数学物理学报  2016, Vol. 36 Issue (4): 750-762   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张洪申
葛玉丽
关于无穷级亚纯函数*
张洪申, 葛玉丽     
南阳师范学院数学与统计学院 河南南阳 473061
摘要:用角域内的Nevanlinna理论与型函数,研究了无穷级亚纯函数的值分布,得到了无穷级亚纯函数存在涉及小函数的精确级Borel方向与Hayman方向,同时证明了无穷级亚纯函数存在涉及小函数的T方向与Hayman-T方向.所得结果使现有无穷级的结果为推论.
关键词亚纯函数     型函数     Borel方向     Hayman方向     T方向     Hayman-T方向    
On Meromorphic Functions of Infinite Order
Zhang Hongshen, Ge Yuli     
Department of Mathematics and Statistics, Nanyang Normal University, Henan Nanyang 473061
Abstract: By using Nevanlinna theory of the angular domain and the type function of characteristic T(r, f), we study the value distribution of meromorphic functions of infinite order, obtain the existences of Borel direction and Hayman direction of proximate order dealing with small functions, at the same time prove existences of T direction and Hayman-T direction dealing with small functions, from which we can easily deduce the existing results.
Key words: Meromorphic function     Type functon     Borel direction     Hayman direction     T direction     Hayman-T direction    
1 引言与结果

$f(z)$是平面上亚纯函数.用$n(t, f)$表示$f(z)$$|z|\leq t$上的极点数, 重数按重数算.

$ m(r, f)=\frac{1}{2\pi}\int_{0}^{2\pi}\log^{+}|f(r{\rm e}^{{\rm i}\theta})|{\rm d}\theta, $
$ N(r, f)=\int_{0}^{r}\frac{n(t, f)-n(0, f)}{t}{\rm d}t+n(0, f)\log r, $
$ T(r, f)=m(r, f)+N(r, f). $

$\limsup\limits_{r\to +\infty} \frac{\log T(r, f)} {\log r}=\rho$, 则称$f(z)$$\rho$级亚纯函数.当$\rho=+\infty$时, 称$f(z)$为无穷级亚纯函数; 当$\rho=+\infty$时, 称$f(z)$为有限级亚纯函数.

$T(r)\ll U(r)$表示函数$T(r) \leq U(r)$且存在序列$r_n(\to+\infty(n\to+\infty)) $使$T(r_n)= U(r_n)$.这时称$U(r)$$T(r)$的型函数.

1935年, 熊庆来[1]首先引进了无穷级亚纯函数的型函数, 并得到了无穷级亚纯函数存在$\rho(r)$级Borel方向.李国平[2, p209], 庄圻泰[3, p171]用熊庆来的型函数研究了涉及小函数的Borel方向.参照文献[4]单位圆内无穷级代数体函数的结果, 我们认为熊庆来、李国平、庄圻泰的结果可进一步改进.

1959年, Hayman[5]得到了用亚纯函数的零点与其某阶导数的1值点的幂指量限制它的特征函数的著名不等式(称为Hayman不等式). 1982年, 杨乐[6]首先证明了存在相应于Hayman不等式的奇异方向(这样的奇异方向称为Hayman方向).之后, 一些文献继续研究Hayman方向, 如顾永兴、龚向宏[7]得到了有限正级亚纯函数存在涉及小函数的Hayman方向; 张庆彩[8]用熊庆来的型函数研究了无穷级亚纯函数涉及重值的Hayman方向; Rossi、Fenton[9]继续研究零级亚纯函数Hayman方向的存在性.同样, 参照文献[4]单位圆内无穷级代数体函数的结果, 无穷级亚纯函数Hayman方向的结果有待进一步改进.再者, 涉及小函数的无穷级亚纯函数Hayman方向也未见研究.

最近, 郑建华[10]证明了非零级且下级有限与下级无穷两类亚纯函数存在一条涉及小函数为$o(T(r, f))$的T方向. Zheng、Wu[11]研究了Hayman-T方向的存在性. Wu、Zheng[12]证明了单位圆内涉及小函数的T点与Hayman-T点的存在性.那么涉及小函数的Hayman-T方向与无穷级亚纯函数涉及小函数的T方向值得研究.

已有平面上有限级亚纯函数涉及小函数的T方向与精确级奇异方向的研究方法与结果不能用于研究无穷级亚纯函数涉及小函数的T方向与精确级奇异方向.

通过建立无穷级亚纯函数涉及小函数的角域内的基本不等式, 我们得到了无穷级亚纯函数存在涉及小函数的精确级Borel方向与Hayman方向, 同时也证明了无穷级亚纯函数存在涉及小函数的T方向与Hayman-T方向.

$n(r, \theta, \delta, f=a)$表示$f(z)-a$$\{z:|\arg z-\theta|<\delta, |z|\leq r\}$上的零点数, 重数按重数算.相似于$N(r, f)$, 我们可用$n(r, \theta, \delta, f=a)$写出计数函数$N(r, \theta, \delta, f=a)$.

我们的结果如下:

定理1.1  设$f(z)$是平面上无穷级亚纯函数, 则$f(z)$存在涉及小函数的精确级Borel方向, 即有方向$\arg z=\theta_0(0\leq\theta_0<2\pi)$, 对任意$\delta(>0)$

$ \limsup\limits_{r\to +\infty} \frac{n(r, \theta_0, \delta, f=g)}{{\rm e}^{\frac{1}{\rho(r)}}\cdot U(r)}>0 $

至多有$2$个例外的$g(z)$, 其中$g(z)\in {\cal G}$, ${\cal G}=$ $\{g(z): T(r, g)=o(U(r))(r \rightarrow+\infty)\}$, $U(r)$$T(r, f)$的型函数.

  从收敛指数与小函数的范围, 定理1.1改进了文献[1-3]的结果.

定理1.2  设$f(z)$是平面上无穷级亚纯函数, 则$f(z)$存在涉及小函数的T方向, 即有方向$\arg z=\theta_0(0\leq\theta_0<2\pi)$, 对任意$\delta(>0)$

$ \limsup\limits_{r\to +\infty} \frac{N(r, \theta_0, \delta, f=g)}{T(r, f)}>0 $

至多有$2$个例外的$g(z)$, 其中$g(z)\in {\cal G}$, ${\cal G}=$ $\{g(z): T(r, g)=o(U(r))(r\to+\infty)\}$, $U(r)$$T(r, f)$的型函数.

  若把亚纯函数涉及小函数的T方向的研究分为有限级与无穷级便可得理想结果.

定理1.3  设$f(z)$是平面上无穷级亚纯函数, 则$f(z)$存在涉及小函数的精确级Hayman方向, 即有方向$\arg z=\theta_0(0\leq\theta_0<2\pi)$, 对任意$\delta(>0)$, 正整数$k$与任意有限级亚纯函数$a(z)$, $b(z)$, 当$b(z)-a^{(k)}(z)$不为常数零时有

$\limsup\limits_{r\to +\infty} \frac{n(r, \theta_0, \delta, f=a)+ n(r, \theta_0, \delta, f^{(k)}=b)} {{\rm e}^{\frac{1}{\rho(r)}}\cdot U(r)}>0, $

其中$U(r)=r^{{\rm e}^{\frac{1}{\rho(r)}}}$$T(r, f)$的型函数.

定理1.4  设$f(z)$是平面上无穷级亚纯函数, 则$f(z)$存在涉及小函数的Hayman-T方向, 即有方向$\arg z=\theta_0(0\leq\theta_0<2\pi)$, 对任意$\delta(>0)$, 正整数$k$与任意有限级亚纯函数$a(z)$, $b(z)$, 当$b(z)-a^{(k)}(z)$不为常数零时有

$\limsup\limits_{r\to +\infty} \frac{N(r, \theta_0, \delta, f=a)+ N(r, \theta_0, \delta, f^{(k)}=b)}{T(r, f)}>0. $

注1  定理1.3与定理1.4的小函数范围是否可取为${\cal G}= \{g(z): T(r, g)=o(U(r))$ $(r\to+\infty)$, $U(r)$$T(r, f)$的型函数$\}$有待进一步研究.

注2  有限级亚纯函数涉及小函数的Hayman-T方向的存在性仍是一个须研究的问题.

2 记号与引理

$\Omega(\alpha, \beta)$表示角域$\{z: \alpha\leq\arg z\leq\beta, 0<\beta-\alpha\leq 2\pi\}$.用$n(r, \alpha, \beta, f)$表示$f(z)$$\Omega(\alpha, \beta)\cap\{|z|\leq r\}$上的极点数, 重数按重数算.用$n(r, \alpha, \beta, f=a)$表示$f(z)-a$$\Omega(\alpha, \beta)\cap\{|z|\leq r\}$上的零点数.相似于$N(r, f)$, 我们可用$n(r, \alpha, \beta, f)$$n(r, \alpha, \beta, f=a)$写出计数函数$N(r, \alpha, \beta, f)$$N(r, \alpha, \beta, f=a)$.记

$ S(r, f)=\frac{1}{\pi}\int\!\!\!\int\limits_{|z|\leq r}\frac{|f'(t{\rm e}^{{\rm i}\theta})|^2} {(1+|f(t{\rm e}^{{\rm i}\theta})|^2)^2}t{\rm d}t{\rm d}\theta, \quad T_{0}(r, f)=\int_0^r \frac{S(t, f)}{t}{\rm d}t, $
$ S(r, \alpha, \beta, f)=\frac{1}{\pi}\int_{0}^{r}\int_{\alpha}^{\beta}\frac{|f'(t{\rm e}^{{\rm i}\theta})|^2} {(1+|f(t{\rm e}^{{\rm i}\theta})|^2)^2}t{\rm d}t{\rm d}\theta, \quad T_{0}(r, \alpha, \beta, f)=\int_0^r \frac{S(t, \alpha, \beta, f)}{t}{\rm d}t. $

因Nevanlinna特征$T(r, f)$与Ahlfors-Shimizu特征$T_{0}(r, f)$仅相差一个有界量[13], 在本文$T(r, f)$$T_{0}(r, f)$可交换使用.

$f(z)$是角域$\Omega(\alpha, \beta)$内的亚纯函数.我们还需下面角域Nevanlinna特征[10, 14]:

$ A_{\alpha, \beta}(r, f)=\frac{\omega}{\pi}\int_{1}^{r} {\Big (}\frac{1}{t^{\omega}}-\frac{t^{\omega}}{r^{2\omega}}{\Big )} (\log^{+}|f(t{\rm e}^{{\rm i}\alpha})|+\log^{+}|f(t{\rm e}^{{\rm i}\beta})|)\frac{{\rm d}t}{t}, $
$ B_{\alpha, \beta}(r, f)=\frac{2\omega}{\pi r^{\omega}}\int_{\alpha}^{\beta} \log^{+}|f(r{\rm e}^{{\rm i}\theta})| \sin \omega(\theta-\alpha){\rm d}\theta, $
$ C_{\alpha, \beta}(r, f)=2\sum\limits_{1<|b_{n}|<r} {\Big (}\frac{1}{|b_{n}|^{\omega}}-\frac{|b_{n}|^{\omega}}{r^{2\omega}}{\Big )} \sin \omega(\theta_{n}-\alpha), $
$ D_{\alpha, \beta}(r, f)=A_{\alpha, \beta}(r, f)+B_{\alpha, \beta}(r, f), $

其中$\omega=\frac{\pi}{\beta-\alpha}$, $b_{n}=|b_{n}|{\rm e}^{{\rm i}\theta_{n}}$是函数$f(z)$在角域$\Omega(\alpha, \beta)$内的极点, 重极点按重数算; 在$C_{\alpha, \beta}(r, f)$的表示式中, 若$f(z)$的极点仅计一次, 我们用记号$\overline{C}_{\alpha, \beta}(r, f)$.记

$S_{\alpha, \beta}(r, f)=A_{\alpha, \beta}(r, f)+B_{\alpha, \beta}(r, f) +C_{\alpha, \beta}(r, f). $

那么由文献[10, 14]有

$ \begin{equation} S_{\alpha, \beta}\bigg(r, \sum\limits_{i=1}^{n}f_{i}\bigg)\leq \sum\limits_{i=1}^{n}S_{\alpha, \beta}(r, f_{i})+3\log n, \quad S_{\alpha, \beta}\bigg(r, \prod\limits_{i=1}^{n}f_{i}\bigg)\leq \sum\limits_{i=1}^{n}S_{\alpha, \beta}(r, f_{i}). \end{equation} $ (2.1)

引理2.1[10, 14]  设$f(z)$是平面上亚纯函数.对任一复数$a\in {\Bbb C}$

$ \begin{equation} S_{\alpha, \beta}(r, f)=S_{\alpha, \beta}\Big(r, \frac{1}{f-a}\Big)+O(1). \end{equation} $ (2.2)

对任意$q(\geq 3)$个判别复数$a_{i}\in \mathbb{C}$ $(i=1, 2, \cdots, q-1), a_{q}=\infty$

$ \begin{equation} (q-2)S_{\alpha, \beta}(r, f)\leq \sum\limits_{i=1}^{q}\overline{C}_{\alpha, \beta}\Big(r, \frac{1}{f-a_{i}}\Big)+R_{\alpha, \beta}(r, f), \end{equation} $ (2.3)

其中

$ \begin{eqnarray*} R_{\alpha, \beta}(r, f)&&=&& A_{\alpha, \beta}\Big(r, \frac{f'}{f}\Big)+B_{\alpha, \beta} \Big(r, \frac{f'}{f}\Big) \\ &&&& + \sum\limits_{i=1}^{q-1} A_{\alpha, \beta}\Big(r, \frac{f'}{f-a_{i}}\Big)+ \sum\limits_{i=1}^{q-1} B_{\alpha, \beta}\Big(r, \frac{f'}{f-a_{i}}\Big)+O(1). \end{eqnarray*} $

$\dot{S}_{\alpha, \beta}(r, f)=\frac{1}{\pi}\int_{1}^{r}\int_{\alpha}^{\beta} {\Big (}\frac{1}{t^{\omega}}-\frac{t^{\omega}}{r^{2\omega}}{\Big )} \frac{|f'(t{\rm e}^{{\rm i}\theta})|^2} {(1+|f(t{\rm e}^{{\rm i}\theta})|^2)^2} \sin \omega(\theta-\alpha)t{\rm d}t{\rm d}\theta, $

$ \begin{equation} S_{\alpha, \beta}(r, f)=\dot{S}_{\alpha, \beta}(r, f)+O(1). \end{equation} $ (2.4)

引理2.2[10]  设$f(z)$是平面上亚纯函数, 则

$ C_{\alpha, \beta}(r, f)\leq 4\omega \frac{N(r, \alpha, \beta, f)}{r^{\omega}} +2\omega^{2}\int_{1}^{r} \frac{N(t, \alpha, \beta, f)}{t^{\omega+1}}{\rm d}t, $
$ \dot{S}_{\alpha, \beta}(r, f)\leq 2\omega \frac{T_{0}(r, \alpha, \beta, f)}{r^{\omega}} +\omega^{2}\int_{1}^{r} \frac{T_{0}(t, \alpha, \beta, f)}{t^{\omega+1}}{\rm d}t. $

对任意小$\delta(>0)$

$ \begin{eqnarray*} \dot{S}_{\alpha, \beta}(r, f)&&\geq&& \omega\sin(\omega\delta) \frac{T_{0}(r, \alpha+\delta, \beta-\delta, f)}{r^{\omega}} -\omega T_{0}(1, \alpha+\delta, \beta-\delta, f)\\ &&&&+ \omega^{2}\sin(\omega\delta)\int_{1}^{r} \frac{T_{0}(t, \alpha+\delta, \beta-\delta, f)}{t^{\omega+1}}{\rm d}t. \end{eqnarray*} $

引理2.3[10, 14]  设$f(z)$是平面上亚纯函数, 记

$m_{\alpha, \beta}\Big(r, \frac{f'}{f}\Big)= \frac{1}{2\pi}\int_{\alpha}^{\beta}\log^{+} \bigg|\frac{f'(r{\rm e}^{{\rm i}\theta})}{f(r{\rm e}^{{\rm i}\theta})}\bigg|{\rm d}\theta. $

则对任意$0<r<R$

$ B_{\alpha, \beta}\Big(r, \frac{f'}{f}\Big)\leq \frac{4\omega}{r^{\omega}} m_{\alpha, \beta}\Big(r, \frac{f'}{f}\Big), $
$ A_{\alpha, \beta}\Big(r, \frac{f'}{f}\Big)\leq K{\bigg(}\Big(\frac{R}{r}\Big)^{\omega } \int_{1}^{R} \frac{\log T(t, f)}{t^{\omega+1}}{\rm d}t+\log^{+}\frac{r}{R-r} +\log\frac{R}{r}{\bigg)}, $

其中$\omega=\frac{\pi}{\beta-\alpha}$, $K$是与$r$, $R$无关的常数.

引理2.4[15]  设$f(z)$$z$平面上亚纯函数, 若$f(0)\neq 0, \infty$, 则对任意$0<r<R$

$ T(r, f^{(k)})< (k+1)T(r, f)+m\Big(r, \frac{f^{(k)}}{f}\Big), $
$ m\Big(r, \frac{f^{(k)}}{f}\Big)<c_{k}{\Big (}1+\log^{+}\log^{+}\frac{1}{|f(0)|}+\log^{+}\frac{1}{r}+ \log^{+}\frac{1}{R-r}+\log^{+} R+\log^{+} T(R, f){\Big )}, $

其中$k$为正整数, $c_{k}$为仅依于$k$的常数.

下面我们引用无穷级亚纯函数特征函数型函数的孙道椿[16]结果, 它比熊庆来[1]无穷级更精确.

引理2.5[16]  设$T(r)$$[a, +\infty)$上连续, 且$\limsup\limits_{r\to +\infty}\frac{\log T(r)} {\log r}=+\infty$.则存在连续可微函数$U(r)=r^{{\rm e}^{\frac{1}{\rho(r)}}}$使:

(1)$\rho(r)$单调下降趋于零, $\rho' (r)$单调上升, $\lim\limits_{r\to +\infty}r\rho' (r)\log r\log\log r=0$;

(2)对充分大$r$, 有$T(r)\ll U(r)=r^{{\rm e}^{\frac{1}{\rho(r)}}}$;

(3)$U(r+\frac{r\log r}{\log U(r)\log^2\log U(r)})<(1+o(1))U(r)$.

引理2.6  设$f(z)$, $g_{i}(z)\ (i=1, 2, 3)$是平面上亚纯函数, $g_{i}(z)\ (i=1, 2, 3)$相互判别, 若$\limsup\limits_{r\to +\infty}\frac{\log T(r, f)}{\log r}=+\infty$, $T(r, g_{i})=o(U(r))\ (r\to+\infty)\ (i=1, 2, 3)$, 则对任意小$\delta(>0)$

$ \begin{eqnarray*} T_{0}(r, \alpha+\delta, \beta-\delta, f) &&\leq&& C\cdot\sum\limits_{i=1}^{3}N(r, \alpha, \beta, f=g_{i})\\ &&&&+ C_{1}\cdot r^{\omega}\cdot\sum\limits_{i=1}^{3}\int_{1}^{r} \frac{N(t, \alpha, \beta, f=g_i)}{t^{\omega+1}}{\rm d}t+o(U(r)), \end{eqnarray*} $

其中$C$, $C_{1}$是仅与$\omega$, $\delta$有关的常数, $U(r)$$T(r, f)$的型函数, $\omega=\frac{\pi}{\beta-\alpha}$.

  设

$ \begin{equation} w(z)=\frac{f(z)-g_{1}(z)}{f(z)-g_{2}(z)}\cdot\frac{g_{3}(z)-g_{2}(z)}{g_{3}(z)-g_{1}(z)}, \end{equation} $ (2.5)

那么

$ \begin{equation} f(z)=g_{2}(z)+\frac{g_{2}(z)-g_{1}(z)}{h(z)w(z)-1}, \end{equation} $ (2.6)

其中

$ h(z)=\frac{g_{3}(z)-g_{1}(z)}{g_{3}(z)-g_{2}(z)}. $

由(2.1), (2.6)式与引理2.1的(2.2), (2.3)式得

$ \begin{eqnarray} S_{\alpha, \beta}(r, f)&& \leq &&S_{\alpha, \beta}(r, w)+O \bigg(\sum\limits_{i=1}^{3}S_{\alpha, \beta}(r, g_i)\bigg)+O(1) \\ && \leq&&\sum\limits_{i=1}^{3}C_{\alpha, \beta}(r, f=g_i)+R_{\alpha, \beta}(r, w) +O\bigg(\sum\limits_{i=1}^{3}S_{\alpha, \beta}(r, g_i)\bigg), \end{eqnarray} $ (2.7)

其中

$ R_{\alpha, \beta}(r, w)=2A_{\alpha, \beta}\Big(r, \frac{w'}{w}\Big)+2B_{\alpha, \beta} \Big(r, \frac{w'}{w}\Big) + A_{\alpha, \beta}\Big(r, \frac{w'}{w-1}\Big)+B_{\alpha, \beta}\Big(r, \frac{w'}{w-1}\Big)+O(1). $

用(2.4), (2.7)式与引理2.2得

$ \begin{eqnarray*} &&&&c\cdot\frac{T_{0}(r, \alpha+\delta, \beta-\delta, f)}{r^{\omega}} \\ && \leq&& \sum\limits_{i=1}^{3}\bigg(4\omega \frac{N(r, \alpha, \beta, f=g_i)}{r^{\omega}} +2\omega^{2}\int_{1 }^{r} \frac{N(t, \alpha, \beta, f=g_i)}{t^{\omega+1}}{\rm d}t\bigg)\\ &&&&+ R_{\alpha, \beta}(r, w) +O\bigg(\sum\limits_{i=1}^{3}\bigg(2\omega \frac{T_{0}(r, \alpha, \beta, g_i)}{r^{\omega}} +\omega^{2}\int_{1}^{r} \frac{T_{0}(t, \alpha, \beta, g_i)}{t^{\omega+1}}{\rm d}t\bigg)\bigg), \end{eqnarray*} $

其中$c=\omega\sin(\omega\delta)$.所以

$ \begin{eqnarray} T_{0}(r, \alpha+\delta, \beta-\delta, f) & \leq& C\cdot\sum\limits_{i=1}^{3} N(r, \alpha, \beta, f=g_i)\\ &&+ C_{1}\cdot r^{\omega}\cdot\sum\limits_{i=1}^{3}\int_{1}^{r} \frac{N(t, \alpha, \beta, f=g_i)}{t^{\omega+1}}{\rm d}t+o(U(r))\\ &&+ r^{\omega}\cdot R_{\alpha, \beta}(r, w)+O\bigg(r^{\omega}\cdot \sum\limits_{i=1}^{3}\int_{1}^{r} \frac{T_{0}(t, \alpha, \beta, g_i)}{t^{\omega+1}}{\rm d}t\bigg), \end{eqnarray} $ (2.8)

其中$C$, $C_{1}$是仅与$\omega$, $\delta$有关的常数.下面估计$r^{\omega} R_{\alpha, \beta}(r, w)$$r^{\omega}\cdot\int_{1}^{r} \frac{T_{0}(t, \alpha, \beta, g_i)}{t^{\omega+1}}{\rm d}t$.由(2.5)式知

$w(z)=(1+\frac{g_{2}(z)-g_{1}(z)}{f(z)-g_{2}(z)}) \cdot\frac{g_{3}(z)-g_{2}(z)}{g_{3}(z)-g_{1}(z)}. $

那么

$ \begin{equation} T(r, w)\leq T(r, f)+o(U(r))\leq U(r)+o(U(r)). \end{equation} $ (2.9)

$R=r+\frac{r\log r}{\log U(r)\log^2\log U(r)}. $

用(2.9)式, 引理2.3, 引理2.4与引理2.5得

$ \begin{eqnarray} r^{\omega} R_{\alpha, \beta}(r, w)&\leq& 2r^{\omega}K\bigg( \Big(\frac{R}{r}\Big)^{\omega } \int_{1}^{R} \frac{\log T(t, w)}{t^{\omega+1}}{\rm d}t+\log^{+}\frac{r}{R-r}+\log\frac{R}{r} \bigg) \\ && +8\omega\cdot m_{\alpha, \beta}\Big(r, \frac{w'}{w}\Big)+4\omega\cdot m_{\alpha, \beta}\Big(r, \frac{w'}{w-1}\Big)+ O(1)\cdot r^{\omega} \\ && + r^{\omega}K\bigg(\Big(\frac{R}{r}\Big)^{\omega } \int_{1}^{R} \frac{\log T(t, w-1)}{t^{\omega+1}}{\rm d}t+\log^{+}\frac{r}{R-r}+\log\frac{R}{r}\bigg) \\ & \leq &3r^{\omega}K \bigg(\frac{2^{\omega }}{\omega}\log T(R, w) + \log\frac{\log U(r)\log^2\log U(r)}{\log r} +\log 2\bigg) \\ && + 8\omega\cdot m\Big(r, \frac{w'}{w}\Big)+4\omega\cdot m\Big(r, \frac{w'}{w-1}\Big)+ O(1)\cdot r^{\omega} \\ & \leq& O\bigg(r^{\omega}\cdot\log T(R, w)+ r^{\omega}\cdot\log\frac{\log U(r)\log^2\log U(r)}{\log r} \bigg) \\ && + O\bigg(r^{\omega}+\log\frac{\log U(r)\log^2\log U(r)}{r\log r}+\log r\bigg) \\ & \leq& O(r^{\omega}\cdot\log U(R)) \\ & =&o(U(r))\ \ (r\to+\infty). \end{eqnarray} $ (2.10)

$m(r)=\frac{U(r)}{r^{\omega}}=r^{{\rm e}^{\frac{1}{\rho(r)}}-\omega}. $

由引理2.5(注意: $\rho'(r)<0$)得

$ \begin{equation} r m'(r)= m(r)\bigg(({\rm e}^{\frac{1}{\rho(r)}}-\omega)- \frac{r{\rm e}^{\frac{1}{\rho(r)}}\rho'(r)\log r}{\rho^2(r)}\bigg)>m(r)\cdot ({\rm e}^{\frac{1}{\rho(r)}}-\omega). \end{equation} $ (2.11)

用(2.11)式与L'Hospital法则得

$ \begin{eqnarray} \lim\limits_{r\to +\infty}\frac{r^{\omega}\cdot\int_{1}^{r} \frac{T_{0}(t, \alpha, \beta, g_i)}{t^{\omega+1}}{\rm d}t}{U(r)}&=& \lim\limits_{r\to +\infty}\frac{\int_{1}^{r} \frac{T_{0}(t, \alpha, \beta, g_i)}{t^{\omega+1}}{\rm d}t}{m(r)} = \lim\limits_{r\to +\infty}\frac{T_{0}(r, \alpha, \beta, g_i)}{r^{\omega+1}\cdot m'(r)} \\ & \leq &\lim\limits_{r\to +\infty}\frac{T_{0}(r, \alpha, \beta, g_i)}{r^{\omega}\cdot m(r)({\rm e}^{\frac{1}{\rho(r)}}-\omega)} \\ & =& \lim\limits_{r\to +\infty} \frac{T_{0}(r, \alpha, \beta, g_i)}{U(r)({\rm e}^{\frac{1}{\rho(r)}}-\omega)}=0. \end{eqnarray} $ (2.12)

由(2.8), (2.10)与(2.12)式, 知本引理正确.

文献[12, 定理4.1]研究了单位圆内角域内的Hayman不等式, 下面我们给出平面上角域内的Hayman不等式, 其证明方法上属于文献[7, 12], 为了方便阅读, 我们给出详细证明.

引理2.7  设$f(z)$, $\varphi(z)$是平面上非常数的亚纯函数, 若$h(z)=\frac{f^{(k)}(z)}{\varphi(z)}$, $g(z)=\frac{\varphi^{2}(h-1)^{k+2}}{(h')^{k+1}}$不为常数, 则

$ S_{\alpha, \beta}(r, f) \leq 3C_{\alpha, \beta}(r, f=0)+4\overline{C}_{\alpha, \beta}(r, f^{(k)}=\varphi)+ 4C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+C_{\alpha, \beta}(r, \varphi)+Q_{\alpha, \beta}(r, f), $

其中

$Q_{\alpha, \beta}(r, f)=3 D_{\alpha, \beta}\Big(r, \frac{h}{f}\Big)+ 3D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big)+ 3D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)+ D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)+O(1). $

  用$\frac{1}{f}=\frac{h}{f}-\frac{h-1}{h'}\cdot\frac{h'}{f}$, (2.1)式与(2.2)式得

$ \begin{eqnarray} D_{\alpha, \beta}\Big(r, \frac{1}{f}\Big)& \leq &D_{\alpha, \beta} \Big(r, \frac{h}{f}\Big)+D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big) +D_{\alpha, \beta}\Big(r, \frac{h-1}{h'}\Big)+O(1)\\ & \leq& D_{\alpha, \beta}\Big(r, \frac{h}{f}\Big)+D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big) +S_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big) - C_{\alpha, \beta}\Big(r, \frac{h-1}{h'}\Big)+O(1)\\ & \leq& D_{\alpha, \beta}\Big(r, \frac{h}{f}\Big)+D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big) +D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)+C_{\alpha, \beta}(r, h') \\ &&+ C_{\alpha, \beta}\Big(r, \frac{1}{h-1}\Big)-C_{\alpha, \beta}(r, h-1) -C_{\alpha, \beta}\Big(r, \frac{1}{h'}\Big)+O(1) \\& \leq& D_{\alpha, \beta}\Big(r, \frac{h}{f}\Big)+D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big) +D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)+\overline{C}_{\alpha, \beta}(r, h) \\ &&+ \overline{C}_{\alpha, \beta}\Big(r, \frac{1}{h-1}\Big)-C_{\alpha, \beta}^{0}\Big(r, \frac{1}{h'}\Big)+O(1), \end{eqnarray} $ (2.13)

其中$C_{\alpha, \beta}^{0}(r, \frac{1}{h'})$仅算$h'$$\Omega_{\alpha, \beta}$内的零点, 而不算$h-1$的零点.那么由(2.13)式, 引理2.1与$\overline{C}_{\alpha, \beta}(r, h)\leq \overline{C}_{\alpha, \beta}(r, f)+C_{\alpha, \beta}(r, \frac{1}{\varphi}) $

$ \begin{eqnarray} S_{\alpha, \beta}(r, f)& \leq& D_{\alpha, \beta}\Big(r, \frac{1}{f}\Big) +C_{\alpha, \beta}\Big(r, \frac{1}{f}\Big)+O(1) \\ & \leq& D_{\alpha, \beta}\Big(r, \frac{h}{f}\Big)+D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big) +D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)+\overline{C}_{\alpha, \beta}(r, f) \\ &&+ C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+ \overline{C}_{\alpha, \beta}\Big(r, \frac{1}{h-1}\Big)-C_{\alpha, \beta}^{0}\Big(r, \frac{1}{h'}\Big) +C_{\alpha, \beta}\Big(r, \frac{1}{f}\Big)+O(1). \end{eqnarray} $ (2.14)

若用$\overline{C}_{\alpha, \beta}^{(2}(r, f)$表示$f(z)$的多重极点仅算一次, 由(2.14)式得

$ \begin{eqnarray} \overline{C}_{\alpha, \beta}^{(2}(r, f)& \leq& C_{\alpha, \beta}(r, f)-\overline{C}_{\alpha, \beta}(r, f)\leq S_{\alpha, \beta}(r, f)-\overline{C}_{\alpha, \beta}(r, f) \\ & \leq& D_{\alpha, \beta}\Big(r, \frac{h}{f}\Big)+D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big) +D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)+ C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big) \\ &&+ \overline{C}_{\alpha, \beta}\Big(r, \frac{1}{h-1}\Big)-C_{\alpha, \beta}^{0}\Big(r, \frac{1}{h'}\Big) +C_{\alpha, \beta}\Big(r, \frac{1}{f}\Big)+O(1). \end{eqnarray} $ (2.15)

$z_{0}$$f(z)$的单极点, 且$\varphi(z_{0})\neq 0, \infty$, 由文献[7]知

$ \begin{equation} g(z_{0})\neq 0, \infty;\quad g'(z_{0})=0. \end{equation} $ (2.16)

用引理2.1得

$ \begin{eqnarray} && D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)-D_{\alpha, \beta}\Big(r, \frac{g}{g'}\Big)\\& =&S_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)-C_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)+ C_{\alpha, \beta}\Big(r, \frac{g}{g'}\Big)-S_{\alpha, \beta}\Big(r, \frac{g}{g'}\Big)\\& =&C_{\alpha, \beta}(r, g)+C_{\alpha, \beta}\Big(r, \frac{1}{g'}\Big)-C_{\alpha, \beta}(r, g') -C_{\alpha, \beta}\Big(r, \frac{1}{g}\Big)+O(1)\\& =&C_{\alpha, \beta}^{1}\Big(r, \frac{1}{g'}\Big)-\overline{C}_{\alpha, \beta}\Big(r, \frac{1}{g}\Big) -\overline{C}_{\alpha, \beta}(r, g)+O(1), \end{eqnarray} $ (2.17)

其中$C_{\alpha, \beta}^{1}(r, \frac{1}{g'})$表示仅算$g'(z)$的零点, 而不算$g(z)$的零点.用$C_{\alpha, \beta}^{1)}(r, f)$表示仅算$f(z)$的单极点, 那么由(2.16), (2.17)式得

$ \begin{eqnarray} C_{\alpha, \beta}^{1)}(r, f)&\leq& C_{\alpha, \beta}^{1}\Big(r, \frac{1}{g'}\Big)\leq \overline{C}_{\alpha, \beta}\Big(r, \frac{1}{g}\Big)+\overline{C}_{\alpha, \beta}(r, g)+ D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)+O(1) \\ & \leq &C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+C_{\alpha, \beta}(r, \varphi) +\overline{C}_{\alpha, \beta}^{(2}(r, f)+\overline{C}_{\alpha, \beta}\Big(r, \frac{1}{h-1}\Big)\\ &&+ C_{\alpha, \beta}^{0}\Big(r, \frac{1}{h'}\Big)+D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)+O(1). \end{eqnarray} $ (2.18)

这样, 由(2.15), (2.18)式得

$ \begin{eqnarray} \overline{C}_{\alpha, \beta}(r, f)&=& C_{\alpha, \beta}^{^{1)}}(r, f)+ \overline{C}_{\alpha, \beta}^{^{(2}}(r, f) \\& \leq &C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+C_{\alpha, \beta}(r, \varphi)+ 2\overline{C}_{\alpha, \beta}^{(2}(r, f)+\overline{C}_{\alpha, \beta}\Big(r, \frac{1}{h-1}\Big) \\ &&+ C_{\alpha, \beta}^{0}\Big(r, \frac{1}{h'}\Big)+D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)+O(1) \\ & \leq& 3C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+C_{\alpha, \beta}(r, \varphi)+ 3\overline{C}_{\alpha, \beta}\Big(r, \frac{1}{h-1}\Big) \\ &&+ 2D_{\alpha, \beta}\Big(r, \frac{h}{f}\Big)+2D_{\alpha, \beta}\Big(r, \frac{h'}{f}\Big) +2D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big) \\ &&+ 2C_{\alpha, \beta}\Big(r, \frac{1}{f}\Big)+D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)+O(1). \end{eqnarray} $ (2.19)

引理2.8  设$f(z)$是平面上无穷级亚纯函数, $a(z)$, $b(z)$是平面上有限级亚纯函数, $b(z)-a^{(k)}(z)$不为常数零, 则对任意小$\delta(>0)$

$ \begin{eqnarray*} T_{0}(r, \alpha+\delta, \beta-\delta, f) & \leq& C\cdot (N(r, \alpha, \beta, f=a)+ N(r, \alpha, \beta, f^{(k)}=b))\\ &&+ C_{1}\cdot r^{\omega}\cdot\int_{1}^{r} \frac{N(t, \alpha, \beta, f=a)+N(t, \alpha, \beta, f^{(k)}=b)}{t^{\omega+1}}{\rm d}t+o(U(r)), \end{eqnarray*} $

其中$U(r)=r^{{\rm e}^{\frac{1}{\rho(r)}}}$$T(r, f)$的型函数, $C$, $C_{1}$是仅与$\omega$, $\delta$有关的常数.

  记$w(z)=f(z)-a(z)$, $\varphi(z)=b(z)-a^{(k)}(z)$, $h(z)=\frac{w^{(k)}(z)}{\varphi(z)}$, $g(z)=\frac{\varphi^{2}(h-1)^{k+2}}{(h')^{k+1}}$.因$w^{(k)}(z)$$w(z)$有相同的增长级, 所以$h(z)$不为常数, 且增长级为无穷.又若$g(z)$为常数, 那么$\frac{1}{h(z)-1}=c\cdot (\int(\varphi(z))^{\frac{2}{k+1}}{\rm d}z)^{k+1}$$h(z)$的增长级为无穷矛盾.由引理2.7与(2.1)式得

$ \begin{eqnarray} S_{\alpha, \beta}(r, f)& \leq & 3C_{\alpha, \beta}(r, w=0)+4\overline{C}_{\alpha, \beta}(r, w^{(k)}=\varphi) \\ &&+ 4C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+C_{\alpha, \beta}(r, \varphi)+ Q_{\alpha, \beta}(r, w)+S_{\alpha, \beta}(r, a)\\ & \leq &3C_{\alpha, \beta}(r, f=a)+ 4\overline{C}_{\alpha, \beta}(r, f^{(k)}=b) \\ &&+ 4C_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+C_{\alpha, \beta}(r, \varphi)+ Q_{\alpha, \beta}(r, w)+S_{\alpha, \beta}(r, a), \end{eqnarray} $ (2.20)

其中

$Q_{\alpha, \beta}(r, w)=3 D_{\alpha, \beta}\Big(r, \frac{h}{w}\Big)+ 3D_{\alpha, \beta}\Big(r, \frac{h'}{w}\Big)+ 3D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)+ D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)+O(1).$

由(2.20)式, 引理2.1与引理2.2得

$ \begin{eqnarray*} && \omega\sin(\omega\delta)\cdot\frac{T_{0}(r, \alpha+\delta, \beta-\delta, f)}{r^{\omega}} \\ & \leq& 12\omega \frac{N(r, \alpha, \beta, f=a)}{r^{\omega}}+6\omega^{2}\int_{1}^{r} \frac{N(t, \alpha, \beta, f=a)}{t^{\omega+1}}{\rm d}t \\ &&+ 16\omega \frac{N(r, \alpha, \beta, f^{(k)}=b)}{r^{\omega}}+8\omega^{2}\int_{1}^{r} \frac{N(t, \alpha, \beta, f^{(k)}=b)}{t^{\omega+1}}{\rm d}\\ &&+ 16\omega \frac{N(r, \alpha, \beta, \varphi=0)}{r^{\omega}}+8\omega^{2}\int_{1}^{r} \frac{N(t, \alpha, \beta, \varphi=0)}{t^{\omega+1}}{\rm d}t \\ &&+ 4\omega \frac{N(r, \alpha, \beta, \varphi)}{r^{\omega}}+2\omega^{2}\int_{1}^{r} \frac{N(t, \alpha, \beta, \varphi)}{t^{\omega+1}}{\rm d}t \\ &&+ 2\omega \frac{T_{0}(r, \alpha, \beta, a)}{r^{\omega}}+\omega^{2}\int_{1}^{r} \frac{T_{0}(t, \alpha, \beta, a)}{t^{\omega+1}}{\rm d}t+ Q_{\alpha, \beta}(r, w). \end{eqnarray*} $

所以

$ \begin{eqnarray} T_{0}(r, \alpha+\delta, \beta-\delta, f) & \leq& C\cdot (N(r, \alpha, \beta, f=a)+ N(r, \alpha, \beta, f^{(k)}=b)) \\ &&+ C_{1}\cdot r^{\omega}\cdot\bigg(\int_{1}^{r} \frac{N(t, \alpha, \beta, f=a)}{t^{\omega+1}}{\rm d}t+\int_{1}^{r} \frac{N(t, \alpha, \beta, f^{(k)}=b)}{t^{\omega+1}}{\rm d}t\bigg) \\ &&+ C_{2}\cdot r^{\omega}\cdot Q_{\alpha, \beta}(r, w)+o(U(r)), \end{eqnarray} $ (2.21)

其中$C$, $C_{i}(i=1, 2)$是仅与$\omega$, $\delta$有关的常数.又因

$ D_{\alpha, \beta}\Big(r, \frac{h}{w}\Big)\leq D_{\alpha, \beta} \Big(r, \frac{w^{(k)}}{w}\Big)+D_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big), $
$ D_{\alpha, \beta}\Big(r, \frac{h'}{w}\Big)\leq D_{\alpha, \beta} \Big(r, \frac{\varphi'}{\varphi}\Big)+ 2D_{\alpha, \beta}\Big(r, \frac{1}{\varphi}\Big)+D_{\alpha, \beta}\Big(r, \frac{w^{(k)}}{w}\Big) +D_{\alpha, \beta}\Big(r, \frac{w^{(k+1)}}{w}\Big)+O(1), $
$ D_{\alpha, \beta}\Big(r, \frac{g'}{g}\Big)\leq (k+2)D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)+ (k+1)D_{\alpha, \beta}\Big(r, \frac{h''}{h'}\Big)+2D_{\alpha, \beta} \Big(r, \frac{\varphi'}{\varphi}\Big)+O(1). $

所以, 通过分别估计$r^{\omega} D_{\alpha, \beta}(r, \frac{w^{(k)}}{w})$, $r^{\omega} D_{\alpha, \beta}(r, \frac{1}{\varphi})$, $r^{\omega} D_{\alpha, \beta}(r, \frac{\varphi'}{\varphi})$, $r^{\omega} D_{\alpha, \beta}(r, \frac{h'}{h-1})$就可估计$r^{\omega}\cdot Q_{\alpha, \beta}(r, w)$.下面估计$r^{\omega} D_{\alpha, \beta}(r, \frac{w^{(k)}}{w})$, $r^{\omega} D_{\alpha, \beta}(r, \frac{h'}{h-1})$, 其它相同.用引理2.3, 引理2.4, 引理2.5并取$R=r+\frac{r\log r}{\log U(r)\log^2\log U(r)}$

$ \begin{eqnarray} r^{\omega} D_{\alpha, \beta}\Big(r, \frac{w^{(k)}}{w}\Big) &\leq &r^{\omega}{\bigg(} D_{\alpha, \beta}\Big(r, \frac{w^{(k)}}{w^{(k-1)}}\Big) +D_{\alpha, \beta}\Big(r, \frac{w^{(k-1)}}{w^{(k-2)}}\Big)+\cdots+ D_{\alpha, \beta}\Big(r, \frac{w'}{w}\Big){\bigg)} \\& \leq& r^{\omega}K{\bigg(}\Big(\frac{R}{r}\Big)^{\omega } \int_{1}^{R} \frac{\log T(t, w^{(k-1)})}{t^{\omega+1}}{\rm d}t+\log^{+} \frac{r}{R-r}+\log\frac{R}{r}{\bigg)}+\cdots \\ &&+ r^{\omega}K{\bigg(}\Big(\frac{R}{r}\Big)^{\omega } \int_{1}^{R} \frac{\log T(t, w)}{t^{\omega+1}}{\rm d}t+\log^{+} \frac{r}{R-r}+\log\frac{R}{r}{\bigg)} \\ && + 4\omega\cdot m_{\alpha, \beta}\Big(r, \frac{w^{(k)}}{w^{(k-1)}}\Big)+\cdots +4\omega\cdot m_{\alpha, \beta}\Big(r, \frac{w'}{w}\Big) \\& \leq &2^{\omega}K r^{\omega}{\bigg(} \int_{1}^{R} \frac{\log T(t, w^{(k-1)})}{t^{\omega+1}}{\rm d}t+\cdots +\int_{1}^{R} \frac{\log T(t, w)}{t^{\omega+1}}{\rm d}t{\bigg)} \\ &&+4\omega\cdot m\Big(r, \frac{w^{(k)}}{w^{(k-1)}}\Big)+\cdots+4\omega\cdot m \Big(r, \frac{w'}{w}\Big) \\ &&+ k\cdot K\cdot r^{\omega}{\bigg(} \log\frac{\log U(r)\log^2\log U(r)}{\log r} +\log 2{\bigg)} \\& \leq& r^{\omega}\cdot O( \log T(R, w^{(k-1)})+\cdots+\log T(R, w) )\\ &&+ O\bigg(\log R+\log\frac{\log U(r)\log^2\log U(r)}{r\log r}+ r^{\omega} \log\log U(r)\bigg) \\& \leq &r^{\omega}\cdot O(\log T(R, w)+\log\log U(r)) \\& \leq &r^{\omega}\cdot O(\log U(R)) \\ & =&o(U(r))\ \ (r\to+\infty), \end{eqnarray} $ (2.22)
$ \begin{eqnarray} r^{\omega} D_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big) &\leq &r^{\omega}K{\bigg(}\Big(\frac{R}{r}\Big)^{\omega } \int_{1}^{R} \frac{\log T(t, h-1)}{t^{\omega+1}}{\rm d}t +\log^{+}\frac{r}{R-r}+\log\frac{R}{r}{\bigg)} \\& &+ 4\omega\cdot m_{\alpha, \beta}\Big(r, \frac{h'}{h-1}\Big)\\ & \leq& r^{\omega}K{\bigg(}\frac{2^{\omega}}{\omega}\log T(R, h-1) + \log\frac{\log U(r)\log^2\log U(r)}{\log r} +\log 2{\bigg)}\\&&+ 4\omega\cdot m\Big(r, \frac{h'}{h-1}\Big) \\& \leq &r^{\omega}\cdot O(\log T(R, h)+\log U(r)) \\& \leq& r^{\omega}\cdot O(\log U(R)) \\& =&o(U(r))\ \ (r\to+\infty). \end{eqnarray} $ (2.23)

由(2.21), (2.22)与(2.23)式, 知本引理正确.

  引理2.8可认为是角域内用Ahlfors-Shimizu特征表示的Hayman不等式, 当$f(z)$是有限级时, 是否可建立角域内类似的Hayman不等式是一个困难问题.

3 定理的证明

定理1.1的证明  由$T(r, f)\ll U(r)$知, 存在方向$\arg z=\theta_0$, 对任意$\delta(>0)$

$ \limsup\limits_{r\to +\infty} \frac{T_{0}(r, \theta_0-\delta, \theta_0+\delta, f)}{U(r)}>0. $ (3.1)

下证对亚纯函数$g(z)\in{\cal G}$与任意$\varepsilon(>\delta)$必有

$ \limsup\limits_{r\to +\infty} \frac{N(r, \theta_0, \varepsilon, f=g)}{U(r)}>0 $ (3.2)

至多有$2$个例外的$g(z)$.否则, 若有$g_{i}(z)(i=1, 2, 3)$使

$N(r, \theta_0, \delta_{1}, f=g_{i})=o(U(r)). $

$ m(r)=\frac{U(r)}{r^{\omega}}=r^{{\rm e}^{\frac{1}{\rho(r)}}-\omega}$.用(2.11)式, 仿(2.12)式的证明得$r\to +\infty$

$r^{\omega}\cdot\int_{1}^{r} \frac{N(r, \theta_0, \varepsilon, f=g_{i})}{t^{\omega+1}}{\rm d}t=o(U(r)). $ (3.3)

用(3.3)式与引理2.6得$r\to +\infty$

$T_{0}(r, \theta_0, \delta, f)=o(U(r)). $

这与(3.1)式矛盾.故(3.2)式得证.又由引理2.5 (注意: $\rho'(r)<0$)得

$ r U'(r)= U(r)\bigg({\rm e}^{\frac{1}{\rho(r)}}-\frac{r{\rm e}^{\frac{1}{\rho(r)}} \rho'(r)\log r}{\rho^2(r)}\bigg)> U(r)\cdot {\rm e}^{\frac{1}{\rho(r)}}. $ (3.4)

由(3.2)式可知定理1.1正确.否则, 若

$\limsup\limits_{r\to +\infty} \frac{n(r, \theta_0, \varepsilon, f=g)} {{\rm e}^{\frac{1}{\rho(r)}}\cdot U(r)}=0, $

即对任意小$\sigma(>0)$, 存在$r_{0}$, 当$r>r_{0}$时有

$n(r, \theta_0, \varepsilon, f=g)< \sigma\cdot {\rm e}^{\frac{1}{\rho(r)}}\cdot U(r). $ (3.5)

用(3.4), (3.5)式得

$ \begin{eqnarray*} N(r, \theta_0, \varepsilon, f=g)&=&\int_{r_{0}}^{r}\frac{n(t, \theta_0, \varepsilon, f=g)}{t}{\rm d}t \leq\sigma\cdot\int_{r_{0}}^{r} \frac{{\rm e}^{\frac{1}{\rho(t)}}\cdot U(t)}{t}{\rm d}t\\ & \leq& \sigma \cdot\int_{r_{0}}^{r} U'(t){\rm d}t =\sigma \cdot (U(r)-U(r_{0})). \end{eqnarray*} $

$\sigma(>0)$任意小, 这与(3.2)式矛盾.定理1.1证毕.

定理1.2的证明  由$T(r, f)\ll U(r)$与(3.2)式知本定理正确.

定理1.3的证明  为了完成本定理证明, 下证(3.1)式中的方向$\arg z=\theta_0$具有本定理性质.即对正数$\varepsilon(>\delta)$, 对任意正整数$k$与任意有限级亚纯函数$a(z)$, $b(z)$, 当$b(z)-a^{(k)}(z)$不为常数零时有

$ \limsup\limits_{r\to +\infty} \frac{N(r, \theta_0, \varepsilon, f=a)+ N(r, \theta_0, \varepsilon, f^{(k)}=b)}{U(r)}>0. $ (3.6)

否则, 若有$a(z)$, $b(z)$使

$ N(r, \theta_0, \varepsilon, f=a)+N(r, \theta_0, \varepsilon, f^{(k)}=b)=o(U(r)); $

$m(r)=\frac{U(r)}{r^{\omega}}=r^{{\rm e}^{\frac{1}{\rho(r)}}-\omega}$, 仿(2.12)式的证明得$r\to+\infty$

$ r^{\omega}\cdot \int_{1}^{r} \frac{N(t, \theta_0, \varepsilon, f=a)+ N(r, \theta_0, \varepsilon, f^{(k)}=b)}{t^{\omega+1}}{\rm d}t=o(U(r)). $ (3.7)

用(3.7)式与引理2.8得$r\to +\infty$

$T_{0}(r, \theta_0, \delta, f)=o(U(r)) . $

这与(3.1)式矛盾.故(3.6)式正确.用(3.4), (3.6)式仿定理1.1后面的证明知本定理正确.

定理1.4的证明  由$T(r, f)\ll U(r)$与(3.6)式知本定理正确.

参考文献
[1] Hiong K L. Sur les fonctions entiéres et les fonctions méromorphes d'ordre infini. J de Math , 1935, 14 : 233–308.
[2] 李国平. 半纯函数的聚值线理论. 北京: 科学出版社 ,1958 .
Li G P. The Cluster Value Line Theory of Meromorphic Functions (in Chinese). Beijing: Science Press , 1958 .
[3] 庄圻泰. 亚纯函数的奇异方向. 北京: 科学出版社 ,1982 .
Zhuang Q T. The Singular Directions of Meromorphic Functions (in Chinese). Beijing: Science Press , 1982 .
[4] 张洪申, 孙道椿. 关于单位圆内代数体函数的Borel点. 数学物理学报 , 2011, 31A (6) : 1512–1520.
Zhang H S, Sun D C. On Borel point of algebroid functios in the unit circle. Acta Mathematica Scientia , 2011, 31A(6) : 1512–1520.
[5] Hayman W K. Picard values of meromorphic functions and derivatives. Ann of Math , 1959, 70(2) : 9–42.
[6] Yang L. Meromorphic functions and their derivatives. J London Math Soc , 1982, 25(2) : 288–296.
[7] 顾永兴, 龚向宏. 关于Hayman方向. 中国科学 , 1987, 10 : 1019–1030.
Gu Y X, Gong X H. On Hayman direction. Science in China , 1987, 10 : 1019–1030.
[8] 张庆彩. 关于亚纯函数的奇异方向. 数学学报 , 1988, 31 (6) : 777–785.
Zhang Q C. On the singular directions of meromorphic functions. Acta Mahematica Sinica (in Chinese) , 1988, 31(6) : 777–785.
[9] Rossi J, Fenton P. Cercles de remplissage for entire functions. Bull London Math Soc , 1999, 31 : 59–66. DOI:10.1112/S0024609398004834
[10] Zheng J H. Value Distribution of Meromorphic Functions. Beijing: Springer and Tsinghua Univ Press , 2010.
[11] Zheng J H, Wu N. Hayman-T directions of meromorphic functions. Taiwanese Journal of Mathematics , 2010, 14(6) : 2219–2228.
[12] Wu N, Zheng J H. T-and Hayman T-points of meromorphic functions for small functions in the unit disk. Acta Mathematica Scientia , 2012, 32B(4) : 1662–1674.
[13] Hayman W K. Meromorphic Function. London: Oxford , 1964 .
[14] Goldberg A A, Ostrovskii I V. Value Distribution of Meromorphic Functions. Providence, RI: American Mathematical Society , 2008.
[15] 杨乐. 值分布论及其新研究. 北京: 科学出版社 ,1982 .
Yang L. The Value Distribution Theory and Its New Research (in Chinese). Beijing: Science Press , 1982 .
[16] 孙道椿. Nevanlinna方向的存在性定理. 数学年刊 , 1986, 7A (2) : 212–221.
Sun D C. The existence theorem of the Nevanlinna directions Chinese (in Chinese). Annals of Math , 1986, 7A(2) : 212–221.
[17] Wu N, Xuan Z X. Hayman T directions of meromorphic functions in some angular domains. Bull of the Korean Math Soc , 2013, 52(1) : 1–11.
[18] 孔荫莹, 刘兴臻. 单位圆内亚纯函数的Nevanlinna不等式和相关的奇异半径. 数学年刊 , 2014, 35A (3) : 351–360.
Kong Y Y, Liou X Z. Nevanlinna inequalities and singular radiuses of meromorphic functions in |z| < 1. Annals of Math , 2014, 35A(3) : 351–360.
[19] 孔荫莹. 圆内拟亚纯映射关于型函数的奇异半径. 数学物理学报 , 2010, 30A (6) : 1640–1647.
Kong Y Y. A singular radius of quasimeromorphic mappings on some type-functions in the unit disc. Acta Mathematica Scientia , 2010, 30A(6) : 1640–1647.
[20] 刘慧芳, 孙道椿. 具有公共小函数的代数体函数的唯一性. 数学物理学报 , 2015, 35A (2) : 274–281.
Liou H F, Sun D C. Uniqueness of algebroid functions concerning small functions. Acta Mathematica Scientia , 2015, 35A(2) : 274–281.
[21] Chai F J, Gao Z S. The normality of algebroid multifunctios and their coefficient functions. 2015, 35B(1): 121-132