e1} \end{equation}% $ (6.1)

式(6.1)的逆变换为

$ P\left( z,{{z}^{*}} \right)={{\text{e}}^{{{\left| z \right|}^{2}}}}\int{\frac{{{\text{d}}^{2}}\beta }{\pi }}\langle -\beta |\rho \left| \beta \right\rangle \exp \text{ }\left( {{\left| \beta \right|}^{2}}+z{{\beta }^{*}}-{{z}^{*}}\beta \right), $ (6.2)

上式首次由Mehta[26]得到.将式(6.2)代入到式(6.1), 并利用相干态投影算符的Weyl编序乘积, 即$\left\vert z\right\rangle \left\langle z\right\vert =2% \begin{array}{c} \colon \\\colon \\ \end{array}% {\rm e}^{-2\left( z^{\ast }-{{a}^{\dagger }}\right) \left( z-a\right) }% \begin{array}{c} \colon \\\colon \\ \end{array}% $, 于是

$ \rho =2\int{\frac{{{\text{d}}^{2}}z}{\pi }}{{\text{e}}^{{{\left| z \right|}^{2}}}}\int{\frac{%{{\text{d}}^{2}}\beta }{\pi }}\langle -\beta |\rho \left| \beta \right\rangle \exp \left( {{\left| \beta \right|}^{2}}+z{{\beta }^{*}}-{{z}^{*}}\beta \right)\begin{matrix} : \\ : \\ \end{matrix}{{\text{e}}^{-2\left( {{z}^{*}}-{{a}^{\dagger }} \right)\left( z-a \right)}}\begin{matrix} : \\ : \\ \end{matrix}=2\int{\frac{{{\text{d}}^{2}}\beta }{\pi }}\begin{matrix} : \\ : \\ \end{matrix}\langle -\beta |\rho \left| \beta \right\rangle {{\text{e}}^{2\left( a{{\beta }^{*}}-{{a}^{\dagger }}\beta +{{a}^{\dagger }}a \right)}}\begin{matrix} : \\ : \\ \end{matrix}. $ (6.3)
参考文献
[1] Hochstadt H. Integral Equations. New York: Wiley , 1973 .
[2] Fan H Y. Operator ordering in quantum optics theory and the development of Diraćs symbolic method. J Opt B: Quantum Semiclass Opt , 2003, 5 : R1–R17. DOI:10.1088/1464-4266/5/1/201
[3] Fan H Y, Tang X B. Operator Fredholm integration equation in intermediate coordinate-momentum representation and its analogue to thermo conduction equation. Commun Theor Phys , 2008, 49 : 1169–1172. DOI:10.1088/0253-6102/49/5/18
[4] Fan H Y, Lu H L, Fan Y. Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations. Ann Phys , 2006, 321 : 480–494. DOI:10.1016/j.aop.2005.09.011
[5] Erdelyi A. Higher Transcendental Functions: The Batemann Manuscript Project. New York: McGraw-Hill , 1953 .
[6] Namias V. The fractional order Fourier transform and its application to quantum mechanics. J Inst Math Its Appl , 1980, 25 : 241–265. DOI:10.1093/imamat/25.3.241
[7] Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation. J Optical Soc Am , 1993, 10(9) : 1875–1881. DOI:10.1364/JOSAA.10.001875
[8] Bernado L M, Soares O D D. Fractional Fourier transforms and optical systems. Opt Commun , 1994, 110 : 517–522. DOI:10.1016/0030-4018(94)90242-9
[9] Fan H Y, Xu X F. Talbot effect in a quadratic-index medium studied with two-variable Hermite polynomials and entangled states. Opt Lett , 2004, 29 : 1048–1050. DOI:10.1364/OL.29.001048
[10] Weyl H Z. Quantenmechanik und Gruppentheorie. Zeitschrift für Physik , 1927, 46 : 1–46. DOI:10.1007/BF02055756
[11] Weyl H. The Theory of Groups and Quantum Mechanics. Robertson H P (Translator). Montana: Kessinger Publishing , 2007 .
[12] Wigner E P. On the quantum correction for thermodynamic equilibrium. Phys Rev , 1932, 40 : 749–759. DOI:10.1103/PhysRev.40.749
[13] Fan H Y. Weyl ordering quantum mechanical operators by virtue of the IWWP technique. Phys A: Math Ge , 1992, 25 : 3443–3447. DOI:10.1088/0305-4470/25/11/043
[14] Fan H Y, Chen J H. EPR entangled state and generalized Bargmann transformation. Phys Lett A , 2002, 303 : 311–317. DOI:10.1016/S0375-9601(02)01312-9
[15] Fan H Y. General wigner transforms studied by virtue of Weyl ordering of the Wigner operator. Commun Theor Phys , 2003, 40 : 409–414. DOI:10.1088/0253-6102/40/4/409
[16] Chen J H, Fan H Y, Tang X B. Entanglement rule of Wigner operators at a beamsplitter. Int J Theor Phys , 2012, 51(1) : 14–22. DOI:10.1007/s10773-011-0873-0
[17] Fan H Y, Wang Z. New integration transformation connecting coherent state and entangled state. Int J Theor Phys , 2014, 53 : 964–970. DOI:10.1007/s10773-013-1888-5
[18] Fan H Y, Vanderlinde J. Similarity transformations in one-and two-mode Fock space. J Phys A , 1991, 24 : 2529–2538. DOI:10.1088/0305-4470/24/11/019
[19] Glauber R J. The quantum theory of optical coherence. Phys Rev , 1963, 130 : 2529–2539. DOI:10.1103/PhysRev.130.2529
[20] Glauber R J. Coherent and incoherent states of the radiation field. Phys Rev , 1963, 131(6) : 2766–2788. DOI:10.1103/PhysRev.131.2766
[21] Rempe G, Walther H, Klein N. Observation of quantum collapse and revival in a one-atom maser. Phys Rev Lett , 1987, 58 : 353–356. DOI:10.1103/PhysRevLett.58.353
[22] Schuster D I, HouckA A, Schreier J A, et al. Resolving photon number states in a superconducting circuit. Nature , 2007, 445 : 515–518. DOI:10.1038/nature05461
[23] Jundt G, Robledo L, Högele A, Fält S, Imamoğlu A. Observation of dressed excitonic states in a single quantum dot. Phys Rev Lett , 2008, 100 : 177401. DOI:10.1103/PhysRevLett.100.177401
[24] Huang J F, Law C K. Phase-kicked control of counter-rotating interactions in the quantum Rabi model. Phys Rev A , 2014, 89 : 033827. DOI:10.1103/PhysRevA.89.033827
[25] Majumdar A, Bajcsy M, Vučković J. Nonlinear temporal dynamics of a strongly coupled quantum-dot cavity system. Phys Rev A , 2012, 85 : 033802. DOI:10.1103/PhysRevA.85.033802
[26] Mehta C L. Diagonal coherent-state representation of quantum operators. Phys Rev Lett , 1967, 18 : 752–754. DOI:10.1103/PhysRevLett.18.752