本文假定读者熟悉亚纯函数Nevanlinna值分布论中的常用记号和基本结果(参见文献[7, 17]).记${\Bbb C}$为复平面, $\widehat{{\Bbb C}}(={\Bbb C}\bigcup\{\infty\})$为扩充复平面, $\Omega(\subset{\Bbb C})$为一个角域.亚纯函数$f$的级定义为
亚纯函数的幅角分布是复分析领域内一个有趣的研究课题, Borel方向在幅角分布论中扮演了一个重要的角色(参见文献[4, 12-14, 16, 18-19]). Valiron [17]证明了每个具有有限正级$\rho>0$的亚纯函数至少存在一条$\rho$级Borel方向.庄圻泰[2-3]则研究了具有无穷级的亚纯函数的Borel方向的存在性问题.为叙述庄的结果, 首先给出如下定义.
定义1.1[2] 假设$f$是一个无穷级的亚纯函数. $\rho(r)$是一个满足如下条件的实函数:
(i)对$r\geq r_0$, $\rho(r)$连续, 非降并且当$r\rightarrow\infty$时, $\rho(r)\rightarrow\infty$;
(ii)
其中, $U(r)=r^{\rho(r)}$ $(r\geq r_0)$;
(iii)
则称$\rho(r)$为亚纯函数$f$的无穷级.这个定义由熊庆来在文献[2]中给出.
本文将研究亚纯函数的Borel方向与分担值的关系.为此, 先介绍一些基本的记号和结果.
对$a\in \widehat{{\Bbb C}}(={\Bbb C}\bigcup\{\infty\})$, 若$f(z)-a$和$g(z)-a$在$\Omega\subseteq {\Bbb C}$内具有计重数(不计重数)的相同的零点, 则称$f$和$g$在$\Omega\subseteq {\Bbb C}$内$CM$$(IM)$分担$a$.另外, 在$\Omega\subseteq {\Bbb C}$内用$f=a\rightleftharpoons g=a$表示$f$和$g$在$\Omega\subseteq {\Bbb C}$内$CM$分担$a$, 在$\Omega\subseteq {\Bbb C}$用$f=a\Longleftrightarrow g=a$表示表示$f$和$g$在$\Omega\subseteq {\Bbb C}$内$IM$分担$a$, 在$\Omega\subseteq {\Bbb C}$内用$f=a\Longrightarrow g=a$表示在$\Omega\subseteq {\Bbb C}$内由$f=a$可推出$g=a$.
Nevanlinna证明了如下著名的结果[11].
定理1.1[11] 若$f$和$g$是两个在$\Omega={\Bbb C}$内$IM$分担五个不同值$a_1, a_2, a_3, a_4, a_5$的非常值亚纯函数, 则$f(z)\equiv g(z)$.
定理1.2[11] 若$f$和$g$是两个在${\Bbb C}$内$CM$分担四个不同值$a_1, a_2, a_3, a_4$的亚纯函数, 则$f$是$g$的一个Möbius变换, 其中有两个值$a_1$和$a_2$是例外值且交比$(a_1, a_2, a_3, a_4)=-1$.
之后, 有大量的涉及在全平面上分担值的亚纯函数的唯一性方面的研究工作[20]. 2003年, 郑建华[22]首次研究了在${\Bbb C}$的某个角域内分担五个值的唯一性问题.之后, 郑[23]又研究了在角域内分担四个值的唯一性问题.研究亚纯函数在角域内的分担值问题是一个有意义的课题[1, 9, 15, 21].曹廷彬和仪洪勋[1], 张庆彩[21], 徐洪焱和曹廷彬[15]继续研究了分担五值和四值方面的工作; 林伟川、Mori和Tohge[8]、林伟川、Mori和仪洪勋[9]研究了亚纯函数和整函数在角域内分担集合的唯一性问题.
假设$f$为角域$\Omega(\alpha, \beta)=\{z: \alpha\leq\arg z\leq \beta\}$内的亚纯函数且$0<\beta-\alpha\leq 2\pi$.定义
其中$\omega=\frac{\pi}{\beta-\alpha}$, $b_\mu=|b_\mu|{\rm e}^{{\rm i}\theta_\mu}\ (\mu=1, 2, \cdots)$是$f$在$\Omega(\alpha, \beta)$内计算重数的极点.称$S_{\alpha, \beta}(r, f)$为Nevanlinna角域特征函数, $C_{\alpha, \beta}(r, f)$为$f$在$\Omega(\alpha, \beta)$内极点的计数函数, $\overline{C}_{\alpha, \beta}(r, f)$是$C_{\alpha, \beta}(r, f)$的精简形式.
2012年, 龙见仁和伍鹏程[10]研究了亚纯函数的Borel方向和唯一性的关系问题.为介绍他们的结果, 先介绍一些定义及记号.
设$\rho(r)$为亚纯函数$f$的一个无穷级, 用$M(\rho(r))$表示所有满足$\limsup\limits_{r\rightarrow\infty}\frac{\log T(r, g)}{\rho(r)\log r}\leq1$的亚纯函数$g$的集合, 即
令$\alpha<\beta, \beta-\alpha<2\pi, r>0$, $\Omega(\alpha, \beta, r):=\{z: \alpha\leq \arg z\leq \beta, 0<|z|\leq r\}$.无穷级为$\rho(r)$的亚纯函数$f$的Borel方向的定义为:
定义1.2[2] 假设$f$为一个具有无穷级$\rho(r)$的亚纯函数.若对每个$\varepsilon(0<\varepsilon<\pi)$, 等式
对任意的$a\in \widehat{{\Bbb C}}$都成立, 至多有两个例外, 其中$n(\Omega(\theta-\varepsilon, \theta+\varepsilon, r), f=a)$表示在角域内$\Omega(\theta-\varepsilon, \theta+\varepsilon)$内$f-a$的零点, 计重数.射线$\arg z=\theta$称为$f$的$\rho(r)$级Borel方向.
注1.1 庄圻泰[2]证明了每个具有无穷级$\rho(r)$的亚纯函数$f$至少存在一条$\rho(r)$级的Borel方向.
定理1.3[10, 定理1.1] 假设$f$是具有无穷级$\rho(r)$的亚纯函数, $g\in M(\rho(r))$, $\arg z=\theta$ $ (0\leq \theta<2\pi)$是$f$的一条$\rho(r)$级的Borel方向, $a_i\in \widehat{{\Bbb C}}\ (i=1, 2, 3, 4, 5)$是五个不同的复数.若$f$和$g$在角域$\Omega(\theta-\varepsilon, \theta+\varepsilon)\ (0<\varepsilon<\pi)$内$IM$分担$a_i\ (i=1, 2, 3, 4, 5)$, 则$f\equiv g$.
定理1.4[10, 定理1.2] 假设$f$是具有无穷级$\rho(r)$的亚纯函数, $g\in M(\rho(r))$, $\arg z=\theta\ (0\leq \theta<2\pi)$是$f$的一条$\rho(r)$级的Borel方向, $a_i\in \widehat{{\Bbb C}}\ (i=1, 2, 3, 4)$是四个不同的复数.若$f$和$g$在角域$\Omega(\theta-\varepsilon, \theta+\varepsilon)\ (0<\varepsilon<\pi)$内$CM$分担$a_i\ (i=1, 2, 3, 4)$, 则$f$是$g$的一个Möbius变换.
本文继续研究亚纯函数的Borel方向与分担值的相关问题, 得到如下结果:
定理1.5 假设$f$是具有无穷级$\rho(r)$的超越亚纯函数, $g\in M(\rho(r))$, $\arg z=\theta\ (0\leq \theta<2\pi)$是$f$的一条$\rho(r)$级的Borel方向, 对每个$\varepsilon(0<\varepsilon<\pi)$, $\Omega:=\Omega(\theta-\varepsilon, \theta+\varepsilon)$.假设$f$和$g$在$\Omega$内$CM$分担两个不同的值$a_1, a_2$并且在$\Omega$内$f=a_3\Longrightarrow g=a_3$, $f=a_4\Longrightarrow g=a_4$, 则$f\equiv g$.
定理1.6假设$f$是具有无穷级$\rho(r)$的超越整函数, $g\in M(\rho(r))$, $\arg z=\theta\ (0\leq \theta<2\pi)$是$f$的一条$\rho(r)$级的Borel方向, 对每个$\varepsilon(0<\varepsilon<\pi)$, $\Omega:=\Omega(\theta-\varepsilon, \theta+\varepsilon)$.假定$f$和$g$在$\Omega$内$IM$分担两个不同的值$a_1, a_2$, 在$\Omega$内$f=a_3\Longrightarrow g=a_3$以及$g=a_4\Longrightarrow f=a_4$.则或者$f\equiv g$或者
且$a_1+a_2=a_3+a_4$, $a_3, a_4$分别是$f$和$g$在$\Omega$内的例外值.
为证明我们的结果, 需要以下引理.
引理2.1[6, 16] 假设$f$是$\Omega(\alpha, \beta)$上的一个非常数的亚纯函数.则对于任意的复数$a$, 有
其中当$r\rightarrow\infty$时, $\varepsilon(r, a)=O(1)$.
引理2.2[5, 23] 假设$f$是角域$\Omega(\alpha, \beta)\ (0<\beta-\alpha\leq 2\pi)$上的一个非常数的亚纯函数, 则对任意$q$个不同的复数$a_j\in \widehat{{\Bbb C}}\ (1\leq j\leq q)$, 有
其中有某个$a_j=\infty$时, 用$\overline{C}_{\alpha, \beta}(r, f)$替换$\overline{C}_{\alpha, \beta}(r, \frac{1}{f-a_j})$, 且
引理2.3[6, p138] 假设$f$是复平面${\Bbb C}$上的一个非常数的亚纯函数.给定一个角域$\Omega(\alpha, \beta)$.则对任意的$1\leq r<R, $有
其中$\omega=\frac{\pi}{\beta-\alpha}$, $K$是一个不依赖于$r$和$R$的一个正数.
注2.1 Nevanlinna猜想当$r$(除去一个有限线测度的例外集外)趋于$+\infty$时, 有
他证明了当$f$为${\Bbb C}$上的亚纯函数且具有有限级时, $A_{\alpha, \beta}\big(r, \frac{f'}{f}\big) +B_{\alpha, \beta}\big(r, \frac{f'}{f}\big)=O(1)$. 1974年, Gol'dberg[5]构造了(2.2)式的一个反例.
注2.2 由引理2.2-2.3, 我们可以得到以下结论
其中$Q_{\alpha, \beta}\left(r, f\right)$如(2.1)式所叙, $U(r)=r^{\rho(r)}, \rho(r)$是亚纯函数$f$的无穷级, $E$具有有限的线性测度.
引理2.4 假设$f$是一个具有无穷级$\rho(r)$的非常数亚纯函数, 射线$\arg z=\theta$是$f$的一条$\rho(r)$级Borel方向.令$P(f)=a_0f^p+a_1f^{p-1}+\cdots+a_p(a_0\neq0)$是$f$的次数为$p$的一个多项式, 其中系数$a_j(j=0, 1, \cdots, p)$为常数.令$b_j(j=1, 2, \cdots, q)$是$q(q\geq p+1)$个不同的有限复数.则对任意的$\varepsilon(0<\varepsilon<\pi/2)$,
证 用文献[20, 引理4.3]类似的方法可以证明.
引理2.5[3] 假设$f$是一个无穷级$\rho(r)$的亚纯函数.则射线$\arg z=\theta$是$f$的$\rho(r)$级Borel方向的充要条件是对于任意的$\epsilon(0<\epsilon<\frac{\pi}{2})$, $f$满足等式
证 因为$f$是一个无穷级$\rho(r)$的亚纯函数且$\arg z=\theta\ (0\leq \theta<2\pi)$是其一条$\rho(r)$级的Borel方向, 由引理2.4, 对于任意的$\varepsilon(0<\varepsilon<\pi)$, 有
由$g\in M(\rho(r))$得
当$r\rightarrow\infty, r\not\in E$, $E$是一个有限线测度的集合, 记$R(r)=O(\rho(r)\log r)$, 则当$r\rightarrow\infty, r\not\in E$时, 有$R(r)=o(S_{\theta-\varepsilon, \theta+\varepsilon}(r, f))$.假设$f\not\equiv g$.令
根据引理2.4, 得到
若$\psi_i(z)\not\equiv0 \ (i=1, 2)$, 我们将证明
事实上, 在$\Omega(\theta-\varepsilon, \theta+\varepsilon)$内$\psi_i$的极点只可能出现在$f-a_j$和$g-a_j$ $(i, j=1, 2)$在$\Omega(\theta-\varepsilon, \theta+\varepsilon)$的零点处.因为$f, g$在$\Omega(\theta-\varepsilon, \theta+\varepsilon)$内$CM$分担$a_1, a_2$, 可以得到如果$z_0\in \Omega(\theta-\varepsilon, \theta+\varepsilon)$是$f-a_j$的一个重数为$m(\geq1)$的零点, 则$z_0\in \Omega(\theta-\varepsilon, \theta+\varepsilon)$是$g-a_j$ $(j=1, 2)$的具有重数$m(\geq1)$的一个零点.假设
其中$\alpha_j(z), \beta_j(z)$是$\Omega(\theta-\varepsilon, \theta+\varepsilon)$内的解析函数且$\alpha_j(z_0)\neq0, \beta_j(z_0)\neq0$.故
故能得到$\psi_i$$(i=1, 2)$在$\Omega(\theta-\varepsilon, \theta+\varepsilon)$内解析, 从而(3.4)式成立.由(3.3)和(3.4)式得
若$\psi_i\not\equiv 0, i=1, 2$, 则
因$f, g$是$\Omega(\theta-\varepsilon, \theta+\varepsilon)$内的两个超越解析函数且在$\Omega$内$IM$分担$a_1, a_2$, 在$\Omega$内$f=a_3\Longrightarrow g=a_3$, $f=a_4\Longrightarrow g=a_4$.再用引理2.2得
由(3.8)和(3.9)式得
从而$R_{\theta-\varepsilon, \theta+\varepsilon}(r, g)=R_{\theta-\varepsilon, \theta+\varepsilon}(r, f)$.故$R(r)=R_{\theta-\varepsilon, \theta+\varepsilon}(r, g)=R_{\theta-\varepsilon, \theta+\varepsilon}(r, f)$.由(3.8)及(3.9)式也可得到
结合引理2.2, (3.6), (3.7)和(3.10)式, 得$S_{\theta-\varepsilon, \theta+\varepsilon}(r, f)\leq R(r)$.由$R(r)$的定义得到矛盾.假设$\psi_1$和$\psi_2$当中有一个恒为零, 不仿取$\psi_1\equiv0$, 则
其中$\overline{C}^{(2}_{\theta-\varepsilon, \theta+\varepsilon}\big(r, \frac{1}{f-a_3}\big)$是$f-a_3$在$\Omega$内重数满足$q\geq 2$的不同零点的计数函数, $\overline{C}^{(2}_{\theta-\varepsilon, \theta+\varepsilon}$ $\big(r, \frac{1}{g-a_3}\big)$类似.令
根据(3.12)式及引理2.4, 得$S_{\theta-\varepsilon, \theta+\varepsilon}(r, \eta)=R(r)$.观察到$g(z_1)=a_3$可以推出对满足$\eta(z_1)\neq 0$的$z_1\in \Omega$有$f(z_1)=a_3$.得到
其中$ \overline{C}^{1)}_{\theta-\varepsilon, \theta+\varepsilon}\big(r, \frac{1}{f-a_3}\big)$是$f-a_3$在$\Omega$内的不同的简单零点的计数函数, $ \overline{C}^{1)}_{\theta-\varepsilon, \theta+\varepsilon}\big(r, \frac{1}{g-a_3}\big)$类似.
由(3.11)及(3.13)式可得
类似的, 当$\psi_2\equiv0$时, 有
根据(3.8)-(3.10)式, (3.14)及(3.15)式, 有
或者
从而, 根据$f$是一个无穷级的解析函数及$R(r)$的定义, 可以得到矛盾.定理1.5得证.
证 假设$f\not\equiv g$.由引理2.2, 得
从而, 有
类似的
由(4.1)及(4.2)式, 得$S_{\theta-\varepsilon, \theta+\varepsilon}(r, f)=S_{\theta-\varepsilon, \theta+\varepsilon}(r, g) +R_{\theta-\varepsilon, \theta+\varepsilon}(r, f)+R_{\theta-\varepsilon, \theta+\varepsilon}(r, g)$.根据定理1.6的假设, (3.1)及(3.2)式, 有$R(r)=R_{\theta-\varepsilon, \theta+\varepsilon}(r, f)=R_{\theta-\varepsilon, \theta+\varepsilon}(r, g)$.从而根据(4.1)及(4.2)式, 有
故
由(4.4)式, 能够得到$f-a_i$ $(i=1, 2)$在$\Omega$内``几乎所有的"零点都是简单零点.类似的, $g-a_i$ $(i=1, 2)$在$\Omega$内``几乎所有的"零点都是简单零点.置
及
由引理2.4得$(A+B)_{\theta-\varepsilon, \theta+\varepsilon}(r, \varphi_i)=R(r), (i=1, 2)$.因为$f, g$在$\Omega$内$IM$分担$a_1, a_2$且由(4.3)式, 得到$C_{\theta-\varepsilon, \theta+\varepsilon}(r, \varphi_i)=R(r), (i=1, 2)$.故$S_{\theta-\varepsilon, \theta+\varepsilon}(r, \varphi_i)=R(r), (i=1, 2)$.
如果$\varphi_1\equiv0$, 则有
从而由(4.4)式可推出矛盾.类似的, 当$\varphi_2\equiv0$时, 亦可得到矛盾.从而$\varphi_1, \varphi_2$恒为零.故$\frac{\varphi_1-\varphi_2}{a_1-a_2}\equiv0$, 即
因此, 可得
其中$c$是一个非零常数.将(4.5)式重新写为
其中$\gamma(f):=(f-a_1)(f-a_2)$. (4.6)式的判别式为
其中$ Q(z):=((a_1+a_2)(z-a_3)-c\gamma(z))^2-4a_1a_2(z-a_3)^2-4ca_4\gamma(z)(z-a_3), $是$z$的一个4次多项式.若$a$是$Q(z)$在$\Omega$内的一个零点, 显然$a\neq a_3$.则由(4.6)式, $f(z)=a$可推出
置
和
由引理2.4, 得$(A+B)_{\theta-\varepsilon, \theta+\varepsilon}(r, \phi_i)=R(r), (i=1, 2)$.另外, $C_{\theta-\varepsilon, \theta+\varepsilon}(r, \phi_i)=R(r), (i=1, 2)$.由$S_{\theta-\varepsilon, \theta+\varepsilon}(r, \phi_i)=R(r), (i=1, 2)$, 可得到$S_{\theta-\varepsilon, \theta+\varepsilon}(r, \phi)=R(r)$.
假设$f$不是$g$的一个Möbius变换, 则$\phi$是一个非常值函数.因为
由$a\neq a_i$ $(i=1, 2)$及(4.5)式, 得到
其中$\vartheta=\frac{(a-a_1)(b-a_2)}{(a-a_2)(b-a_1)}$.根据$f$在$\Omega$内解析, 引理2.4及(4.4)式, 得
由$f$是一个无穷级的解析函数可推出矛盾.从而$f$是$g$的一个Möbius变换.既然$f, g$是$\Omega$上的解析函数, 经过一个简单计算, 可得$a_1+a_2=a_3+a_4$及
且$a_3, a_4$分别是$f$和$g$在$\Omega$的例外值.
定理1.6获证.