数学物理学报  2016, Vol. 36 Issue (4): 623-638   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
蔡钢
YekiniShehu
q-一致光滑、一致凸Banach空间中关于变分不等式问题和严格伪压缩映射的不动点问题的粘性迭代算法
蔡钢1, YekiniShehu2     
1. 重庆师范大学数学科学学院 重庆 401331 ;
2. Department of Mathematics, University of Nigeria, Nsukka, Nigeria
摘要:该文在q-一致光滑,一致凸Banach空间中研究了关于广义压缩映射的粘性迭代算法,找到了关于两个逆强增生算子的变分不等式问题解集与无限个严格伪压缩映射的公共不动点集的公共元.所得结果提高和推广了许多最近的相关结果.
关键词不动点     变分不等式     强收敛     伪压缩映射     Banach空间    
Viscosity Iterative Algorithm for Variational Inequality Problems and Fixed Point Problems of Strict Pseudo-Contractions in q-Uniformly Smooth and Uniformly Convex Banach Spaces
Cai Gang1, Yekini Shehu2     
1. School of Mathematics Science, Chongqing Normal University, Chongqing 401331 ;
2. Department of Mathematics, University of Nigeria, Nsukka, Nigeria
Abstract: The purpose of this paper is to investigate a viscosity iterative algorithm based on a generalized contraction for finding a common element of the set of solutions of a general variational inequality problem for two inverse-strongly accretive mappings and the set of common fixed points for infinite strict pseudo-contractions in q-uniformly smooth and uniformly convex Banach spaces. Strong convergence theorems are proved under some appropriate conditions. The results obtained in this paper improve and extend many recent ones announced by many others in this literature.
Key words: Fixed point     Variational inequality     Strong convergence     Pseudocontraction     Banach space    
1 引言

$E$$E^*$分别为实Banach空间和它的对偶空间.广义对偶映射$J_q:E\rightarrow 2^{E^*}$定义为

$ {{J}_{q}}(x)=\left\{ {{x}^{*}}\in {{E}^{*}}:\ \left\langle x, {{x}^{*}} \right\rangle ={{\left\| x \right\|}^{q}}, \ \left\| {{x}^{*}} \right\|={{\left\| x \right\|}^{q-1}} \right\}, \forall \ x\in E. $

易知${{J}_{q}}={{\left\| x \right\|}^{q-2}}{{J}_{2}}(x), \forall \ x\ne 0$, 其中$J_2=J$称为正规对偶映射.众所周知, 若$E$光滑, 则$J_q$是单值的, 记为$j_q$.现在回忆文献[1-2]中一些基本概念.

Banach空间$E$称为严格凸的, 若对任意$x, y\in E$, $x\neq y$$\left\| x \right\|=\left\| y \right\|=1$, 有$\left\| {\frac{{x + y}}{2}{\rm{ }}} \right\| < 1$. $E$中的凸模$\delta_E:[0, 2]\rightarrow[0, 1]$定义为

$ {\delta _E}() = \inf \left\{ {1-\frac{{\left\| {x + y} \right\|}}{2}:\;\left\| x \right\| = 1, \left\| y \right\| = 1且\left\| {x-y} \right\| \ge } \right\}, \;0 \le 2. $

Banach空间$E$称为一致凸的, 若对任意$0 < \epsilon\leq2$, 有$\delta_E(\epsilon)>0$. Banach空间$E$称为$p$ -一致凸的, 若存在常数$c>0$使得$\delta_E(\epsilon)\geq c\epsilon^p$.众所周知, Hilbert空间是$2$ -一致凸的, $L^p$空间是$\max \left\{ p, 2\right\}$-一致凸的, 其中$p>1$.若$1 < p < 2$, 则任何Banach空间都不是$p$ -一致凸的.

Banach空间$E$中的范数称为Gâteaux可微的, 若对$E$中单位球面$S(E)$上的任意点$x, y$, 极限$\mathop {\lim }\limits_{t \to 0} \frac{{\left\| {x + ty} \right\|-\left\| x \right\|}}{t}$存在.此时, $E$也称为光滑的. $E$中范数称为一致Gâteaux可微的, 若任取$S(E)$中元素$y$, 上述极限能够对$S(E)$$x$一致的取到. $E$中范数称为Fréchet可微的, 若任取$S(E)$中元素$x$, 上述极限能够对$S(E)$$y$一致的取到. $E$中范数称为一致Fréchet可微的, 若上述极限能够对$S(E)$$x, y$能一致的取到.

$E$的光滑模$\rho_E:[0, \infty)\rightarrow [0, \infty)$定义为

$ {\rho _E}(t) = \sup \left\{ {\frac{1}{2}(\left\| {x + y} \right\| + \left\| {x-y} \right\|)-1:{\mkern 1mu} x \in S(E), {\mkern 1mu} \left\| y \right\| \le t} \right\}. $

Banach空间$E$称为一致光滑的, 若$\frac{\rho_E(t)}{t}\rightarrow 0$, 其中$t\rightarrow 0$. $E$称为$q$ -一致光滑的, 若存在常数$c>0$使得$\rho_E(t)\leq ct^q$.众所周知, $E$是一致光滑的当且仅当$E$中的范数是一致Fréchet可微的.若$E$$q$ -一致光滑的, 则$q\leq 2$$E$是一致光滑的. $L^p$$\min \left\{ p,2 \right\}$ -一致光滑的, 其中$p>1$. Hilbert空间是2 -一致光滑的.

$C$$D$为Banach空间$E$的两个非空子集使得$C$是非空闭凸的且$D\subset C$, 映射$P:C\rightarrow D$称为向阳的[1], 若当$x+t(x-P(x))\in C$时, 有

$ P(x+t(x-P(x)))=P(x), \quad \forall \, x\in C, \, t\geq0. $

映射$P:C\rightarrow D$称为拉回, 若$Px=x, \ \forall\ x\in D$. $P$称为从$C$$D$上的向阳非扩张拉回, 若$P$$C$$D$上的拉回且是非扩张的. $C$中子集$D$称为$C$的向阳非扩张拉回, 若存在一个从$C$$D$上的向阳非扩张拉回映射.

命题 1.1[3] 设$C$为Banach空间$E$的闭凸子集, $D$$C$的子集.设$P:C\rightarrow D$是拉回映射且$J$$E$中正规对偶映射.则下面命题等价:

(a) $P$是向阳非扩张的;

(b) ${{\left\| Px-Py \right\|}^{2}}\le \left\langle x-y,J(Px-Py) \right\rangle ,\forall x,y\in C$;

(c) $\left\langle x-Px,J(y-Px) \right\rangle \le 0,\forall \in C,y\in D$.

命题 1.2[4] 若$E$是严格凸的且是一致光滑的, $T:C\rightarrow C$为非扩张映射且其不动点集为$F(T)$, 则$F(T)$$C$中向阳非扩张拉回集.

映射$T:C\rightarrow C$称为李普希兹的, 若存在常数$L>0$使得

$ \left\| {Tx-Ty} \right\| \le L\left\| {x-y} \right\|, \forall {\mkern 1mu} {\mkern 1mu} x, y \in C. $ (1.1)

映射$T:C\rightarrow C$称为非扩张的, 若

$ \left\| {Tx - Ty} \right\| \le \left\| {x - y} \right\|,\forall x,y \in C $ (1.2)

映射$A:C\rightarrow E$称为增生的, 若存在$j_q(x-y)\in J_q(x-y)$满足

$ \left\langle {Ax-Ay, {j_q}(x-y)} \right\rangle \ge 0, \forall {\mkern 1mu} {\mkern 1mu} x, y \in C. $ (1.3)

映射$A:C\rightarrow E$称为$\alpha$ -逆强增生的, 若存在$j_q(x-y)\in J_q(x-y)$$\alpha>0$满足

$ \left\langle {Ax-Ay, {j_q}(x-y)} \right\rangle \ge \alpha {\left\| {Ax-Ay} \right\|^q}, \forall {\mkern 1mu} {\mkern 1mu} x, y \in C. $ (1.4)

映射$T:C\rightarrow C$称为$\lambda$ -严格伪压缩的[5], 若对于任意$x, y\in C$和某个$j_q(x-y)\in J_q(x-y)$, 存在常数$\lambda>0$满足

$ \left\| {Tx-Ty} \right\|, {j_q}(x-y) \le {\left\| {x-y} \right\|^q} - \lambda {\left\| {(I - T)x - (I - T)y} \right\|^q}. $ (1.5)

注 1.1 根据$(1.5)$式, 可以证明, 若$T$$\lambda$ -严格伪压缩的, 则$T$是李普希兹的, 其中李普希兹常数$L=\frac{1+\lambda^{\frac{1}{q-1}}}{\lambda^{\frac{1}{q-1}}}$.事实上, 由(1.5)式得

$ \lambda {\left\| {(I-T)x-(I-T)y} \right\|^q} \le \left\langle {x - y - (Tx - Ty), {j_q}(x - y)} \right\rangle, $

于是

$ \lambda {\left\| {(I-T)x-(I-T)y} \right\|^q} \le \left\| {x - y - (Tx - Ty)} \right\|{\left\| {x - y} \right\|^{q - 1}}. $

$ {\lambda ^{\frac{1}{{q-1}}}}\left\| {x-y-(Tx - Ty)} \right\| \le \left\| {x - y} \right\|. $

故有

$ {\lambda ^{\frac{1}{{q-1}}}}(\left\| {Tx-Ty} \right\|-\left\| {x - y} \right\|) \le {\lambda ^{\frac{1}{{q - 1}}}}\left\| {x - y - (Tx - Ty)} \right\| \le \left\| {x - y} \right\|. $

于是

$ \left\| {Tx-Ty} \right\| \le \frac{{1 + {\lambda ^{\frac{1}{{q-1}}}}}}{{{\lambda ^{\frac{1}{{q-1}}}}}}\left\| {x - y} \right\|. $

${\Bbb N}$${\Bbb R}^+$分别为正整数集与正实数集.映射$\varphi:{\Bbb R}^+\rightarrow {\Bbb R}^+$称为$L$ -函数, 若$\varphi(0)=0, $ $\varphi(t)>0, \forall\ t>0$且对于任意$s>0$存在$u>s$满足$\varphi(t)\leq s, \forall\ t\in[s, u]$.

$(E, d)$为距离空间.映射$f:E\rightarrow E$称为$(\varphi, L)$ -压缩映射, 若$\varphi:{\Bbb R}^+\rightarrow {\Bbb R}^+$$L$ -函数且有$d(f(x), f(y)) < \varphi(d(x, y)), \forall\ x, y\in E, x\neq y$.映射$f:E\rightarrow E$称为Meir-Keeler型映射, 若对于任意$\epsilon>0$, 存在$\delta=\delta(\epsilon)>0$使得对于任意$x, y\in E$, $\epsilon\leq d(d, y) < \epsilon+\delta$, 有$d(f(x), f(y)) < \epsilon$.

命题 1.3[6] 设$(E, d)$为距离空间, $f:E\rightarrow E$为映射.则下述论断等价:

(ⅰ) $f$为Meir-Keeler型映射;

(ⅱ) 存在$L$ -函数$\varphi:{\Bbb R}^+\rightarrow {\Bbb R}^+$, 使得$f$$(\varphi, L)$ -压缩映射.

命题1.4[7] 设$C$为Banach空间$E$中闭凸子集, $f:C\rightarrow C$为Meir-Keeler型映射.则对任意$\epsilon>0$, 存在$r\in(0, 1)$使得

$ 若\left\| x-y \right\|\ge \epsilon, 则有\text{ }\left\|\text{ }f(x)-f(y) \right\|\le r\left\| x-y \right\|. $

本文中, Meir-Keeler型映射或$(\varphi, L)$ -压缩映射都称为广义压缩映射.假定$L$ -函数是连续的, 严格增的且满足$\lim\limits_{t\rightarrow\infty}\eta(t)=\infty$, 其中$\eta(t)=t-\varphi(t), \forall\ t\in{\Bbb R}^+$.

变分不等式理论成为研究纯理论和应用数学中许多问题的一个重要工具, 已经发展了一些解决变分不等式问题和不动点问题的迭代算法, 见文献[8-15, 27-32].

$C$为实Hilbert空间$H$中的非空闭凸子集, $A:C\rightarrow H$为非线性映射.经典的变分不等式就是找$x^*$满足

$ \left\langle {A{x^*}, x-{x^*}} \right\rangle \ge 0, \;\forall \;x \in C. $ (1.6)

$A, B:C\rightarrow H$为两个非线性映射. Ceng[8]研究如下问题:找$(x^*, y^*)\in C\times C$满足

$ \left\{ {\begin{array}{*{20}{l}} {{\rm{ }}\left\langle {\lambda A{y^*} + {x^*}-{y^*}, x-{x^*}} \right\rangle \ge 0, {\mkern 1mu} {\mkern 1mu} \forall {\mkern 1mu} x \in C, }\\ {{\rm{ }}\left\langle {\mu B{x^*} + {y^*}-{x^*}, x - {y^*}} \right\rangle \ge 0, {\mkern 1mu} {\mkern 1mu} \forall {\mkern 1mu} x \in C, } \end{array}} \right. $ (1.7)

此问题称为一般变分不等式, 其中$\lambda>0$, $\mu>0$为常数.特别地, 若$A=B, \ x^*=y^*$, 则问题(1.7)变为问题(1.6).他们也研究了下面算法

$ \left\{ \begin{array}{l} x_1=u\in C, \\ y_n=P_C(x_n-\mu Bx_n), \\ x_{n+1}=\alpha_nu+\beta_nx_n+\gamma_nTP_C(y_n-\lambda Ay_n), \\ \end{array} \right. $ (1.8)

并证明了由算法(1.8)生成的序列$\left\{ {{x_n}} \right\}$强收敛到问题(1.7)的解集与一个非扩张映射的不动点集的公共元.

$C$为实Banach空间$E$中非空闭凸子集, $A, B:C\rightarrow E$为非线性映射. Yao[9]考虑了下面问题:找$(x^*, y^*)\in C\times C$满足

$ \left\{ {\begin{array}{*{20}{l}} {\left\langle {A{y^*} + {x^*}-{y^*}, j(x-{x^*})} \right\rangle \ge 0, {\mkern 1mu} {\mkern 1mu} \forall {\mkern 1mu} x \in C, }\\ {\left\langle {B{x^*} + {y^*}-{x^*}, j(x - {y^*})} \right\rangle \ge 0, {\mkern 1mu} {\mkern 1mu} \forall {\mkern 1mu} x \in C, } \end{array}} \right. $ (1.9)

此问题称为Banach空间中的一般变分不等式.他们也引入下面算法

$ \left\{ \begin{array}{l} x_0, u\in C, \\ y_n=Q_C(x_n- Bx_n), \\ x_{n+1}=\alpha_nu+\beta_nx_n+\gamma_nQ_C(y_n- Ay_n), \end{array} \right. $ (1.10)

并得到了强收敛定理.

本文在$q$-一致Banach空间$E$里考虑下面问题:找$(x^*, y^*)\in C\times C$满足

$ \left\{ {\begin{array}{*{20}{l}} {\;\left\langle {\lambda A{y^*} + {x^*}-{y^*}, {j_q}(x-{x^*})} \right\rangle \ge 0, {\mkern 1mu} {\mkern 1mu} \forall {\mkern 1mu} x \in C, }\\ {\;\left\langle {\mu B{x^*} + {y^*}-{x^*}, {j_q}(x - {y^*})} \right\rangle \ge 0, {\mkern 1mu} {\mkern 1mu} \forall {\mkern 1mu} x \in C, } \end{array}} \right. $ (1.11)

这里$\lambda>0, \ \mu>0$为两个固定常数, $A, B:C\rightarrow E$为两个非线性映射.特别地, 若$\lambda=\mu=1, \ q=2$, 则问题(1.11)成为问题(1.9).若$E$是Hilbert空间, 则问题(1.11)变为问题(1.7).因此问题(1.11)包括(1.7)与(1.9)作为特殊情况.进一步, 在$q$ -一致光滑, 一致凸Banach空间里, 引入关于广义压缩映射的粘性迭代算法, 找到了关于两个逆强增生算子的变分不等式问题解集与无限个严格伪压缩映射的公共不动点集的公共元.

2 预备知识

为了证明主要结果, 需要下面引理.

引理 2.1[16] 设$\left\{ {{a_n}} \right\}$为非负实数列满足$a_{n+1}\leq(1-\alpha_n)a_n+\delta_n, \, \, n\geq0$, 其中$\left\{ {{\alpha _n}} \right\}$为(0, 1)中序列且$\left\{ {{\delta _n}} \right\}$${\Bbb R}$中序列满足

(ⅰ) $\sum\limits_{n=0}^\infty \alpha_n=\infty$;

(ⅱ) $\limsup\limits_{n\rightarrow\infty}\frac{\delta_n}{\alpha_n}\leq0$$\sum\limits_{n=0}^{\infty }{\left| {{\delta }_{n}} \right|}\text{ }<\infty$.

$\lim\limits_{n\rightarrow\infty}a_n=0$.

引理 2.2[17] 设$\left\{ {{x_n}} \right\}$$\left\{ {{z_n}} \right\}$为Banach空间$E$中有界序列, $\left\{ {{\beta _n}} \right\}$为[0, 1]中序列满足: $0 < \liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n < 1$.假设$x_{n+1}=\beta_nx_n+(1-\beta_n)z_n$, $n\geq0$$\underset{n\to \infty }{\mathop{\lim \sup }}\,(\left\| {{z}_{n+1}}-{{z}_{n}} \right\|-\left\| {{x}_{n+1}}-{{x}_{n}} \right\|)\le 0$.则$\mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{z_n} - {x_n}} \right\| = 0$.

引理 2.3[18] 设$E$为实$q$ -一致光滑Banach空间, 则存在常数$C_q>0$满足

$ {\left\| {x + y} \right\|^q} \le {\left\| x \right\|^q} + q\left\langle {y, {j_q}x} \right\rangle + {C_q}{\left\| y \right\|^q}, \forall \;x, y \in E. $

特别地, 若$E$是2-一致光滑Banach空间, 则存在最佳光滑常数$K>0$满足

$ {\left\| {x + y} \right\|^2} \le {\left\| x \right\|^2} + 2\left\langle {y, jx} \right\rangle + 2{\left\| {Ky} \right\|^2}, \forall \;x, y \in E. $

引理 2.4[19, p63] 设$q>1$.则对于任意正数$a, b$, 下面不等式成立

$ ab\leq\frac{1}{q}a^q+\frac{q-1}{q}b^{\frac{q}{q-1}}. $

引理 2.5[20] 设$C$为严格凸Banach空间$E$中闭凸子集. $T_1$$T_2$$C$中非扩张自映射满足$F(T_1)\cap F(T_2)\neq\emptyset$.定义映射$S$

$ Sx=\lambda T_1x+(1-\lambda)T_2x, \ \forall\ x\in C, $

其中$\lambda$$(0, 1)$中常数.则$S$是非扩张的且$F(S)=F(T_1)\cap F(T_2)$.

引理 2.6[21] 设$E$为实光滑、一致凸Banach空间, $r>0$.则存在严格增、连续的凸函数$g:[0, 2r]\rightarrow{\Bbb R}$使得$g(0)=0$$g(\left\| x-y \right\|)\le {{\left\| x \right\|}^{2}}-2\left\langle x,jy \right\rangle +{{\left\| y \right\|}^{2}},\forall \ x,y\in {{B}_{r}}=\left\{ z\in E:\left\| x \right\|\le r \right\}$.

引理 2.7[22] 设$C$为实$q$-一致光滑Banach空间$E$中非空闭凸子集, $T:C\rightarrow C$$\lambda$ -严格伪压缩映射.给定$\alpha\in (0, 1)$, 定义$T_\alpha x=(1-\alpha)x+\alpha Tx$.则当$\alpha\in (0, \mu]$, $\mu =\min \left\{ 1,{{\left\{ \frac{q\lambda }{{{C}_{q}}} \right\}}^{\frac{1}{q-1}}} \right\}$, 有$T_\alpha:C\rightarrow C$是非扩张映射且$F(T_\alpha)=F(T)$.

引理 2.8[23] 在Banach空间$E$中, 下面不等式成立

$ {\left\| {x + y} \right\|^2} \le {\left\| x \right\|^2} + 2\left\langle {y, j(x + y)} \right\rangle, \forall {\mkern 1mu} x, y \in E, $

其中$j(x+y)\in J(x+y)$.

引理 2.9[24, 引理3.1] 设$C$为Banach空间$E$中非空子集, $\left\{ {{T_n}} \right\}$为一族从$C$$E$的映射.假设对于$C$中任意有界集$D$, 存在从${\Bbb R}^{+}$${\Bbb R}^{+}$上的连续的单调增函数$h_D$使得$h_D(0)=0$$\lim\limits_{k, l\rightarrow\infty}\rho_l^k=0$, 其中$\rho _{l}^{k}:=\sup \left\{ {{h}_{D}}(\left\| {{T}_{k}}z-{{T}_{l}}z) \right\|:z\in D \right\} < \infty, \forall \ k, l\in \mathbb{N}$.则$\underset{n\to \infty }{\mathop{\lim \sup }}\, \left\{ {{h}_{D}}\left\| (Tz-{{T}_{n}}z) \right\|:z\in D \right\}=0$.

注 2.1[24, 注3.2] 假设$\sum\limits_{n=1}^{\infty }{\sup }\left\{ \left\| {{T}_{n+1}}z-{{T}_{n}}z \right\|:z\in D \right\}<\infty$$h_D:{\Bbb R}^{+}\rightarrow {\Bbb R}^{+}$是连续的, 增函数满足$h_D(0)=0$, 则$\mathop {\lim \sup }\limits_{k, l \to \infty } {\rm{ }}\left\{ {{h_D}(\left\| {{T_k}z-{T_l}z} \right\|)} \right\}:z \in D=0$.

引理 2.10[25] 设$C$为一致光滑Banach空间$E$中非空闭凸子集. $T:C\rightarrow C$为非扩张映射满足$F(T)\neq\emptyset$$f:C\rightarrow C$为广义压缩映射.则由$x_t=tf(x_t)+(1-t)Tx_t, t\in (0, 1)$定义的序列$\left\{ {{x}_{t}} \right\}$强收敛到$\hat{x}\in F(T)$, 且解决了下面变分不等式

$ \left\langle {f(\hat x)-\hat x, j(z-\hat x)} \right\rangle \le 0, \forall \;z \in F(T). $

引理 2.11[25] 设$C$为一致光滑Banach空间$E$中非空闭凸子集. $T:C\rightarrow C$为非扩张映射满足$F(T)\neq\emptyset$, $f:C\rightarrow C$为广义压缩映射.假设当$t\rightarrow0$时, 由$x_t=tf(x_t)+(1-t)Tx_t, t\in (0, 1)$定义的序列$\left\{ {{x}_{t}} \right\}$强收敛到$\hat{x}\in F(T)$$\left\{ {{x}_{n}} \right\}$为有界序列满足当$n\rightarrow\infty$时, 有$x_n-Tx_n\rightarrow0$.则

$ \mathop {\lim \sup }\limits_{n \to \infty } \left\langle {f(\hat x)-\hat x, j({x_n}-\hat x)} \right\rangle \le 0. $

引理 2.12[26] 设$C$为实$q$-一致光滑Banach空间$E$中非空闭凸子集. $A:C\rightarrow E$$\alpha$-逆强增生算子.则下面不等式成立

$ {\left\| {(I-\lambda A)x-(I-\lambda A)y} \right\|^q} \le {\left\| {x - y} \right\|^q} - \lambda (q\alpha - {C_q}{\lambda ^{q - 1}}){\left\| {Ax - Ay} \right\|^q}. $

特别地, 若$0 < \lambda\leq(\frac{q\alpha}{C_q})^{\frac{1}{q-1}}$, 则$I-\lambda A$是非扩张的.

引理 2.13[26] 设$C$为实$q$-一致光滑Banach空间$E$中非空闭凸子集. $P_C$$E$$C$上向阳非扩张拉回. $A:C\rightarrow E$$\alpha$ -逆强增生的且$B:C\rightarrow E$$\beta$ -逆强增生的.映射$G:C\rightarrow C$定义为

$ G(x) = {P_C}\left[{{P_C}(x-\mu Bx)-\lambda A{P_C}(x-\mu Bx)} \right], {\mkern 1mu} {\mkern 1mu} \forall {\mkern 1mu} x \in C. $

$0 < \lambda\leq(\frac{q\alpha}{C_q})^{\frac{1}{q-1}}$$0 < \mu\leq(\frac{q\beta}{C_q})^{\frac{1}{q-1}}$, 则$G:C\rightarrow C$是非扩张的.

引理 2.14[26] 设$C$为实$q$-一致光滑Banach空间$E$中非空闭凸子集. $P_C$$E$$C$上向阳非扩张拉回. $A, B:C\rightarrow E$为非线性算子.给定$x^*, y^*\in C$, 则$(x^*, y^*)$为问题(1.11)的解当且仅当$x^*=P_C(y^*-\lambda Ay^*)$, 其中$y^*=P_C(x^*-\mu Bx^*)$.

引理 2.15 设$C$为实$q$-一致Banach空间$E$中非空闭凸子集. $S:C\rightarrow C$为非扩张映射且$T:C\rightarrow C$$\delta$ -严格伪压缩映射满足$F(S)\cap F(T)\neq\emptyset$.定义映射$Wx=[(1-\alpha)I+\alpha T]Sx, \forall\ x\in C$, 其中$\alpha \in (0,\mu ),\mu =\min {{\left\{ 1,\left\{ \frac{q\delta }{{{C}_{q}}} \right\} \right\}}^{\frac{1}{q-1}}}$.则$F(W)=F(S)\cap F(T)$.

 首先证明$F(S)\cap F(T)\subseteq F(W)$.事实上, 任取$x\in F(S)\cap F(T)$, 有

$ [(1-\alpha)I+\alpha T]Sx=[(1-\alpha)I+\alpha T]x=(1-\alpha)x+\alpha x=x, $

$x\in F(W)$.因此$F(S)\cap F(T)\subseteq F(W)$.下面证明$F(W)\subseteq F(S)\cap F(T)$.任给$x\in F(W)$$y\in F(S)\cap F(T)$, 由引理2.3得

$ {{\left\| x-y \right\|}^{q}}\\ ={{\left\| [(1-\alpha )I+\alpha T]Sx-y \right\|}^{q}}\\ ={{\left\| Sx-y+\alpha (TSx-Sx) \right\|}^{q}}\\ \le {{\left\| Sx-y \right\|}^{q}}+q\alpha \left\langle TSx-Sx,{{j}_{q}}(Sx-y) \right\rangle +{{C}_{q}}{{\alpha }^{q}}{{\left\| TSx-Sx \right\|}^{q}}\\ ={{\left\| Sx-y \right\|}^{q}}+q\alpha \left\langle TSx-y,{{j}_{q}}(Sx-y) \right\rangle +q\alpha \left\langle y-Sx,{{j}_{q}}(Sx-y) \right\rangle +{{C}_{q}}{{\alpha }^{q}}{{\left\| TSx-Sx \right\|}^{q}}\\ \le {{\left\| x-y \right\|}^{q}}+q\alpha ({{\left\| Sx-y \right\|}^{q}}-\delta {{\left\| TSx-Sx \right\|}^{q}})-q\alpha {{\left\| Sx-y \right\|}^{q}}+{{C}_{q}}{{\alpha }^{q}}{{\left\| TSx-Sx \right\|}^{q}}\\ ={{\left\| x-y \right\|}^{q}}-(q\alpha \delta -{{C}_{q}}{{\alpha }^{q}}){{\left\| TSx-Sx \right\|}^{q}}, $

从而

$ (q\alpha \delta-{C_q}{\alpha ^q}){\left\| {TSx-Sx} \right\|^q} \le 0. $

因此

$ TSx = Sx. $ (2.1)

于是

$ x=[(1-\alpha)I+\alpha T]Sx=(1-\alpha)Sx+\alpha Sx=Sx. $ (2.2)

$x\in F(S)$.根据$(2.1)$$(2.2)$式, 有$x=Sx=TSx=Tx$, 因此$x\in F(T)$.故$x\in F(S)\cap F(T)$.于是$F(W)\subseteq F(S)\cap F(T)$.证毕.

3 主要结果

定理 3.1 设$C$为实$q$-一致光滑Banach空间$E$中非空闭凸子集. $Q_C$$E$$C$上向阳非扩张拉回.映射$A, B:C\rightarrow E$分别为$\alpha$-逆强增生的和$\beta$-逆强增生的. $f:C\rightarrow C$为广义压缩映射. $W:C\rightarrow C$为非扩张映射且$\left\{ {{S}_{i}}:C\to C \right\}_{i=0}^{\infty }$为一族$\lambda_i$ -严格伪压缩映射满足$F:=\bigcap\limits_{i=0}^{\infty} F(S_i)\cap F(W)\cap F(G)\neq\emptyset$, 其中$G$的定义见引理2.13.假设$\lambda=\inf \left\{ {{\lambda }_{i}}:i=0, 1, 2, \cdots \right\}>0$.给定$x_0\in C$, 序列$\left\{ {{x}_{n}} \right\}$定义为

$ \begin{equation} \left\{ \begin{array}{l} y_n=Q_C(x_n-\mu Bx_n), \\ z_n=Q_C(y_n-\lambda Ay_n), \\ x_{n+1}=\alpha_nf(x_n)+\beta_nx_n+\gamma_nT_nWz_n, \end{array} \right. \end{equation} $ (3.1)

这里$0 < \lambda < (\frac{q\alpha}{C_q})^{\frac{1}{q-1}}$, $0 < \mu < (\frac{q\beta}{C_q})^{\frac{1}{q-1}}$, $T_n=(1-\delta_n)I+\delta_n S_n$.假设$\left\{ {{\alpha }_{n}} \right\},\left\{ {{\beta }_{n}} \right\}$$\left\{ {{\gamma }_{n}} \right\}$为[0, 1]中序列满足

(ⅰ) $\alpha_n+\beta_n+\gamma_n=1$;

(ⅱ) $\lim\limits_{n\rightarrow\infty}\alpha_n=0, \sum\limits_{n=1}^\infty\alpha_n=\infty$;

(ⅲ) $0 < \liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n < 1$;

(ⅳ) $\delta_n\in(0, \rho), \delta_n\rightarrow\delta\in(0, \rho)$, 其中$\rho =\min {{\left\{ 1,\left\{ \frac{q\lambda }{{{C}_{q}}} \right\} \right\}}^{\frac{1}{q-1}}}$.

假设对于$C$中任意有界集$D$, 存在单调增、连续的凸函数$h_D:{\Bbb R}^+\rightarrow {\Bbb R}^+$满足$h_D(0)$$\underset{k,l\to \infty }{\mathop{\lim \sup }}\,\left\{ {{h}_{D}}(\left\| {{S}_{k}}z-{{S}_{l}}z \right\|) \right\}:z\in D=0$.定义$Sx=\lim\limits_{n\rightarrow\infty}S_nx, \forall\ x\in C$且假设$F(S)=\bigcap\limits_{i=0}^\infty F(S_i)$.则$\left\{ {{x}_{n}} \right\}$强收敛到$z\in F$且解决下面变分不等式

$ \left\langle {z-f(z), {j_q}(z-p)} \right\rangle \le 0, \forall {\mkern 1mu} p \in F. $

 首先证明$\left\{ {{x}_{n}} \right\}$有界.事实上, 任取$x^*\in F$$y^*=Q_C(x^*-\mu Bx^*)$, 由引理2.13得

$ \left\| {{z_n}-{x^*}} \right\| = \left\| {G{x_n}-G{x^*}} \right\| \le \left\| {{x_n}-p} \right\|. $ (3.2)

根据引理2.7, 有$T_n$是非扩张的且$T_nx^*=x^*$.由(3.1)式得

$ \left\|{x_{n+1}-x^*}\right\|=\left\|{\alpha_n(f(x_n)-x^*)+\beta_n(x_n-x^*)+\gamma_n(T_nWz_n-x^*)}\right\|\\ \leq\alpha_n\left\|{f(x_n)-x^*}\right\|+\beta_n\left\|{x_n-x^*}\right\|+\gamma_n\left\|{T_nWz_n-x^*}\right\|\\ \leq\alpha_n\left\|{f(x_n)-f(x^*)}\right\|+\alpha_n\left\|{f(x^*)-x^*}\right\|+\beta_n\left\|{x_n-x^*}\right\|+\gamma_n\left\|{x_n-x^*}\right\|\\ \leq\alpha_n\varphi(\left\|{x_n-x^*}\right\|)+(1-\alpha_n)\left\|{x_n-x^*}\right\|+\alpha_n\left\|{f(x^*)-x^*}\right\|\\ =(1-\alpha_n\eta)\left\|{x_n-x^*}\right\|+\alpha_n\left\|{f(x^*)-x^*}\right\|\\ \leq\max\left\{ {\left\| {{x_n} - {x^*}} \right\|, {\eta ^{ - 1}}(\left\| {f({x^*}) - {x^*}} \right\|)} \right\}. $

由归纳法得

$ \left\| {{x_n}-{x^*}} \right\| \le \max \left\{ {\left\| {{x_0}-{x^*}} \right\|, {\eta ^{-1}}(\left\| {f({x^*}) - {x^*}} \right\|)} \right\}, \forall \;n \ge 1, $

从而$\left\{ {{x}_{n}} \right\}$有界.同样地, $\left\{ {{z}_{n}} \right\}$$\left\{ W{{z}_{n}} \right\}$也有界.不失一般性, 可以假设存在$C$中的有界集$B'$包含序列$\left\{ {{x}_{n}} \right\},\left\{ {{z}_{n}} \right\}$$\left\{ W{{z}_{n}} \right\}$.

下面证明$\mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{x_{n + 1}} - {x_n}} \right\| = 0$.

因为

$ \left\| {{z_{n + 1}}-{z_n}} \right\| = \left\| {G{x_{n + 1}}-G{x_n}} \right\| \le \left\| {{x_{n + 1}}-{x_n}} \right\|. $ (3.3)

$ \left\|{T_{n+1}Wz_{n+1}-T_nWz_n}\right\|\\ \leq\left\|{T_{n+1}Wz_{n+1}-T_{n+1}Wz_{n}}\right\|+\left\|{T_{n+1}Wz_{n}-T_nWz_n}\right\|\\ \leq\left\|{z_{n+1}-z_n}\right\|+\left\|{(1-\delta_{n+1})Wz_n+\delta_{n+1}S_{n+1}Wz_n-(1-\delta_n)Wz_n-\delta_n S_nWz_n}\right\|\\ \leq\left\|{x_{n+1}-x_n}\right\|+\delta_n\left\|{S_{n+1}Wz_n-S_nWz_n}\right\|+{\rm{|}}{\delta _{n + 1}} - {\delta _n}|\left\|{S_{n+1}Wz_n-Wz_n}\right\|. $ (3.4)

定义$x_{n+1}=\beta_nx_n+(1-\beta_n)l_n, \forall\ n\geq0$.

于是

$ l_{n+1}-l_n=\frac{x_{n+2}-\beta_{n+1}x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_nx_n}{1-\beta_n} \\ =\frac{\alpha_{n+1}f(x_{n+1})+\gamma_{n+1}T_{n+1}Wz_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_nf(x_n)+\gamma_nT_nWz_n}{1-\beta_n} \\ =\frac{\alpha_{n+1}(f(x_{n+1})-T_{n+1}Wz_{n+1})}{1-\beta_{n+1}} -\frac{\alpha_n(f(x_n)-T_nWz_n)}{1-\beta_n}\\ +T_{n+1}Wz_{n+1}-T_nWz_n. $ (3.5)

结合(3.4)与(3.5)式, 有

$ \left\| {{l}_{n+1}}-{{l}_{n}} \right\|\le \frac{{{\alpha }_{n+1}}}{1-{{\beta }_{n+1}}}\left\| f({{x}_{n+1}})-{{T}_{n+1}}W{{z}_{n+1}} \right\|+\frac{{{\alpha }_{n}}}{1-{{\beta }_{n}}}\left\| f({{x}_{n}})-{{T}_{n}}W{{z}_{n}} \right\|\\ +\left\| {{T}_{n+1}}W{{z}_{n+1}}-{{T}_{n}}W{{z}_{n}} \right\|\\ \le \frac{{{\alpha }_{n+1}}}{1-{{\beta }_{n+1}}}\left\| f({{x}_{n+1}})-{{T}_{n+1}}W{{z}_{n+1}} \right\|+\frac{{{\alpha }_{n}}}{1-{{\beta }_{n}}}\left\| f({{x}_{n}})-{{T}_{n}}W{{z}_{n}} \right\|\\ +\left\| {{x}_{n+1}}-{{x}_{n}} \right\|+{{\delta }_{n}}\left\| {{S}_{n+1}}W{{z}_{n}}-{{S}_{n}}W{{z}_{n}} \right\|\\ +\left| {{\delta }_{n+1}}-{{\delta }_{n}} \right|\left\| {{S}_{n+1}}W{{z}_{n}}-W{{z}_{n}} \right\|, $

从而

$ \left\| {{l}_{n+1}}-{{l}_{n}} \right\|-\left\| {{x}_{n+1}}-{{x}_{n}} \right\|\\ \le \frac{{{\alpha }_{n+1}}}{1-{{\beta }_{n+1}}}\left\| f({{x}_{n+1}})-{{T}_{n+1}}W{{z}_{n+1}} \right\|+\frac{{{\alpha }_{n}}}{1-{{\beta }_{n}}}\left\| f({{x}_{n}})-{{T}_{n}}W{{z}_{n}} \right\|\\ +{{\delta }_{n}}\left\| {{S}_{n+1}}W{{z}_{n}}-{{S}_{n}}W{{z}_{n}} \right\|+\left| {{\delta }_{n+1}}-{{\delta }_{n}} \right|\left\| {{S}_{n+1}}W{{z}_{n}}-W{{z}_{n}} \right\|. $ (3.6)

注意假设$\mathop {\lim }\limits_{k,l \to \infty } {\mkern 1mu} \sup \left\{ {{h_{B'}}(\left\| {{S_k}z - {S_l}z} \right\|)} \right\}:z \in B' = 0$.故当$n\rightarrow\infty$

$ {{h}_{{{B}'}}}(\left\| {{S}_{n+1}}W{{z}_{n}}-{{S}_{n}}W{{z}_{n}} \right\|)\le \sup \left\{ {{h}_{{{B}'}}}(\left\| {{S}_{n+1}}z-{{S}_{n}}z \right\|):z\in {B}' \right\}\\\to 0. $

根据$h_{B'}$的性质得

$ \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{S_{n + 1}}W{z_n} - {S_n}W{z_n}} \right\| = 0. $ (3.7)

注意条件(ⅱ), (ⅳ)与(3.7)式, 根据(3.6)式得

$ \underset{n\to \infty }{\mathop{\lim \sup }}\, (\left\| {{l}_{n+1}}-{{l}_{n}} \right\|-\left\| {{x}_{n+1}}-{{x}_{n}} \right\|)\le 0. $

由引理2.2得$\mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{l_n} - {x_n}} \right\| = 0$.因此

$ \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{x_{n + 1}} - {x_n}} \right\| = \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} (1 - {\beta _n})\left\| {{l_n} - {x_n}} \right\| = 0. $ (3.8)

下面证明$\mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{x_n} - {z_n}} \right\| = 0$$\underset{n\to \infty }{\mathop{\lim }}\,\left\| {{x}_{n}}-{{T}_{n}}W{{z}_{n}} \right\|=0$.

由引理2.12得

$ {{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{q}}={{\left\| {{Q}_{C}}({{x}_{n}}-\mu B{{x}_{n}})-{{Q}_{C}}({{x}^{*}}-\mu B{{x}^{*}}) \right\|}^{q}}\\ \le {{\left\| (I-\mu B){{x}_{n}}-(I-\mu B){{x}^{*}} \right\|}^{q}}\\ \le {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}-\mu (q\beta-{{C}_{q}}{{\mu }^{q-1}}){{\left\| B{{x}_{n}}-B{{x}^{*}} \right\|}^{q}} $ (3.9)

$ {{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{q}}={{\left\| {{Q}_{C}}({{y}_{n}}-\lambda A{{y}_{n}})-{{Q}_{C}}({{y}^{*}}-\lambda A{{y}^{*}}) \right\|}^{q}}\\ \le {{\left\| (I-\lambda A){{y}_{n}}-(I-\lambda A){{y}^{*}} \right\|}^{q}}\\ \le {{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{q}}-\lambda (q\alpha-{{C}_{q}}{{\lambda }^{q-1}}){{\left\| A{{y}_{n}}-A{{y}^{*}} \right\|}^{q}}. $ (3.10)

将(3.9)式代入(3.10)式, 有

$ {{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{q}}\le \text{ }{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}-\mu (q\beta-{{C}_{q}}{{\mu }^{q-1}}){{\left\| B{{x}_{n}}-B{{x}^{*}} \right\|}^{q}}\\ -\lambda (q\alpha-{{C}_{q}}{{\lambda }^{q-1}}){{\left\| A{{y}_{n}}-A{{y}^{*}} \right\|}^{q}}. $ (3.11)

根据${\left\| \cdot \right\|^q}$的凸性得

$ {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}={{\left\| {{\alpha }_{n}}(f({{x}_{n}})-{{x}^{*}})+{{\beta }_{n}}({{x}_{n}}-{{x}^{*}})+{{\gamma }_{n}}({{T}_{n}}W{{z}_{n}}-{{x}^{*}}) \right\|}^{q}}\\ \le {{\alpha }_{n}}{{\left\| f({{x}_{n}})-{{x}^{*}} \right\|}^{q}}+{{\beta }_{n}}{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}+{{\gamma }_{n}}{{\left\| {{T}_{n}}W{{z}_{n}}-{{x}^{*}} \right\|}^{q}}\\ \le {{\alpha }_{n}}{{\left\| f({{x}_{n}})-{{x}^{*}} \right\|}^{q}}+{{\beta }_{n}}{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}+{{\gamma }_{n}}{{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{q}}. $ (3.12)

结合(3.11)与(3.12)式, 有

$ {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}\\ \le {{\alpha }_{n}}{{\left\| f({{x}_{n}})-{{x}^{*}} \right\|}^{q}}+{{\beta }_{n}}{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}\\ +{{\gamma }_{n}}[{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}-\mu (q\beta-{{C}_{q}}{{\mu }^{q-1}}){{\left\| B{{x}_{n}}-B{{x}^{*}} \right\|}^{q}}-\lambda (q\alpha-{{C}_{q}}{{\lambda }^{q-1}}){{\left\| A{{y}_{n}}-A{{y}^{*}} \right\|}^{q}}]\\ \le {{\alpha }_{n}}{{\left\| f({{x}_{n}})-{{x}^{*}} \right\|}^{q}}+{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}-{{\gamma }_{n}}\mu (q\beta -{{C}_{q}}{{\mu }^{q-1}}){{\left\| B{{x}_{n}}-B{{x}^{*}} \right\|}^{q}}\\ -{{\gamma }_{n}}\lambda (q\alpha -{{C}_{q}}{{\lambda }^{q-1}}){{\left\| A{{y}_{n}}-A{{y}^{*}} \right\|}^{q}}. $ (3.13)

注意到$x^r-y^r\leq rx^{r-1}(x-y), \ \forall\ r\geq 1$.于是根据(3.13)式得

$ {{\gamma }_{n}}\mu (q\beta-{{C}_{q}}{{\mu }^{q-1}}){{\left\| B{{x}_{n}}-B{{x}^{*}} \right\|}^{q}}+{{\gamma }_{n}}\lambda (q\alpha-{{C}_{q}}{{\lambda }^{q-1}}){{\left\| A{{y}_{n}}-A{{y}^{*}} \right\|}^{q}}\\ \le {{\alpha }_{n}}{{\left\| f({{x}_{n}})-{{x}^{*}} \right\|}^{q}}+{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q}}-{{\left\| {{x}_{n+1}}-{{x}^{*}} \right\|}^{q}}\\ \le {{\alpha }_{n}}{{\left\| f({{x}_{n}})-{{x}^{*}} \right\|}^{q}}+q{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q-1}}(\left\| {{x}_{n}}-{{x}^{*}} \right\|-\left\| {{x}_{n+1}}-{{x}^{*}} \right\|)\\ \le {{\alpha }_{n}}{{\left\| f({{x}_{n}})-{{x}^{*}} \right\|}^{q}}+q{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{q-1}}\left\| {{x}_{n}}-{{x}_{n+1}} \right\|. $

因为$0 < \lambda < (\frac{q\alpha}{C_q})^{\frac{1}{q-1}}$, $0 < \mu < (\frac{q\beta}{C_q})^{\frac{1}{q-1}}$, $\lim\limits_{n\rightarrow\infty}\alpha_n=0$, $\limsup\limits_{n\rightarrow\infty}\beta_n < 1$和(3.8)式, 有

$ \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {A{y_n} - A{y^*}} \right\| = \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {B{x_n} - B{x^*}} \right\| = 0. $ (3.14)

令${r_1}=\mathop {\sup }\limits_{n \ge 0} {\mkern 1mu} \left\{ {\left\| {{y_n} -{y^*}} \right\|, \left\| {{z_n} -{x^*}} \right\|} \right\}$.根据命题1.1与引理2.6得

$ {{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{2}}={{\left\| {{P}_{C}}({{y}_{n}}-\lambda A{{y}_{n}})-{{P}_{C}}({{y}^{*}}-\lambda A{{y}^{*}}) \right\|}^{2}}\\ \le \left\langle {{y}_{n}}-\lambda A{{y}_{n}}-({{y}^{*}}-\lambda A{{y}^{*}}), j({{z}_{n}}-{{x}^{*}}) \right\rangle\\ =\left\langle {{y}_{n}}-{{y}^{*}}, j({{z}_{n}}-{{x}^{*}}) \right\rangle-\lambda \left\langle A{{y}_{n}}-A{{y}^{*}}, j({{z}_{n}}-{{x}^{*}}) \right\rangle\\ \le \frac{1}{2}[{{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{2}}+{{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{2}}-{{g}_{1}}(\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|)]\\ +\lambda \left\langle A{{y}^{*}}-A{{y}_{n}}, j({{z}_{n}}-{{x}^{*}}) \right\rangle, $

从而

$ {{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{2}}\le {{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{2}}-{{g}_{1}}(\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|)+2\lambda \left\langle A{{y}^{*}}-A{{y}_{n}}, j({{z}_{n}}-{{x}^{*}}) \right\rangle\\ \le {{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{2}}-{{g}_{1}}(\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|)+2\lambda \left\| A{{y}_{n}}-A{{y}^{*}} \right\|\left\| {{z}_{n}}-{{x}^{*}} \right\|. $ (3.15)

${r_2} = \mathop {\sup }\limits_{n \ge 0} {\mkern 1mu} \left\{ {\left\| {{x_n} - {x^*}} \right\|,\left\| {{y_n} - {y^*}} \right\|} \right\}$.再次根据命题1.1与引理2.6得

$ {{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{2}}={{\left\| {{P}_{C}}({{x}_{n}}-\mu B{{x}_{n}})-{{P}_{C}}({{x}^{*}}-\mu B{{x}^{*}}) \right\|}^{2}}\\ \le \left\langle {{x}_{n}}-\mu B{{x}_{n}}-({{x}^{*}}-\mu B{{x}^{*}}), j({{y}_{n}}-{{y}^{*}}) \right\rangle\\ =\left\langle {{x}_{n}}-{{x}^{*}}, j({{y}_{n}}-{{y}^{*}}) \right\rangle-\mu \left\langle B{{x}_{n}}-B{{x}^{*}}, j({{y}_{n}}-{{y}^{*}}) \right\rangle\\ \le \frac{1}{2}[{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}+{{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{2}}-{{g}_{2}}(\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|)]\\ +\mu \left\langle B{{x}^{*}}-B{{x}_{n}}, j({{y}_{n}}-{{y}^{*}}) \right\rangle, $

从而

$ {{\left\| {{y}_{n}}-{{y}^{*}} \right\|}^{2}}\le {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}-{{g}_{2}}(\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|)+2\mu \left\langle B{{x}^{*}}-B{{x}_{n}}, j({{y}_{n}}-{{y}^{*}}) \right\rangle\\ \le {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}-{{g}_{2}}(\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|)+2\mu \left\| B{{x}_{n}}-B{{x}^{*}} \right\|\left\| {{y}_{n}}-{{y}^{*}} \right\|. $ (3.16)

将(3.16)代入(3.15)式得

$ {{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{2}}\le {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}-{{g}_{2}}(\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|)-{{g}_{1}}(\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|)\\ +2\mu \left\| B{{x}_{n}}-B{{x}^{*}} \right\|\left\| {{y}_{n}}-{{y}^{*}} \right\|+2\lambda {{\left\| A{{y}_{n}}-Ay \right\|}^{*}}\left\| {{z}_{n}}-{{x}^{*}} \right\|. $ (3.17)

根据${\left\| \cdot \right\|^2}$的凸性和引理2.8得

$ {{\left\| {{x}_{n+1}}-{{x}^{*}} \right\|}^{2}}\\ ={{\left\| {{\beta }_{n}}({{x}_{n}}-{{x}^{*}})+(1-{{\beta }_{n}})({{T}_{n}}W{{z}_{n}}-{{x}^{*}})+{{\alpha }_{n}}(f({{x}_{n}})-{{T}_{n}}W{{z}_{n}}) \right\|}^{2}}\\ \le {{\left\| {{\beta }_{n}}({{x}_{n}}-{{x}^{*}})+(1-{{\beta }_{n}})({{T}_{n}}W{{z}_{n}}-{{x}^{*}}) \right\|}^{2}}+2{{\alpha }_{n}}\left\langle f({{x}_{n}})-{{T}_{n}}W{{z}_{n}}, j({{x}_{n+1}}-{{x}^{*}}) \right\rangle \\ \le {{\beta }_{n}}{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}+(1-{{\beta }_{n}}){{\left\| {{T}_{n}}W{{z}_{n}}-{{x}^{*}} \right\|}^{2}}+2{{\alpha }_{n}}\left\| f({{x}_{n}})-{{T}_{n}}W{{z}_{n}} \right\|\left\| {{x}_{n+1}}-{{x}^{*}} \right\|\\ \le {{\beta }_{n}}{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}+(1-{{\beta }_{n}}){{\left\| {{z}_{n}}-{{x}^{*}} \right\|}^{2}}+2{{\alpha }_{n}}{{M}_{1}}, $ (3.18)

其中${M_1} = \mathop {\sup }\limits_{n \ge 0} {\mkern 1mu} \left\| {f({x_n}) - {T_n}W{z_n}} \right\|\left\| {{x_{n + 1}} - {x^*}} \right\|$.

由(3.17)和(3.18)式得

$ {{\left\| {{x}_{n+1}}-{{x}^{*}} \right\|}^{2}}\\ \le {{\beta }_{n}}{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}+(1-{{\beta }_{n}})[{{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}-{{g}_{2}}(\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|)\\ \quad-{{g}_{1}}(\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|)+2\mu \left\| B{{x}_{n}}-B{{x}^{*}} \right\|\left\| {{y}_{n}}-{{y}^{*}} \right\|\\ \quad +2\lambda \left\| A{{y}_{n}}-A{{y}^{*}} \right\|\left\| {{z}_{n}}-{{x}^{*}} \right\|]+2{{\alpha }_{n}}{{M}_{1}}\\ \le {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}-(1-{{\beta }_{n}}){{g}_{2}}(\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|)-(1-{{\beta }_{n}}){{g}_{1}}(\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|)\\ +2\mu \left\| B{{x}_{n}}-B{{x}^{*}} \right\|\left\| {{y}_{n}}-{{y}^{*}} \right\|+2\lambda \left\| A{{y}_{n}}-A{{y}^{*}} \right\|\left\| {{z}_{n}}-{{x}^{*}} \right\|+2{{\alpha }_{n}}{{M}_{1}}, $

从而

$ (1-{{\beta }_{n}}){{g}_{2}}(\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|)+(1-{{\beta }_{n}}){{g}_{1}}(\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|)\\ \le {{\left\| {{x}_{n}}-{{x}^{*}} \right\|}^{2}}-{{\left\| {{x}_{n+1}}-{{x}^{*}} \right\|}^{2}}+2\mu \left\| B{{x}_{n}}-B{{x}^{*}} \right\|\left\| {{y}_{n}}-{{y}^{*}} \right\|\\ \quad +2\lambda \left\| A{{y}_{n}}-A{{y}^{*}} \right\|\left\| {{z}_{n}}-{{x}^{*}} \right\|+2{{\alpha }_{n}}{{M}_{1}}\\ \le (\left\| {{x}_{n}}-{{x}_{n+1}} \right\|)(\left\| {{x}_{n}}-{{x}^{*}} \right\|+\left\| {{x}_{n+1}}-{{x}^{*}} \right\|)+2\mu \left\| B{{x}_{n}}-B{{x}^{*}} \right\|\left\| {{y}_{n}}-{{y}^{*}} \right\|\\ \quad +2\lambda {{\left\| A{{y}_{n}}-Ay \right\|}^{*}}\left\| {{z}_{n}}-{{x}^{*}} \right\|+2{{\alpha }_{n}}{{M}_{1}}. $

因为$\lim\limits_{n\rightarrow\infty}\alpha_n=0$, $\limsup\limits_{n\rightarrow\infty}\beta_n < 1$, (3.8)和(3.14)式, 有

$ {g_2}(\left\| {{x_n} - {y_n} - ({x^*} - {y^*})} \right\|) = 0,\mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} {g_1}(\left\| {{y_n} - {z_n} + {x^*} - {y^*}} \right\|) = 0. $

根据$g_1$$g_2$的性质, 有

$ \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} {\left\| {{x_n} - {y_n} - ({x^*} - y} \right\|^*}) = 0,\mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{y_n} - {z_n} + {x^*} - {y^*}} \right\| = 0. $

于是, 当$n\rightarrow\infty$

$ \left\| {{x}_{n}}-{{z}_{n}} \right\|\le \text{ }\left\| {{x}_{n}}-{{y}_{n}}-({{x}^{*}}-{{y}^{*}}) \right\|+\left\| {{y}_{n}}-{{z}_{n}}+{{x}^{*}}-{{y}^{*}} \right\|\to 0. $ (3.19)

由(3.1)式得

$ \left\| {{x}_{n+1}}-{{x}_{n}} \right\|=\left\| {{\alpha }_{n}}(f({{x}_{n}})-{{x}_{n}})+{{\gamma }_{n}}({{T}_{n}}W{{z}_{n}}-{{x}_{n}}) \right\|\\ \ge {{\gamma }_{n}}\left\| {{T}_{n}}W{{z}_{n}}-{{x}_{n}} \right\|-{{\alpha }_{n}}\left\| f({{x}_{n}})-{{x}_{n}} \right\|, $

从而

$ \left\| {{T}_{n}}W{{z}_{n}}-{{x}_{n}} \right\|\le \frac{1}{{{\gamma }_{n}}}[{{\alpha }_{n}}\left\| f({{x}_{n}})-{{x}_{n}} \right\|+\left\| {{x}_{n+1}}-{{x}_{n}} \right\|]. $

根据$\lim\limits_{n\rightarrow\infty}\alpha_n=0$和(3.8)式得

$ \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{T_n}W{z_n} - {x_n}} \right\| = 0. $ (3.20)

由(3.19)与(3.20)式得:当$n\rightarrow\infty$

$ \left\| {{x}_{n}}-{{T}_{n}}W{{x}_{n}} \right\|\le \left\| {{x}_{n}}-{{T}_{n}}W{{z}_{n}} \right\|+\left\| {{T}_{n}}W{{z}_{n}}-{{T}_{n}}W{{x}_{n}} \right\|\\ \le \left\| {{x}_{n}}-{{T}_{n}}W{{z}_{n}} \right\|+\left\| {{z}_{n}}-{{x}_{n}} \right\|\\ \to 0. $ (3.21)

定义映射$T_\delta:C\rightarrow C$$T_\delta x=(1-\delta)x+\delta Sx$, 观察

$ \left\| {{x}_{n}}-{{T}_{\delta }}W{{x}_{n}} \right\|\le \left\| {{x}_{n}}-{{T}_{n}}W{{x}_{n}} \right\|+\left\| {{T}_{n}}W{{x}_{n}}-{{T}_{\delta }}W{{x}_{n}} \right\|\\ =\left\| {{x}_{n}}-{{T}_{n}}W{{x}_{n}} \right\|+\left\| (1-{{\delta }_{n}})W{{x}_{n}}+{{\delta }_{n}}{{S}_{n}}W{{x}_{n}}-(1-\delta )W{{x}_{n}}-\delta SW{{x}_{n}} \right\|\\ =\left\| {{x}_{n}}-{{T}_{n}}W{{x}_{n}} \right\|+\left| {{\delta }_{n}}-\delta \right|\left\| {{S}_{n}}W{{x}_{n}}-W{{x}_{n}} \right\|+\delta \left\| {{S}_{n}}W{{x}_{n}}-SW{{x}_{n}} \right\|. $ (3.22)

注意到

$ {{h}_{{{B}'}}}(\left\| {{S}_{n}}W{{x}_{n}}-SW{{x}_{n}} \right\|)\le \sup \left\{ {{h}_{{{B}'}}}(\left\| {{S}_{n}}x-Sx \right\|:x\in {B}') \right\}. $

由引理2.9和$h_{B'}$的连续性, 知$\mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} {h_{B'}}(\left\| {{S_n}W{x_n} - SW{x_n}} \right\|) = 0$.根据$h_{B'}$的性质得

$ \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{S_n}W{x_n} - SW{x_n}} \right\| = 0. $ (3.23)

因此由(3.22)式得

$ \mathop {\lim }\limits_{n \to \infty } {\mkern 1mu} \left\| {{x_n} - {T_\delta }W{x_n}} \right\| = 0. $ (3.24)

根据引理2.15得$F(S)\cap F(W)=F(T_\delta W)$.定义映射$U:C\rightarrow C$$Ux=(1-\theta)T_\delta Wx+\theta Gx$, 其中$G$的定义见引理2.13, $\theta\in(0, 1)$为固定常数.由引理2.5得

$ F(G)=F(S)\cap F(W)\cap F(G)=F. $

根据(3.19)和(3.24)式得, 当$n\rightarrow\infty$

$ \left\| {{x}_{n}}-U{{x}_{n}} \right\|\le (1-\theta )\left\| {{x}_{n}}-{{T}_{\delta }}W{{x}_{n}} \right\|+\theta \left\| {{x}_{n}}-G{{x}_{n}} \right\|\\ =(1-\theta )\left\| {{x}_{n}}-{{T}_{\delta }}W{{x}_{n}} \right\|+\theta \left\| {{x}_{n}}-{{z}_{n}} \right\|\\ \to 0. $ (3.25)

定义$z=\lim\limits_{t\rightarrow0}x_t$, 其中$x_t$定义为$x_t=tf(x_t)+(1-t)Ux_t$.由引理2.11得$z\in F(U)=F$

$ \left\langle (I-f)z, j(z-p) \right\rangle \le 0, \forall \ p\in F. $ (3.26)

因为${j_q}(x) = {\left\| x \right\|^{q - 1}}j(x),x \ne 0$, 则

$ \left\langle (I-f)z, {{j}_{q}}(z-p) \right\rangle \le 0, \forall \ p\in F. $ (3.27)

根据(3.25)式和引理2.11得

$ \left\langle f(z)-z, j({{x}_{n}}-z) \right\rangle \le 0. $ (3.28)

再次根据${j_q}(x) = {\left\| x \right\|^{q - 1}}j(x),x \ne 0$

$ \left\langle f(z)-z, {{j}_{q}}({{x}_{n}}-z) \right\rangle \le 0. $ (3.29)

最后我们证明当$n\rightarrow\infty$时, $x_n\rightarrow z$.假设$\left\{ {{x_n}} \right\}$不强收敛到$z$.则存在$\epsilon>0$$\left\{ {{x_n}} \right\}$中子列$\left\{ {{x_{{n_j}}}} \right\}$满足$\left\| {{x_{{n_j}}} - z} \right\| \ge ,\forall \;j \ge 0$.根据命题1.4, 对上述$\epsilon$, 存在$\alpha'\in(0, 1)$满足$\left\| {f({x_{{n_j}}}) - f(z)} \right\| \le \alpha '\left\| {{x_{{n_j}}} - z} \right\|$.由(3.1)式和引理2.4得

$ {{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q}}=\left\langle {{\alpha }_{{{n}_{j}}}}(f({{x}_{{{n}_{j}}}})-z)+{{\beta }_{{{n}_{j}}}}({{x}_{{{n}_{j}}}}-z)+{{\gamma }_{{{n}_{j}}}}({{T}_{{{n}_{j}}}}{{z}_{{{n}_{j}}}}-z), {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle \\ \le {{\alpha }_{{{n}_{j}}}}\left\langle f({{x}_{{{n}_{j}}}})-f(z), {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle +{{\beta }_{{{n}_{j}}}}\left\langle {{x}_{{{n}_{j}}}}-z, {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle \\ \quad +{{\gamma }_{{{n}_{j}}}}\left\langle {{T}_{{{n}_{j}}}}{{z}_{{{n}_{j}}}}-z, {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle +{{\alpha }_{{{n}_{j}}}}\left\langle f(z)-z, {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle \\ \le {{\alpha }_{{{n}_{j}}}}{\alpha }'\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}+{{\beta }_{{{n}_{j}}}}\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}\\ \quad +{{\gamma }_{{{n}_{j}}}}\left\| {{T}_{{{n}_{j}}}}{{z}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}+{{\alpha }_{{{n}_{j}}}}\left\langle f(z)-z, {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle \\ \le {{\alpha }_{{{n}_{j}}}}{\alpha }'\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}+{{\beta }_{{{n}_{j}}}}\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}\\ \quad +{{\gamma }_{{{n}_{j}}}}\left\| {{z}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}+{{\alpha }_{{{n}_{j}}}}\left\langle f(z)-z, {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle \\ \le {{\alpha }_{{{n}_{j}}}}{\alpha }'\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}+{{\beta }_{{{n}_{j}}}}\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}\\ \quad +{{\gamma }_{{{n}_{j}}}}\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}+{{\alpha }_{{{n}_{j}}}}\left\langle f(z)-z, {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle \\ =(1-{{\alpha }_{{{n}_{j}}}}(1-{\alpha }'))\left\| {{x}_{{{n}_{j}}}}-z \right\|{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q-1}}\\ +{{\alpha }_{{{n}_{j}}}}\left\langle f(z)-z, {{j}_{q}}({{x}_{{{n}_{j}}+1}}-z) \right\rangle \\ \le [1-{{\alpha }_{{{n}_{j}}}}(1-{\alpha }')](\frac{1}{q}{{\left\| {{x}_{{{n}_{j}}}}-z \right\|}^{q}}+\frac{q-1}{q}{{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q}})\\ +{{\alpha }_{{{n}_{j}}}}\left\langle f(z)-z, j({{x}_{{{n}_{j}}+1}}-z) \right\rangle, $

从而

$ {{\left\| {{x}_{{{n}_{j}}+1}}-z \right\|}^{q}}\le [1-{{\alpha }_{{{n}_{j}}}}(1-{\alpha }')]{{\left\| {{x}_{{{n}_{j}}}}-z \right\|}^{q}}+q{{\alpha }_{{{n}_{j}}}}(1-{\alpha }')\frac{\left\langle f(z)-z, j({{x}_{{{n}_{j}}+1}}-z) \right\rangle }{1-{\alpha }'}. $ (3.30)

注意到条件(ⅱ)与(3.29)式.应用引理2.1到(3.30)式, 于是当$j\rightarrow\infty$时, 有$x_{n_j}\rightarrow z$.矛盾.因此当$n\rightarrow\infty$时, $x_n\rightarrow z$.证毕.

现在给一个关于参数$\alpha_n$, $\beta_n$$\gamma_n$的例子.

例 3.1 令$\alpha_n=\frac{1}{4n}, \ \beta_n=\frac{1}{3}+\frac{1}{4n}$$\gamma_n=\frac{2}{3}-\frac{1}{2n}$, 则易知它们满足定理3.1中的条件(ⅰ)和(ⅱ).

由定理3.1, 易得下面结果, 故略去证明.

定理 3.2 设$C$为实$q$-一致光滑Banach空间$E$中非空闭凸子集. $Q_C$$E$$C$上向阳非扩张拉回.映射$A, B:C\rightarrow E$分别为$\alpha$ -逆强增生的和$\beta$ -逆强增生的. $f:C\rightarrow C$为广义压缩映射. $W:C\rightarrow C$为非扩张映射且$S:C\rightarrow C$$\lambda$ -严格伪压缩映射满足$F:=F(S)\cap F(W)\cap F(G)\neq\emptyset$, 其中$G$的定义见引理2.13.给定$x_0\in C$, 序列$\left\{ {{x_n}} \right\}$定义为

$ \left\{ \begin{array}{l} y_n=Q_C(x_n-\mu Bx_n), \\ z_n=Q_C(y_n-\lambda Ay_n), \\ x_{n+1}=\alpha_nf(x_n)+\beta_nx_n+\gamma_nTWz_n, \end{array} \right. $ (3.31)

这里$0 < \lambda < (\frac{q\alpha}{C_q})^{\frac{1}{q-1}}$, $0 < \mu < (\frac{q\beta}{C_q})^{\frac{1}{q-1}}$, $T=(1-\delta)I+\delta S$, $\delta\in(0, \rho)$, 其中$\rho = \min \left\{ {1,{{\left\{ {\frac{{q\lambda }}{{{C_q}}}} \right\}}^{\frac{1}{{q - 1}}}}} \right\}$.假设$\left\{ {{\alpha _n}} \right\},\left\{ {{\beta _n}} \right\}$$\left\{ {{\gamma _n}} \right\}$为[0, 1]中序列满足

(ⅰ) $\alpha_n+\beta_n+\gamma_n=1$;

(ⅱ) $\lim\limits_{n\rightarrow\infty}\alpha_n=0, \sum\limits_{n=1}^\infty\alpha_n=\infty$;

(ⅲ) $0 < \liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n < 1$.

$\left\{ {{x_n}} \right\}$强收敛到$z\in F$且解决下面变分不等式

$ \left\langle {z-f(z), {j_q}(z-p)} \right\rangle \le 0, \forall {\mkern 1mu} p \in F. $

定理 3.3 设$C$为实$2$-一致光滑Banach空间$E$中非空闭凸子集. $Q_C$$E$$C$上向阳非扩张拉回.映射$A, B:C\rightarrow E$分别为$\alpha$ -逆强增生的和$\beta$ -逆强增生的. $f:C\rightarrow C$为广义压缩映射. $W:C\rightarrow C$为非扩张映射且$\left\{ {{S_i}:C \to C} \right\}_{i = 0}^\infty $为一族$\lambda_i$ -严格伪压缩映射满足$F:=\bigcap\limits_{i=0}^{\infty} F(S_i)\cap F(W)\cap F(G)\neq\emptyset$, 其中$G$的定义见引理2.13.假设$\lambda = \inf \left\{ {{\lambda _i}:i = 0,1,2, \cdots } \right\} > 0$.给定$x_0\in C$, 序列$\left\{ {{x_n}} \right\}$定义为

$ \left\{ \begin{array}{l} y_n=Q_C(x_n-\mu Bx_n), \\ z_n=Q_C(y_n-\lambda Ay_n), \\ x_{n+1}=\alpha_nf(x_n)+\beta_nx_n+\gamma_nT_nWz_n, \end{array} \right. $ (3.32)

这里$0 < \lambda < \frac{\alpha}{K^2}$, $0 < \mu < \frac{\beta}{K^2}$, $T_n=(1-\delta_n)I+\delta_n S_n$.假设$\left\{ {{\alpha _n}} \right\},\left\{ {{\beta _n}} \right\}$$\left\{ {{\gamma _n}} \right\}$为[0, 1]中序列满足

(ⅰ) $\alpha_n+\beta_n+\gamma_n=1$;

(ⅱ) $\lim\limits_{n\rightarrow\infty}\alpha_n=0, \sum\limits_{n=1}^\infty\alpha_n=\infty$;

(ⅲ) $0 < \liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n < 1$;

(ⅳ) $\delta_n\in(0, \frac{\lambda}{K^2}), \delta_n\rightarrow\delta\in(0, \frac{\lambda}{K^2})$.

假设对于$C$中任意有界集$D$, 存在单调增、连续的凸函数$h_D:{\Bbb R}^+\rightarrow {\Bbb R}^+$满足$h_D(0)$$\mathop {\lim \sup }\limits_{k,l \to \infty } \left\{ {{h_D}(\left\| {{S_k}z - {S_l}z} \right\|):z \in D} \right\} = 0$.定义$Sx=\lim\limits_{n\rightarrow\infty}S_nx, \forall\ x\in C$且假设$F(S)=\bigcap\limits_{i=0}^\infty F(S_i)$.则$\left\{ {{x_n}} \right\}$强收敛到$z\in F$且解决下面变分不等式

$ \left\langle {z-f(z), {j_q}(z-p)} \right\rangle \le 0, \forall {\mkern 1mu} p \in F. $

定理 3.4 设$C$为实$2$-一致光滑Banach空间$E$中非空闭凸子集. $Q_C$$E$$C$上向阳非扩张拉回.映射$A, B:C\rightarrow E$分别为$\alpha$ -逆强增生的和$\beta$ -逆强增生的. $f:C\rightarrow C$为广义压缩映射. $W:C\rightarrow C$为非扩张映射且$S:C\rightarrow C$$\lambda$ -严格伪压缩映射满足$F:=F(S)\cap F(W)\cap F(G)\neq\emptyset$, 其中$G$的定义见引理2.13.给定$x_0\in C$, 序列$\left\{ {{x_n}} \right\}$定义为

$ \left\{ \begin{array}{l} y_n=Q_C(x_n-\mu Bx_n), \\ z_n=Q_C(y_n-\lambda Ay_n), \\ x_{n+1}=\alpha_nf(x_n)+\beta_nx_n+\gamma_nTWz_n, \end{array} \right. $ (3.33)

这里$0 < \lambda < \frac{\alpha}{K^2}$, $0 < \mu < \frac{\beta}{K^2}$, $T=(1-\delta_n)I+\delta_n S$, $\delta\in(0, \frac{\lambda}{K^2})$.假设$\left\{ {{\alpha _n}} \right\},\left\{ {{\beta _n}} \right\}$$\left\{ {{\gamma _n}} \right\}$为[0, 1]中序列满足

(ⅰ) $\alpha_n+\beta_n+\gamma_n=1$;

(ⅱ) $\lim\limits_{n\rightarrow\infty}\alpha_n=0, \sum\limits_{n=1}^\infty\alpha_n=\infty$;

(ⅲ) $0 < \liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n < 1$.

$\left\{ {{x_n}} \right\}$强收敛到$z\in F$且解决下面变分不等式

$ \left\langle {z-f(z), {j_q}(z-p)} \right\rangle \le 0, \forall {\mkern 1mu} p \in F. $
参考文献
[1] Xu H K. Inequalities in Banach spaces with applications. Nonlinear Anal , 1991, 16 : 1127–1138. DOI:10.1016/0362-546X(91)90200-K
[2] Zhang H, Su Y. Strong convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces. Nonlinear Anal , 2009, 70 : 3236–3242. DOI:10.1016/j.na.2008.04.030
[3] Reich S. Asymptotic behavior of contractions in Banach spaces. J Math Anal Appl , 1973, 44 : 57–70. DOI:10.1016/0022-247X(73)90024-3
[4] Kitahara S, Takahashi W. Image recovery by convex combinations of sunny nonexpansive retractions. Topological Methods in Nonlinear Anal , 1993, 2 : 333–342.
[5] Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert spaces. J Math Anal Appl , 1967, 20 : 197–228. DOI:10.1016/0022-247X(67)90085-6
[6] Lim T C. On characterizations of Meir-Keeler contractive maps. Nonlinear Anal , 2001, 46 : 113–120. DOI:10.1016/S0362-546X(99)00448-4
[7] Suzuki T. Moudafi's viscosity approaximations with Meir-Keeler contraction. J Math Anal Appl , 2007, 325 : 342–352. DOI:10.1016/j.jmaa.2006.01.080
[8] Ceng L C, Wang C, Yao J C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math Methods Oper Res , 2008, 37 : 375–390.
[9] Yao Y, Noor M A, Noor K I, Liou Y C. Modified extragradient methods for a system of variational inequalities in Banach spaces. Acta Appl Math , 2010, 110 : 1211–1224. DOI:10.1007/s10440-009-9502-9
[10] Zegeye H, Shahzad N. Strong convergence theorem for a common point of solution of variational inequality and fixed point problem. Adv Fixed Point Theory , 2012, 2 : 374–397.
[11] Yao Y, Liou Y C, Kang S M, Yu Y. Algorithms with strong convergence for a system of nonlinear variational inequalities in Banach spaces. Nonlinear Anal , 2011, 74 : 6024–6034. DOI:10.1016/j.na.2011.05.079
[12] Qin X, Cho S Y, Kang S M. Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications. J Comput Appl Math , 2009, 233 : 231–240. DOI:10.1016/j.cam.2009.07.018
[13] Qin X, Chang S S, Cho Y J. Iterative methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal: Real World Applications , 2010, 11 : 2963–2972. DOI:10.1016/j.nonrwa.2009.10.017
[14] Kumama P, Petrot N, Wangkeeree R. A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo-contractions. J Comput App Math , 2010, 233 : 2013–2026. DOI:10.1016/j.cam.2009.09.036
[15] Qin X, Cho S Y, Kang S M. Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications. J Comput Anal Appl , 2009, 233 : 231–240. DOI:10.1016/j.cam.2009.07.018
[16] Xu H K. Viscosity approximation methods for nonexpansive mappings. J Math Anal Appl , 2004, 298 : 279–291. DOI:10.1016/j.jmaa.2004.04.059
[17] Suzuki T. Strong convergence of Krasnoselskii and Manns type sequences for one parameter nonexpansive semigroups without Bochner integrals. J Math Anal Appl , 2005, 305 : 227–239. DOI:10.1016/j.jmaa.2004.11.017
[18] Xu H K. Inequalities in Banach spaces with applications. Nonlinear Anal , 1991, 16 : 1127–1138. DOI:10.1016/0362-546X(91)90200-K
[19] Mitrinović D S. Analytic Inequalities. New York: Springer-Verlag , 1970 .
[20] Bruck R E. Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans Amer Math Soc , 1973, 179 : 251–262. DOI:10.1090/S0002-9947-1973-0324491-8
[21] Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim , 2002, 13 : 938–945. DOI:10.1137/S105262340139611X
[22] Zhang H, Su Y. Strong convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces. Nonlinear Anal , 2009, 70 : 3236–3242. DOI:10.1016/j.na.2008.04.030
[23] Chang S S. On Chidumes open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces. J Math Anal Appl , 1997, 216 : 94–111. DOI:10.1006/jmaa.1997.5661
[24] Plubtieng S, Ungchittrakool K. Approximation of common fixed points for a countable family of relatively nonexpansive mappings in a Banach space and applications. Nonlinear Anal , 2010, 72 : 2896–2908. DOI:10.1016/j.na.2009.11.034
[25] Wang Z M, Zhang X. Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems. J Nonlinear Funct Anal, 2014, Article ID: 15
[26] Song Y L, Ceng L C. A general iteration scheme for variational inequality problem and common fixed point problems of nonexpansive mappings in q-uniformly smooth Banach spaces. J Glob Optim , 2013, 57 : 1327–1348. DOI:10.1007/s10898-012-9990-4
[27] Sunthrayuth P, Kumam P. Iterative methods for variational inequality problemsand fixed point problems of a countable family of strict pseudo-contractions in a q-uniformly smooth Banach space. Fixed Point Theory and Applications, 2012, Article ID: 65
[28] Sunthrayuth P, Kumam P. Fixed point solutions for variational inequalities in image restoration over q-uniformly smooth Banach spaces. J Ineq Appl, 2014, Article ID: 473
[29] Gu F. Necessary and sufficient condition of the strong convergence for two finite families of uniformly L-Lipschitzain mappings. Acta Math Sci , 2011, 31B(5) : 2058–2066.
[30] Kim J K, Cho S Y, Qin X. Some results on generalized equilibrium problems involving strictly pseudocontractive mappings. Acta Math Sci , 2011, 31B(5) : 2041–2057.
[31] Cho S Y, Kang S M. Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math Sci , 2012, 32B(4) : 1607–1618.
[32] Shehu Y. Approximation of fixed points and variational solutions for pseudo-contractive mappings in Banach spaces. Acta Math Sci , 2014, 34B(2) : 409–423.