数学物理学报  2016, Vol. 36 Issue (4): 649-655   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
何瑞瑞
刘恒兴
Jacobi算子的Hardy不等式及其应用
何瑞瑞, 刘恒兴     
武汉大学数学与统计学院 武汉 430072
摘要:该文主要考虑与Jacobi算子相关的Hardy不等式.主要结果之一是求得了相关不等式的最佳常数.作为该不等式的应用之一,该文证明了,不同于欧式空间情形,双曲空间上的Hardy不等式可以整体的增添Brezis-Vázquez型余项.
关键词Jacobi算子     Hardy不等式     双曲空间    
Hardy Inequalities for Jacobi Operators and Applications
He Ruirui, Liu Hengxing     
School of Mathematics and Statistics, Wuhan University, Wuhan 430072
Abstract: In this paper we consider the Hardy inequalities for Jacobi operators. We compute the sharp constants of these inequalities. As an application, we show the Hardy inequalities on hyperbolic spaces can be globally refined by adding remainder terms like the Brezis-Vázquez improvement, which is contrary to the case of Euclidean spaces.
Key words: Jacobi operator     Hardy inequality     Hyperbolic space    
1 引言

$C_{0}^{\infty }(\mathbb{R}N)$${{\mathbb{R}}^{N}}$上具有紧支集的光滑函数全体.当N ≥ 3时, 有如下的Hardy不等式

$ \int_{{{\mathbb{R}}^{N}}}{|}\nabla f{{|}^{2}}\text{d}x\ge \frac{{{(N-2)}^{2}}}{4}\int_{{{\mathbb{R}}^{N}}}{\frac{{{f}^{2}}}{|x{{|}^{2}}}}\text{d}x, \ \ \ \ f\in C_{0}^{\infty }({{\mathbb{R}}^{N}}). $ (1.1)

不等式(1.1)内的常数$\frac{{{(N-2)}^{2}}}{4}$是最佳的, 但是等号无法取得.这是因为使得该不等式等号成立的函数$|x{{|}^{2-n}}$不能被$C_{0}^{\infty }({{\mathbb{R}}^{N}})$的函数所逼近.因此, 一个想法是在不等式(1.1)的右边增添非负项.例如, 1997年Brezis和Vázquez[3]证明了, 如果Ω是包含原点的一个有界区域, 则存在仅仅依赖于Ω的正常数CΩ, 使得下述不等式成立

$ \int_{\Omega }{|}\nabla f{{|}^{2}}\text{d}x\ge \frac{{{(N-2)}^{2}}}{4}\int_{\Omega }{\frac{{{f}^{2}}}{|x{{|}^{2}}}}\text{d}x+{{C}_{\Omega }}\int_{\Omega }{{{f}^{2}}}\text{d}x, \ \ \ f\in C_{0}^{\infty }(\Omega ). $ (1.2)

然而, 若将不等式(1.2)中的Ω替换为${{\mathbb{R}}^{N}}$, 则上述不等式不再成立.受此启发, 许多学者将此工作推广到各种各样的情形.这些加强版的Hardy不等式有着各式各样的应用, 详情可参考[1-9]等文献.

最近Kombe和Özaydin[10]在双曲空间${{\mathbb{B}}^{n}}=\{x=({{x}_{1}}, \cdots, {{x}_{n}})\in {{\mathbb{R}}^{n}}||x|<1\}$上建立了如下带Brezis-Vázquez型余项的Hardy不等式

$ \int_{{{\mathbb{B}}^{n}}}{|}{{\nabla }_{\mathbb{H}}}f{{|}^{2}}\text{d}V\ge \frac{{{(n-2)}^{2}}}{4}\int_{{{\mathbb{B}}^{n}}}{\frac{{{f}^{2}}}{{{\rho }^{2}}}}\text{d}V+C\int_{{{\mathbb{B}}^{n}}}{{{f}^{2}}}{{\left( \frac{1-|x{{|}^{2}}}{2} \right)}^{n}}\text{d}V, $ (1.3)

其中${{\nabla }_{\mathbb{H}}}=\frac{1-{{\left| x \right|}^{2}}}{2}(\frac{\partial }{\partial {{x}_{1}}}, \cdots, \frac{\partial }{\partial {{x}_{n}}})$, $\rho (x)=\log \frac{1+|x|}{1-|x|}$以及$\text{d}V={{(\frac{2}{1-|x{{|}^{2}}})}^{n}}\text{d}x$(详细的符号介绍可参阅第三节).然而, 由于文献[10]中所用方法的限制, 不等式(1.3)中所出现的因子${{(\frac{1-|x{{|}^{2}}}{2})}^{n}}$无法去掉.

本文主要的目的之一就是证明上述所说的因子是可以去掉的, 从而我们将得到全空间带Brezis-Vázquez型余项的Hardy不等式.这显示了双曲空间和欧式空间的某种差异性.为此, 我们考虑更为一般的Jacobi算子

$ {{\Delta }_{\alpha, \beta }}=\frac{{{\text{d}}^{2}}}{\text{d}{{r}^{2}}}+\left[(2\alpha +1)\coth r+(2\beta +1)\tanh r \right]\frac{\text{d}}{\text{d}r}=\frac{1}{A(r)}\frac{\text{d}}{\text{d}r}\left( A(r)\frac{\text{d}}{\text{d}r} \right), $

其中$\alpha \ge \beta \ge -1/2$, $\alpha>-1/2$以及

$ A(r)={{(\sinh r)}^{2\alpha +1}}{{(\cosh r)}^{2\beta +1}}. $ (1.4)

Jacobi算子既可以视为双曲Laplace算子的径向部分, 也可以看作更为一般的AN群上Laplace算子的径向部分.有关这方面的详细介绍可参考文献[11-12].

与Jacobi算子相关的Hardy不等式主要有如下两个定理.

定理 1.1  设$1 < p <2\alpha+2$, $\beta\geq-1/2$.则对任意$f\in C_{0}^{\infty }([0, +\infty ))$, 有如下不等式

$ \int_{0}^{+\infty }{A}(r){{\left| \frac{\text{d}f}{\text{d}r} \right|}^{p}}\text{d}r\ge {{\left( \frac{2\alpha +2-p}{p} \right)}^{p}}\int_{0}^{+\infty }{A}(r)\frac{|f{{|}^{p}}}{{{r}^{p}}}\text{d}r, $ (1.5)

并且常数${{(\frac{2\alpha +2-p}{p})}^{p}}$$是最佳的.这里的$A(r)$由式(1.4)所定义.

定理 1.2 设$ 2\leq p<2\alpha+2$, $\beta\geq-1/2$.则存在常数$C_{p}>0$, 使得对任意$f\in C_{0}^{\infty }([0, +\infty ))$, 满足如下的加强Hardy不等式

$ \int_{0}^{+\infty }{A}(r){{\left| \frac{\text{d}f}{\text{d}r} \right|}^{p}}\text{d}r\ge {{\left( \frac{2\alpha +2-p}{p} \right)}^{p}}\int_{0}^{+\infty }{A}(r)\frac{|f{{|}^{p}}}{{{r}^{p}}}\text{d}r+{{C}_{p}}\int_{0}^{+\infty }{A}(r)|f{{|}^{p}}\text{d}r. $ (1.6)

作为上述定理的一个应用, 我们证明了双曲空间上的一类Hardy不等式可以整体的增添Brezis-Vázquez型余项, 详情如下:

定理 1.3  设$2\leq p < n$.则存在常数$C'_{p}>0$, 使得对任意$f\in C^{\infty}_{0}({\Bbb B}^{n})$, 满足如下不等式

$ \int_{{{\mathbb{B}}^{n}}}{|}{{\nabla }_{\mathbb{H}}}f{{|}^{p}}\text{d}V\ge {{\left( \frac{n-p}{p} \right)}^{p}}\int_{{{\mathbb{B}}^{n}}}{\frac{|f{{|}^{p}}}{{{\rho }^{p}}}}\text{d}V+{{{C}'}_{p}}\int_{{{\mathbb{B}}^{n}}}{|}f{{|}^{p}}\text{d}V. $ (1.7)
2 定理 1.1和定理 1.2的证明

在证明主要定理之前, 我们先需要如下的引理(可参阅文献[8, 13]).

引理 2.1  设$N\geq1$.则存在常数$D_{p}>0$, 使得对所有$\xi_{1}$, $\xi_{2}\in {\Bbb R}^{N}$, 下述不等式成立

(1) $1 < p < 2$时,

$ |\xi_{1}+\xi_{2}|^{p}-|\xi_{1}|^{p}-p|\xi_{1}|^{p-2}\langle\xi_{1}, \xi_{2}\rangle\geq D_{p}\frac{|\xi_{2}|^{2}}{\left(|\xi_{1}|+|\xi_{2}|\right)^{2-p}}; $

(2) $p\geq 2$时,

$ |\xi_{1}+\xi_{2}|^{p}-|\xi_{1}|^{p}-p|\xi_{1}|^{p-2}\langle\xi_{1}, \xi_{2}\rangle\geq D_{p}|\xi_{2}|^{p}. $

由引理 2.1不难看出, 对所有的$p>1$,

$ |{{\xi }_{1}}+{{\xi }_{2}}{{|}^{p}}\ge |{{\xi }_{1}}{{|}^{p}}+p|{{\xi }_{1}}{{|}^{p-2}}\langle {{\xi }_{1}}, {{\xi }_{2}}\rangle . $ (2.1)

现在我们可以证明定理1.1.

定理 1.1的证明  做变换$f=r^{\frac{p-2\alpha-2}{p}}g$, 有

$ \left|\frac{{\rm d}f}{{\rm d}r}\right|=\left|\frac{p-2\alpha-2}{p}r^{-\frac{2\alpha+2}{p}}g+r^{\frac{p-2\alpha-2}{p}}\frac{{\rm d}g}{{\rm d}r}\right|. $

利用不等式(2.1)可得

$ \begin{eqnarray*} \left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}&\geq &\left|\frac{p-2\alpha-2}{p}\right|^{p}r^{-(2\alpha+2)}|g|^{p}+p\left|\frac{p-2\alpha-2}{p}\right|^{p-2} r^{-\frac{p-2}{p}(2\alpha+2)}|g|^{p-2} \\ &&\times \frac{p-2\alpha-2}{p}r^{-\frac{2\alpha+2}{p}}g\cdot r^{\frac{p-2\alpha-2}{p}}\frac{{\rm d}g}{{\rm d}r}\\ &= &\left(\frac{2\alpha+2-p}{p}\right)^{p}r^{-(2\alpha+2)}|g|^{p} -p\left(\frac{2\alpha+2-p}{p}\right)^{p-1}r^{-1-2\alpha}|g|^{p-2}g\frac{{\rm d}g}{{\rm d}r}\\ &=&\left(\frac{2\alpha+2-p}{p}\right)^{p}r^{-(2\alpha+2)}|g|^{p} -\left(\frac{2\alpha+2-p}{p}\right)^{p-1}r^{-1-2\alpha}\frac{{\rm d}|g|^{p}}{{\rm d}r}. \end{eqnarray*} $

两边同时乘以$A(r)$积分可得

$ \begin{eqnarray*} \int^{+\infty}_{0}A(r)\left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}{\rm d}r &\geq & \left(\frac{2\alpha+2-p}{p}\right)^{p}\int^{+\infty}_{0}A(r)r^{-(2\alpha+2)}|g|^{p}{\rm d}r\\ &&-\left(\frac{2\alpha+2-p}{p}\right)^{p-1}\int^{+\infty}_{0}A(r) r^{-1-2\alpha}\frac{{\rm d}|g|^{p}}{{\rm d}r}{\rm d}r. \end{eqnarray*} $

注意到函数$g$也具有紧支集, 故

$ \begin{eqnarray*} &&-\int^{+\infty}_{0}A(r) r^{-1-2\alpha}\frac{{\rm d}|g|^{p}}{{\rm d}r}{\rm d}r\\ &=&\int^{+\infty}_{0}A(r)|g|^{p} r^{-2-2\alpha}\left[(2\alpha+1)r\coth r+(2\beta+1)r\tanh r-2\alpha-1\right]{\rm d}r\\ &\geq &(2\alpha+1)\int^{+\infty}_{0}A(r)|g|^{p} r^{-2-2\alpha}\left(r\coth r-1\right){\rm d}r\\ &=&(2\alpha+1)\int^{+\infty}_{0}A(r)|g|^{p} r^{-2-2\alpha}\sinh^{-1}r\left(r\cosh r-\sinh r\right){\rm d}r\\ &=&(2\alpha+1)\int^{+\infty}_{0}A(r)|g|^{p} r^{-2-2\alpha}\sinh^{-1}r\left(\sum^{\infty}_{n=0}\frac{r^{2n+1}}{(2n)!}-\sum^{\infty}_{n=0}\frac{r^{2n+1}}{(2n+1)!}\right){\rm d}r\geq0, \end{eqnarray*} $

我们有

$ \begin{eqnarray*} \int^{+\infty}_{0}A(r)\left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}{\rm d}r &&\geq & \left(\frac{2\alpha+2-p}{p}\right)^{p}\int^{+\infty}_{0}A(r)r^{-(2\alpha+2)}|g|^{p}{\rm d}r\\ &=&\left(\frac{2\alpha+2-p}{p}\right)^{p}\int^{+\infty}_{0}A(r)\frac{|f|^{p}}{r^{p}}{\rm d}r. \end{eqnarray*} $

下面我们证明常数$\big(\frac{2\alpha+2-p}{p}\big)^{p}$是最佳的.设$\phi(r)$是满足如下条件的光滑截断函数

$ \phi(r)=\left\{ \begin{array}{ll} 1, & \hbox{$r\leq1$;} \\ 0, & \hbox{$r\geq2$.} \end{array} \right. $

对充分小的正数$\varepsilon$, 取

$ g_{\varepsilon}(r)=\left\{ \begin{array}{ll} \varepsilon^{-(2\alpha+2-p)/p}, & \hbox{$r\leq \varepsilon$ ;} \\ r^{-(2\alpha+2-p)/p}, & \hbox{$r> \varepsilon$ .} \end{array} \right. $

我们用$\phi g_{\varepsilon}$作为测试函数.容易验证

$ \int^{+\infty}_{0}A(r)\frac{|\phi g_{\varepsilon}(r)|^{p}}{r^{p}}{\rm d}r \geq \int^{1}_{\varepsilon}A(r)\frac{|\phi g_{\varepsilon}(r)|^{p}}{r^{p}}{\rm d}r=\int^{1}_{\varepsilon}A(r)r^{-2\alpha-2}{\rm d}r; \\ \begin{eqnarray*} && \int^{+\infty}_{0}A(r)\left|\frac{ {\rm d}(\phi g_{\varepsilon})}{{\rm d}r}\right|^{p}{\rm d}r \\ &=& \int^{1}_{\varepsilon}A(r)\left|\frac{{\rm d} g_{\varepsilon}}{{\rm d}r}\right|^{p}{\rm d}r+\int^{2}_{1}A(r)\left|\frac{ {\rm d}(\phi r^{-(2\alpha+2-p)/p} )}{{\rm d}r}\right|^{p}{\rm d}r \\ &=&\left(\frac{2\alpha+2-p}{p}\right)^{p}\int^{1}_{ \varepsilon}A(r)r^{-2\alpha-2}{\rm d}r+\int^{2}_{1}A(r)\left|\frac{ {\rm d}(\phi r^{-(2\alpha+2-p)/p} )}{{\rm d}r}\right|^{p}{\rm d}r. \end{eqnarray*} $

因此

$ \begin{eqnarray*} &&\inf_{f\in C^{\infty}_{0}([0, +\infty))\backslash\{0\}}\frac{\int^{+\infty}_{0}A(r)\left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}{\rm d}r}{\int^{+\infty}_{0}A(r) \frac{|f|^{p}}{r^{p}}{\rm d}r} \\ &\leq & \frac{\int^{+\infty}_{0}A(r)\left|\frac{{\rm d} (\phi g_{\varepsilon})}{{\rm d}r}\right|^{p}{\rm d}r}{\int^{+\infty}_{0}A(r) \frac{|\phi g_{\varepsilon}|^{p}}{r^{p}}{\rm d}r} \leq \left(\frac{2\alpha+2-p}{p}\right)^{p}+\frac{\int^{2}_{1}A(r)\left|\frac{ {\rm d}(\phi r^{-(2\alpha+2-p)/p} )}{{\rm d}r}\right|^{p}{\rm d}r}{\int^{1}_{\varepsilon}A(r)r^{-2\alpha-2}{\rm d}r}. \end{eqnarray*} $

注意到当$r>0$时, $\sinh r>r$, 且

$ \int^{1}_{\varepsilon}A(r)r^{-2\alpha-2}{\rm d}r>\int^{1}_{\varepsilon}r^{2\alpha+1}r^{-2\alpha-2}{\rm d}r=-\ln\varepsilon\rightarrow+\infty, \;\;\varepsilon\rightarrow 0+, $

我们有

$ \begin{eqnarray*} && \inf_{f\in C^{\infty}_{0}([0, +\infty))\backslash\{0\}}\frac{\int^{+\infty}_{0}A(r)\left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}{\rm d}r}{\int^{+\infty}_{0}A(r) \frac{|f|^{p}}{r^{p}}{\rm d}r}\\ &\leq & \left(\frac{2\alpha+2-p}{p}\right)^{p}+\lim_{\varepsilon\rightarrow0+} \frac{\int^{2}_{1}A(r)\left|\frac{{\rm d} (\phi r^{-(2\alpha+2-p)/p} )}{{\rm d}r}\right|^{p}{\rm d}r}{\int^{1}_{\varepsilon}A(r)r^{-2\alpha-2}{\rm d}r} = \left(\frac{2\alpha+2-p}{p}\right)^{p}. \end{eqnarray*} $

定理 1.1证毕.

定理 1.2的证明  类似于定理1.1的证明, 我们同样做变换$f=r^{\frac{p-2\alpha-2}{p}}g$.由于$p\geq2$, 利用引理2.1(2)可得

$ \begin{eqnarray}\label{1.9} \int^{+\infty}_{0}A(r)\left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}{\rm d}r &=&\int^{+\infty}_{0}A(r)\left|\frac{p-2\alpha-2}{p}r^{-\frac{2\alpha+2}{p}}g+ r^{\frac{p-2\alpha-2}{p}}\frac{{\rm d}g}{{\rm d}r}\right|^{p}{\rm d}r\nonumber\\ &\geq &\left|\frac{p-2\alpha-2}{p}\right|^{p}\int^{+\infty}_{0}A(r)r^{-(2\alpha+2)}|g|^{p}{\rm d}r \nonumber\\ &&+ p\left|\frac{p-2\alpha-2}{p}\right|^{p-2} \int^{+\infty}_{0}A(r)r^{-\frac{p-2}{p}(2\alpha+2)}|g|^{p-2}\nonumber\\ &&\times \frac{p-2\alpha-2}{p}r^{-\frac{2\alpha+2}{p}}g\cdot r^{\frac{p-2\alpha-2}{p}}\frac{{\rm d}g}{{\rm d}r}{\rm d}r \nonumber\\ &&+ D_{p}\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|\frac{{\rm d}g}{{\rm d}r}\right|^{p}{\rm d}r. \end{eqnarray} $ (2.2)

由定理 1.1的讨论知, 不等式(2.2)右边的第二项是非负的, 因此

$ \begin{eqnarray}\label{1.10} &&\int^{+\infty}_{0}A(r)\left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}{\rm d}r\ \\ &\geq &\left|\frac{p-2\alpha-2}{p}\right|^{p}\int^{+\infty}_{0}A(r)r^{-(2\alpha+2)}|g|^{p}{\rm d}r +D_{p}\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|\frac{{\rm d}g}{{\rm d}r}\right|^{p}{\rm d}r\nonumber\\ &=&\left(\frac{2\alpha+2-p}{p}\right)^{p}\int^{+\infty}_{0}A(r)\frac{|f|^{p}}{r^{p}}{\rm d}r+D_{p}\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|\frac{{\rm d}g}{{\rm d}r}\right|^{p}{\rm d}r. \end{eqnarray} $ (2.3)

注意到当$r>0$时,

$ \begin{eqnarray*} \frac{(A(r)r^{p-2\alpha-2})'}{A(r)r^{p-2\alpha-2}}&=&\frac{p-2\alpha-2}{r}+(2\alpha+1)\coth r+(2\beta+1)\tanh r \\ &\geq & \frac{p-1}{r}+(2\alpha+1)\left(\coth r-\frac{1}{r}\right)\\ &\geq & \frac{p-1}{r}+(p-1)\left(\coth r-\frac{1}{r}\right) =(p-1)\coth r\geq p-1, \end{eqnarray*} $

我们有

$ \begin{eqnarray*} &&(p-1)\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|g\right|^{p}{\rm d}r\\ &\leq &\int^{+\infty}_{0}(A(r)r^{p-2\alpha-2})'\left|g\right|^{p}{\rm d}r =-p\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|g\right|^{p-2}gg'{\rm d}r\\ &\leq &p\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|g\right|^{p-1}|g'|{\rm d}r\\ &\leq &p\left(\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|g\right|^{p}{\rm d}r\right)^{\frac{p-1}{p}} \left(\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|\frac{{\rm d}g}{{\rm d}r}\right|^{p}{\rm d}r\right)^{\frac{1}{p}}. \end{eqnarray*} $

从而

$ \begin{eqnarray}\label{1.11} \left(\frac{p-1}{p}\right)^{p}\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|g\right|^{p}{\rm d}r \leq\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|\frac{{\rm d}g}{{\rm d}r}\right|^{p}{\rm d}r. \end{eqnarray} $ (2.4)

联立(2.3)和(2.4)式可得

$ \begin{eqnarray*} &&\int^{+\infty}_{0}A(r)\left|\frac{{\rm d}f}{{\rm d}r}\right|^{p}{\rm d}r \\ &\geq &\left(\frac{2\alpha+2-p}{p}\right)^{p}\int^{+\infty}_{0}A(r)\frac{|f|^{p}}{r^{p}}{\rm d}r+ D_{p}\left(\frac{p-1}{p}\right)^{p}\int^{+\infty}_{0}A(r)r^{p-2\alpha-2}\left|g\right|^{p}{\rm d}r\\ &=&\left(\frac{2\alpha+2-p}{p}\right)^{p}\int^{+\infty}_{0}A(r)\frac{|f|^{p}}{r^{p}}{\rm d}r+ D_{p}\left(\frac{p-1}{p}\right)^{p}\int^{+\infty}_{0}A(r)\left|f\right|^{p}{\rm d}r. \end{eqnarray*} $

定理1.2证毕.

3 定理 1.3的证明

在定理证明之前, 我们先简单介绍一下双曲空间的Poincaré圆盘, 详细介绍可参考书籍[14].记${\Bbb B}^{n}=\{x=(x_{1}, \cdots, x_{n})\in {\Bbb R}^{n}| |x| < 1\}$.若$x\in {\Bbb B}^{n}$, 则从原点到$x$的双曲距离为

$ \rho(x)=\log\frac{1+|x|}{1-|x|}. $

对应的双曲Laplace算子

$ \Delta_{{\Bbb H}}=\frac{1-|x|^{2}}{4}\left\{(1-|x|^{2})\sum^{n}_{i=1}\frac{\partial^{2}}{\partial x^{2}_{i}}+2(n-2)\sum^{n}_{i=1}x_{i}\frac{\partial}{\partial x_{i}}\right\} $

以及双曲梯度为

$ \nabla_{{\Bbb H}}=\frac{1-|x|^{^{2}}}{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right). $

在距离$\rho$下, 双曲Laplace算子可改写为

$ \begin{eqnarray*} \Delta_{{\Bbb H}}=\frac{\partial^{2} }{\partial \rho^{2}}+(n-1)\coth\rho\frac{\partial }{\partial \rho}+\frac{1}{\sinh^{2}\rho }\Delta_{{\Bbb S}^{n-1}}. \end{eqnarray*} $

梯度也可以改成为

$ \begin{eqnarray}\label{1.12} |\nabla_{{\Bbb H}} f|^{2}=\left|\frac{\partial f}{\partial \rho}\right|^{2}+\frac{1}{\sinh^{2}\rho }|\nabla_{{\Bbb S}^{n-1}}f|^{2}. \end{eqnarray} $ (3.1)

这里的$\Delta_{{\Bbb S}^{n-1}}$$\nabla_{{\Bbb S}^{n-1}}$分别为球面${\Bbb S}^{n-1}$上的Laplace-Beltrami算子以及相应梯度.

此外, 双曲空间上的体积元${\rm d}V=\big(\frac{2}{1-|x|^{2}}\big)^{n}{\rm d}x$.并且, 在该体积元下有下面的极坐标公式

$ \begin{eqnarray}\label{1.13} \int_{{\Bbb B}^{n}}f{\rm d}V=\int^{+\infty}_{0}\int_{{\Bbb S}^{n-1}}f\sinh^{n-1} \rho {\rm d}\rho {\rm d}\theta. \end{eqnarray} $ (3.2)

定理1.3的证明  在定理1.2中取$\alpha=n/2-1$$\beta=-1/2$可得

$ \begin{eqnarray*} \int^{+\infty}_{0}\left|\frac{{\rm d}f}{{\rm d}\rho}\right|^{p}\sinh^{n-1} \rho {\rm d}\rho\geq\left(\frac{n-p}{p}\right)^{p}\int^{+\infty}_{0}\frac{|f|^{p}}{\rho^{p}}\sinh^{n-1} \rho {\rm d}\rho+ C_{p}\int^{+\infty}_{0}|f|^{p}\sinh^{n-1} \rho {\rm d}\rho. \end{eqnarray*} $

不等式两边同时在${\Bbb S}^{n-1}$上积分可得

$ \begin{eqnarray*} &&\int_{{\Bbb S}^{n-1}}\left(\int^{+\infty}_{0}\left|\frac{{\rm d}f}{{\rm d}\rho}\right|^{p}\sinh^{n-1} \rho {\rm d}\rho\right){\rm d}\theta\\ &\geq &\left(\frac{n-p}{p}\right)^{p}\int_{{\Bbb S}^{n-1}}\left(\int^{+\infty}_{0}\frac{|f|^{p}}{\rho^{p}}\sinh^{n-1} \rho {\rm d}\rho\right){\rm d}\theta+ C_{p}\int_{{\Bbb S}^{n-1}}\left(\int^{+\infty}_{0}|f|^{p}\sinh^{n-1} \rho {\rm d}\rho\right){\rm d}\theta. \end{eqnarray*} $

利用极坐标(3.2)式可得

$ \int_{{\Bbb B}^{n}}|\partial_{\rho}f|^{p}{\rm d}V\geq\left(\frac{n-p}{p}\right)^{p}\int_{{\Bbb B}^{n}}\frac{| f|^{p}}{\rho^{p}}{\rm d}V+C_{p}\int_{{\Bbb B}^{n}}| f|^{p}{\rm d}V. $

最后由(3.1)式可得

$ \left(\frac{n-p}{p}\right)^{p}\int_{{\Bbb B}^{n}}\frac{| f|^{p}}{\rho^{p}}{\rm d}V+C_{p}\int_{{\Bbb B}^{n}}| f|^{p}{\rm d}V\leq\int_{{\Bbb B}^{n}}|\partial_{\rho}f|^{p}{\rm d}V\leq\int_{{\Bbb B}^{n}}|\nabla_{{\Bbb H}}f|^{p}{\rm d}V. $

定理1.3证毕.

参考文献
[1] Abdellaoui B, Colorado D, Peral I. Some improved Caffarelli-Kohn-Nirenberg inequalities. Calc Var Partial Differential Equations , 2005, 23 : 327–345. DOI:10.1007/s00526-004-0303-8
[2] Barbatis G, Filippas S, Tertikas A. A unified approach to improved Lp Hardy inequalities with best constants. Trans Amer Math Soc , 2004, 356 : 2169–2196. DOI:10.1090/S0002-9947-03-03389-0
[3] Brezis H, Vázquez J. Blow-up solutions of some nonlinear elliptic problems. Rev Mat Univ Comp Madrid , 1997, 10 : 443–469.
[4] Filippas S, Moschini L, Tertikas A. Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains. Comm Math Phys , 2007, 273 : 237–286. DOI:10.1007/s00220-007-0253-z
[5] Filippas S, Tertikas A. Optimizing improved Hardy inequalities. J Funct Anal , 2002, 192 : 186–233. DOI:10.1006/jfan.2001.3900
[6] Gazzola F, Grunau H, Mitidieri E. Hardy inequalities with optimal constants and remainder terms. Trans Amer Math Soc , 2004, 356 : 2149–2168. DOI:10.1090/S0002-9947-03-03395-6
[7] Gkikas K T. Hardy-Sobolev inequalities in unbounded domains and heat kernel estimates. J Func Anal , 2013, 264 : 837–893. DOI:10.1016/j.jfa.2012.11.007
[8] Shafrir I. Asymptotic behaviour of minimizing sequences for Hardy inequality. Commun Contemp Math , 2000, 2 : 151–189.
[9] Vazquez J L, Zuazua E. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J Funct Anal , 2000, 173 : 103–153. DOI:10.1006/jfan.1999.3556
[10] Kombe I, Özaydin M. Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans Amer Math Soc , 2009, 361 : 6191–6203. DOI:10.1090/S0002-9947-09-04642-X
[11] Koornwinder T H. Jacobi functions and analysis on noncompact semisimple Lie groups//Askey R A, Koornwinder T H, Schempp W. Special Functions: Group Theoretical Aspect and Applications. Dordrecht-Boston: Reidel, 1984: 1-85
[12] Anker J, Damek E, Yacoub C. Spherical analysis on harmonic AN groups. Ann Scuola Norm Sup Pisa , 1996, 23 : 643–679.
[13] Lindqvist P. On the equation Δpu+λ|u|p-2u=0. Proc Amer Math Soc , 1990, 109 : 157–164.
[14] Davies E B. Heat Kernels and Spectral Theory , 1989.