数学物理学报  2016, Vol. 36 Issue (3): 558-568   PDF (529 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
黄祖达
一类具反馈控制的时滞飞蝇方程的伪概周期解
黄祖达    
湖南文理学院数学与计算科学学院 湖南常德 415000
摘要: 该文研究了一类具反馈控制和多时变时滞的飞蝇方程模型. 利用李雅普洛夫泛函方法和微分不等式技巧,得到了该类模型正伪概周期解存在性和全局稳定性的若干充分条件,并给出了数值模拟实例来说明相应理论结果的有效性.
关键词: 伪概周期正解     全局稳定性     飞蝇方程模型     反馈控制     时变时滞    
Positive Pseudo Almost Periodic Solutions for a Delayed Nicholson's Blowflies Model with a Feedback Control
Huang Zuda    
College of Mathematics and Computational Science, Hunan University of Arts and Science, Hunan Changde 415000
Foundation Item: Supported by the Natural Science Foundation of HunanProvince (2016JJ6103, 2016JJ6104) and the Construction Program of the Key Disipline in Hunan University ofArts and Science-Applied Mathematics
Abstract: In this paper, a generalized Nicholson's blowflies model is considered with the introduction of feedback control and multiple time-varying delays. By using Lyapunov functional method and differential inequality techniques, we obtain some sufficient conditions for the existence and global exponential stability of positive pseudo almost periodic solutions of this model. We also provide numerical simulations to support the theoretical results.
Key words: Positive pseudo almost periodic solution     Global exponential stability     Nicholson's blowflies model     Feedback control     Time-varying delay    
1 引言

在过去的二三十多年里,由张传义教授[1, 2, 3]提出的伪概周期函数理论很好地推广了Bochner意义下的概周期函数理论和Frechet意义下的弱概周期函数理论[4, 5]. 在此基础上,许多学者研究了大量生物数学模型和人口动力学模型伪概周期解的存在性和稳定性,相应结果可参见文献 [6, 7, 8, 9, 10, 11].

最近,文献[12, 13, 14]等分别考察了如下的具反馈控制的离散飞和连续飞蝇方程模型

$\left\{\begin{array}{rcl}x(n+1)&=&x(n)\exp\{-\delta(n)+\beta(n) e ^{-\alpha(n)x(n)} -c(n)u (n)\},\\\Delta u(n)&=&-a(n)u (n)+b(n)x(n-m)\end{array}\right.$ (1.1)
$\left\{\begin{array}{rcl}x_{1} '(t)&=& -a(t) x_{1}(t)+ \beta(t)x_{1}(t-\tau(t))e^{-\gamma(t)x_{1}(t-\tau(t))}-c(t)x_{1}(t)x_2(t-\eta(t)), \\x_{2} '(t)&=& -\lambda(t) x_{2}(t)+ b(t) x_{1}(t-\delta(t)),\end{array}\right. {(1.2 )}$ (1.2)
其中$a(t),\beta(t),\gamma(t),\lambda(t),b(t),c(t),\tau(t),\eta(t),\delta(t)$为连续函数. 特别地,文献[14]给出了系统(1.2)伪概周期正解存在和局部稳定的新的充分条件. 然而,据我们所知,至今为止尚未发现关于带反馈控制飞蝇方程模型伪概周期正解全局指数稳定的相应结果.

根据上述讨论,本文的主要目的是建立系统(1.2)的正伪概周期解的全局指数稳定的充分条件. 为方便考虑,记$ g^{+}=\sup\limits_{t\in R}|g(t)|,g^{-}=\inf\limits_{t\in R}|g(t)|.$ 此外假定 $r_1=\max\{\tau^+,\delta^+\}$,$r_2=\eta^+$,$r =\max\{r_1,\ r_2\}>0$,和 $\gamma^{-} \geq1$. 如文献[15]所示,我们选取常数$\kappa\in (0,\ 1)$和$\widetilde {\kappa} \in (1,\ +\infty)$使得

$\frac{1-\kappa}{e^{\kappa}}=\frac{1}{e^{2}} =\sup\limits_{x\geq \kappa}|\frac{1-x}{e^{x}}|$ (1.3)
$\kappa e^{-\kappa}=\widetilde{\kappa} e^{-\widetilde{\kappa}}.$ (1.4)
相空间和解的符号完全类似于文献[14]. 本文考虑的相应初值问题如下
$x_{t_0}=\varphi,~~\varphi=(\varphi_1,\varphi_2)\in C_+ ~~\mbox{且} ~~\varphi_i(0)>0,\ i\in I=\{1,\ 2 \}.$ (1.5)
记$BC(R,R^{n})$ 为映$R$到 $R^{n}$的有界连续函数集.易见 $BC(R,R^{n})$ 在范数$\|\cdot\|_{\infty}:=\sup\limits_{t\in R}\|\cdot\|$意义下为巴拿赫空间.

记$AP(R,R^{n})$ 为映 $R$ 到 $R^{n}$的概周期函数集. 进一步定义 $PAP_{0}(R,R^{n})$如下: $$\big\{f\in BC(R,R^{n})|\lim\limits_{\varpi\rightarrow+\infty} \frac{1}{2\varpi}\int_{-\varpi}^{\varpi}|f(t)|{\rm d}t=0 \big\}. $$函数 $f\in{BC(R,R^{n})}$ 被称作是伪概周期函数,如果其可以分解为 $f=h+\varphi,$ 其中 $h\in{AP(R,R^{n})}$ 且$\varphi\in{PAP_{0}(R,R^{n})} $ (参见文献[11]). 一般地,伪概周期函数集记为$PAP(R,R^{n}).$此外,我们总假定 $a,\lambda: R\to (0,\ +\infty)$是概周期函数,$\beta $,$\gamma ,b,c:R\to (0,\ +\infty)$ 和 $ \tau,\delta,\eta:R\to[0,\ + \infty)$ 为伪概周期函数,并且$a(t)$ 和$\lambda(t) $ 有正的上下界.

2 引理

引理2.1[14] 带初值条件(1.5)的系统 (1.2)的任意解 $x(t; t_{0},\varphi)$在$t\in [t_0,\eta(\varphi))$上是正的且有界,其中 $\eta(\varphi)=+\infty$.

引理2.2 假设存在正数 $M,l$ 和 $L$ 使得

$\begin{align} & M>\kappa ,\ \underset{t\in R}{\mathop{\inf }}\,\left[-a(t)\kappa +\frac{\beta (t)}{\gamma (t)}\kappa {{e}^{-\kappa }}-c(t)ML \right]>0,\\ & \underset{t\in R}{\mathop{sup}}\,\left\{ -a(t)M+\frac{1}{e}\frac{\beta (t)}{\gamma (t)} \right\}\text{}0 \\ \end{align}$ (2.1)
${{\gamma }^{+}}\le \frac{{\tilde{\kappa }}}{M},\ \underset{t\in R}{\mathop{\sup }}\,\left\{ -\lambda (t)L+b(t)M \right\}<0,\ \underset{t\in R}{\mathop{\inf }}\,\left\{ -\lambda (t)l+b(t)\kappa \right\}>0.$ (2.2)
则存在 $t _{\varphi}>t_{0}$ 使得 对任意的 $ t \geq t _{\varphi}$
$\kappa < x _{1}(t; t_{0},\varphi) < M,\ l < x _{2}(t;t_{0},\varphi) < L .$ (2.3)

证 设 $x(t)=x(t;t_0,\varphi)$,$t\in [t_0,\ +\infty)$. 由引理2.1可知对任意 $t\in [t_0,\ +\infty)$和$i\in I$有$x_i(t)>0$.

下面分五步来完成我们的证明.

首先,我们将证明存在$t_1\in [t_0,+\infty)$使得 对任意的$t\in [t_1,\ +\infty) $

$x_{1}(t_1)<M ,~~ x_{1}(t)<M.$ (2.4)
若 对所有的$t\in [t_0,\ +\infty )$,有$x_{1}(t)\ge M$,则由(1.2) 和 (2.1)式,对所有的 $t\in [t_{0},\ +\infty)$ 我们有 $$x_{1}'(t ) \leq - a(t )M +\frac{1}{e} \frac{\beta (t )}{\gamma (t ) } < 0 . $$进而,当 $t\to+\infty$时 $$x_{1}(t) \le x_{1}(t_0)+\sup \limits_{t\in R}\left\{-a(t)M+\frac{1}{e}\frac {\beta (t)}{\gamma (t)}\right\}(t-t_0) \to -\infty, $$这与 $x_{1}(t)>0$矛盾.因此,存在某个$t_1\in [t_0,\ +\infty)$,使得$x_{1}(t_{1})<M$.

为证(2.4)式,我们只需说明$x_{1}(t)<M$,对任意的$t\in [t_1,\ +\infty)$.反设存在$t_1^{*}\in (t_{1},\ +\infty)$ 使得对任意的 $t\in[t_1,\ t_1^{*})$

$\mbox{$x_{1}(t_1^{*})=M$ 且 $x_{1}(t)<M$ .}$
则 $x_{1}'(t_{1}^{*})\ge 0$. 又根据 $\sup\limits_{x\in R}xe^{-x}=\frac{1}{e}$,由(2.1)式 可得 $$0 \leq x_{1}'(t_{1}^{*}) \leq - a(t_1^{*})M +\frac{1}{e} \frac{\beta(t_1^{*})}{\gamma (t_1^{*}) } < 0, $$该矛盾说明(2.4) 式成立.

下面将证明存在$t_2\in [t_1+r ,\ +\infty)$ 使得 对任意的$t\in [t_2,\ +\infty) $

${{x}_{2}}({{t}_{2}})\text{}L且{{x}_{2}}(t)\text{}L$ (2.5)
假定 $x_{2}(t)\ge L$,对所有的 $t\in [{{t}_{1}}+r,\infty )$. 由(1.2)和 (2.2)式,可得对所有的 $t\in [t_1+r,\ +\infty) $ $$x_{2}'(t ) \leq - \lambda(t )L+ b(t ) M < 0, $$且当 $t\to+\infty$时 $$x_{2}(t) \le x_{2}( t_1+r )+\sup \limits_{t\in R}\left\{- \lambda(t )L+b(t ) M\right\}(t-(t_1+r )) \to -\infty . $$这与 $x_{2}(t)$为正矛盾. 由此可得存在某$t_2\in [t_1+r_{1},\ +\infty)$,使得$x_{2}(t_2)<L$ .

接下来,我们断言 $$\mbox{对所有的 $t\in [t_2,\ +\infty)$, 有 $x_{2}(t)<L$ .} $$否则,存在$t_{2}^{*}\in ({{t}_{2}},\ \ +\infty )$ 使得对所有的 $t\in{{t}_{2}},\text{ }t_{2}^{*})$

$\mbox{$x_{2}(t_2^{*})=L$ 且 $x_{2}(t)<L$}.$
由此可得 $x_{2}'(t_{2}^{*})\ge 0$. 另一方面,由 (2.2)式可得 $$0\leq x_{2}'(t_{2}^{*}) \leq -\lambda(t_2^{*})x_{2}(t_2^{*})+b(t_2^{*})M = -\lambda(t_2^{*})L+b(t_2^{*})M < 0, $$该矛盾说明 (2.5) 式成立.

下一步要说明的是 $ \liminf\limits_{t\to+\infty} x_{1}(t)>0.$ 我们采用反证法说明.反设 $\liminf\limits_{t\to+\infty} x_{1}(t)=0.$ 对任意的 $t\geq t_{0} $,定义$m(t)=\max \{\xi |\xi \le t,{{x}_{1}}(\xi )=\underset{{{t}_{0}}\le s\le t}{\mathop{\min }}\,{{x}_{1}}(s)\}.$ 由 $\liminf\limits_{t\to+\infty} x_{1}(t)=0$得 当 $t\to+\infty $ 时,$m(t)\to +\infty$并且$ \lim\limits_{t\to+\infty}x _{1}(m(t))=0.$ 由 $m(t)$的定义,可知 $x_{1}'(m(t))\le0$ 且

$\begin{array}[b]{rl} a(m(t))x_{1}(m(t)) \ge & \beta (m(t))x_{1}(m(t)-\tau (m(t))e^{-\gamma(m(t))x_{1}(m(t)-\tau(m(t)))}\\ & -c(m(t))x_{1}(m(t))L,\ \mbox{当 }m(t)>t_{2}+r. \end {array}$ (2.6)
进而$ 0 = \lim\limits_{t\to+\infty} a(m(t))x_{1}(m(t)) \ge \lim\limits_{t\to+\infty} \beta ^-x_{1}(m(t)-\tau(m(t)))e^{-\widetilde{\kappa}} \ge 0,$ 由此可得
$\lim\limits_{t\to+\infty}x_{1}(m(t)-\tau(m(t)))=0 .$ (2.7)
据$a,\ c$和 $\beta $的连续性和有界性,选取数列 $\{t_n \} _{n\geq 1}$ 满足 $ \lim\limits_{n\to+\infty} t_n=+\infty $,并使得$\lim\limits_{n\to\infty}\frac {c (m(t_n))}{a(m(t_n))}$和$\lim\limits_{n\to+\infty}\frac {\beta (m(t_n))}{a(m(t_n))}$ 存在.由 (2.6)式,可得
$\begin {eqnarray*}a(m(t_n)) & \ge & \beta (m(t_n))\frac {x_{1}(m(t_n)-\tau(m(t_n)))}{x_{1}(m(t_n))}e^{-\gamma (m(t_n))x_{1}(m(t_n)-\tau(m(t_n)))}-c (m(t_n))L\\& \ge & \beta (m(t_n)) e^{-\gamma (m(t_n))x_{1}(m(t_n)-\tau(m(t_n)))}-c (m(t_n))L.\end {eqnarray*}$
从而对所有的 $m(t_{n})>t_{2}+r$有
$1\ge \frac{\beta (m(t_n))} {a(m(t_n))}e^{-\gamma(m(t_n))x_{1}(m(t_n)-\tau (m(t_n)))}-\frac{c (m(t_n))L} {a(m(t_n))}.$ (2.8)
进一步,由(2.1)式可知
$\inf\limits_{t\in R} a(t )\bigg[-1+ \frac{\beta (t )}{a (t)}-\frac{c(t)L}{a(t )} \bigg] \geq \frac{1}{\kappa}\inf\limits_{t\in R}\bigg[-a(t)\kappa+ \frac{\beta (t )}{\gamma (t )}\kappa e^{-\kappa}-c(t)ML\bigg] > 0.$ (2.9)
再由(2.7) 和 (2.8)式,取极限得$ 1 \ge \inf \limits_{t \in R} [\frac {\beta (t)}{a(t)}-\frac {c(t)L}{a(t)}],$ 这显然与(2.9)式矛盾. 因此,$\liminf\limits_{t\to+\infty} x_{1}(t)>0$成立.

第四步将说明 $\liminf\limits_{t\to+\infty} x_{1}(t)> \kappa.$ 否则,$\liminf\limits_{t\to+\infty} x_{1}(t)\le \kappa.$ 由波动引理[16,引理 A.1],存在 $\{t_k\} _{k\geq 1}$ 使得 $k\to+\infty$时
$t_k\to+\infty,x_{1}(t_k)\to\liminf\limits_{t\to+\infty}x_{1}(t),x_{1}'(t_k)\to 0.$
因$\{x_{1_{t_k}} \}$ 有界且连续,由Ascoli-Arzelá定理,存在子列,为简单考虑仍记为其本身,使得
$\mbox{当 $k\to+\infty$,$x_{1_{t_k}} \to \varphi^*$ 对某 $\varphi^*\in C([-r_1,\ 0],\ {\Bbb R}_+ )$}.$
进一步,对任意的$\theta\in [-r_{1},\ 0)$有
$\varphi^*(0)=\liminf\limits_{t\to+\infty} x_{1}(t)\le\varphi^*(\theta)\le M.$
不失一般性,由函数的伪概周期性,我们假定$a(t_k)$,$\beta(t_k)$,$c (t_k)$,$\tau (t_k)$,和$\gamma (t_k)$分别收敛到 $a ^* $,$\beta ^*$,$c ^*$,$\tau ^*$,and $\gamma ^*$,故有$\liminf\limits_{t\to+\infty} x_{1}(t)\leq \gamma ^* \varphi^*(-\tau^*) \leq \gamma ^* M\leq \widetilde{\kappa},$ 再结合$\kappa$ 和$\widetilde{\kappa}$的定义,有
$\gamma ^* \varphi^*(-\tau ^*)e^{-\gamma ^*\varphi^*(-\tau ^*)}\geq \liminf\limits_{t\to+\infty} x_{1}(t)e^{-\liminf\limits_{t\to+\infty} x_{1}(t)}.$
由 (2.1)式和 $x_{1}'(t_k) \geq -a(t_k)x_{1}(t_k)+ \frac{\beta(t_k)}{\gamma (t_k)}\gamma (t_k) x_{1 _{t_k}}(-\tau (t_k))e^{-\gamma(t_k)x_{1 _{t_k}} (-\tau (t_k))} -c(t_k)x_{1}(t_k)L$,可得(取极限)
$\begin {eqnarray*}0 & \geq & -a^*\liminf\limits_{t\to+\infty} x_{1}(t)+ \frac {\beta^*}{\gamma ^*} \gamma ^* \varphi^*(-\tau ^*)e^{-\gamma ^*\varphi^*(-\tau ^*)}- c^*L\liminf\limits_{t\to+\infty} x_{1}(t) \\ &\geq&\liminf\limits_{t\to+\infty}x_{1}(t)\frac{1}{\kappa}\inf\limits_{t\in R}\left[-a(t )\kappa+\frac{\beta (t )}{\gamma (t )}\kappa e^{-\kappa}-c(t)M L\right] > 0,\end {eqnarray*}$
产生矛盾.从而证得 $\liminf\limits_{t\to+\infty}x_{1}(t)>\kappa$,再由(2.4)式可知存在 $t_{3}>t_2+r$使得
$\mbox{对任意的 $t\in [t_{3},\ +\infty)$,}~~ \kappa< x_{1}(t)<M.$ (2.10)

最后,我们将证明存在 ${{t}_{4}}\in [{{t}_{3}}+r,\infty )$使得 对任意的$t\in [{{t}_{4}},\ +\infty )$有

${{x}_{2}}({{t}_{4}})>l\ 和{{x}_{2}}(t)>l.$ (2.11)
假设$x_{2}(t)\leq l$ 对任意的 $t\in [{{t}_{3}}+r,\ +\infty )$. 由 (1.2) 和(2.2)式,可得 $$ \mbox{对任意的 $t\in [t_{3}+r,\ +\infty)$,} \ x_{2}'(t ) \geq - \lambda(t )l+ b(t ) \kappa > 0 $$且 $$ \mbox{当 $t\to+\infty$,}\ x_{2}(t) \geq x_{2}( t_3+r )+\inf \limits_{t\in R}\left\{- \lambda(t )l+b(t ) \kappa\right\}(t-(t_3+r )) \to +\infty, $$这与 $x_{2}(t)$的有界性矛盾. 从而证得$x_{2}(t )>l$ 对某 $t_4\in [t_3+r ,\ +\infty)$成立.

我们断言 $$\mbox{ 对任意的}\ t\in [t_4,\ +\infty),\ x_{2}(t)>l. $$如若不然,存在 $t\in [{{t}_{4}},\ +\infty )$ 使得对任意的$t\in[t_4,\ t_4^{*})$\[x_{2}(t_4^{*})=l \ \mbox{且} \ x_{2}(t)>l.\]从而 $x_{2}'(t_{4}^{*})\leq 0$. 进一步,由(1.2)和(2.2) 式有 $$0\geq x_{2}'(t_{4}^{*}) \geq -\lambda(t_4^{*})l+b(t_4^{*}) \kappa \geq \inf \limits_{t\in R}\left\{- \lambda(t )l+ b(t )\kappa\right\} > 0 , $$这与$x_{2}'(t_4^{*})\leq 0$矛盾. 因此 (2.11)式成立.

综上所述,由 (2.5),(2.10) 和 (2.11)式,可知 (2.3)式成立. 引理 2.2得证.

3 主要结果

本节我们将给出方程(1.2)伪概周期正解存在性、唯一性、全局指数稳定的一些充分条件.

引理3.1 (参见文献[10,引理2.8]) 设

$B^{*}=\{\varphi|\varphi \in PAP(R,R) \ \mbox{ 在 $R$上一致连续 } ,K_{1}\leq\varphi(t)\leq K_{2},\ \mbox{ 对任意的} \ t\in R \}.$ (3.1)
则$B^* $ 是$PAP(R,R)$中的闭子集.

注3.1 对于

$B =\left\{\begin{array}{ll}(\varphi,\psi)|(\varphi,\psi) \in (R,R^{2}),\ \mbox{$\varphi $ 和 $ \psi $ 在 $R$上一致连续 } ,\\ \kappa\leq \varphi(t) \leq M,\ l\leq \psi(t) \leq L,\ \mbox{ 对任意的 } \ t\in R\end{array}\right\},$ (3.2)

由引理3.1易得 $B $ 是$PAP(R,R^{2})$的闭子集.

定理3.1 假设(2.1)-(2.2)式成立. 进一步假定
$\sup\limits_{t\in R }\bigg\{-a(t) + \beta (t)\frac{1}{e^{2}}+c(t)(L+M) \bigg \} < 0 ,\ \ \sup\limits_{t\in R }\bigg\{- \lambda(t) +b(t) \bigg \} < 0 .$ (3.3)
则方程(1.2)在$B$中存在唯一的伪概周期正解.

证 设$ \phi =( \phi_{1},\phi_{2}) \in B $,$f_{i}(t,z)= \phi_{i}(t-z) (i=1,2).$ 对 $i\in I,$ 由文献 [11,p58,定理5.3]和文献[11,p59,定义5.7],以及 $ \phi_{i}$的一致连续性,可得对于所有的紧集$K\subseteq\Omega$ 和 $\Omega \subseteq R$,$f_{i}\in PAP(R\times \Omega)$ 且 $f_{i}$关于 $z\in K$连续并且关于 $t\in R$ 是一致的. 再结合 $\tau,\eta,\delta\in PAP(R,R)$ 和文献[11,p60,定理5.11],可得 $$ \phi_{1} (t-\tau (t)),\phi_{2} (t-\eta (t)),\phi _{1}(t-\delta (t))\in PAP(R,R). $$ 由文献[11,p58,注5.4],我们有 $$\phi_{1}(t-\tau(t))e^{-\gamma(t)\phi_{1}(t-\tau(t))},c(t)\phi_{1}(t)\phi_2(t-\eta(t)),\ b(t)\phi_{1}(t-\delta(t))\in PAP(R,R). $$ 接下来我们考虑如下的系统
$\left\{\begin{array}{rcl}x_{1} '(t)&=& -a(t) x_{1}(t)+ \beta(t)\phi_{1}(t-\tau(t))e^{-\gamma(t)\phi_{1}(t-\tau(t))}-c(t)\phi_{1}(t)\phi_2(t-\eta(t)), \\x_{2} '(t)&=& -\lambda(t) x_{2}(t)+ b(t) \phi_{1}(t-\delta(t)).\end{array}\right.$ (3.4)
再结合$ M[a]>0 $ 和 $ M[\lambda]>0 $,据文献[7,引理8]可知如下线性系统
$\left\{\begin{array}{rcl}x_{1} '(t)&=& -a(t) x_{1}(t) ,\\x_{2} '(t)&=& -\lambda(t) x_{2}(t) .\end{array}\right.$ (3.5)
在 ${\Bbb R}$上满足指数二分性. 因此,由文献[7,引理7]可得 系统(3.4) 存在唯一的伪概周期解
$\left(\begin{array}{c}x_{1}^{\phi}(t)\\x_{2}^{\phi}(t)\end{array}\right)= \left(\begin{array}{c} \int_{-\infty}^{t}e^{-\int_{s}^{t}a(u){\rm d}u}[\beta (s)\phi _{1}(s-\tau (s) )e^{-\gamma (s)\phi_{1}(s-\tau (s))} -c(s)\phi_{1}(s)\phi_2(s-\eta(s))]{\rm d}s\\ \int_{-\infty}^{t}e^{-\int_{s}^{t}\lambda(u){\rm d}u}b(s) \phi_{1}(s-\delta (s) ){\rm d}s\end{array}\right) .$ (3.6)

定义映射 $T:B \rightarrow PAP({\Bbb R},{\Bbb R}^{2})$ 如下 $$T(\phi(t))=x^{\phi}(t),\ \forall \ \phi\in B. $$

对任意的$ \phi \in B $,由 (2.1),(2.2)和(3.6)式,再结合 $ \sup\limits_{u\geq 0} ue^{-\gamma (t) u}=\frac{1}{\gamma(t)e}$,可得

$x_{1}^{\phi}(t) \leq \int_{-\infty}^{t}e^{-\int_{s}^{t}a(u){\rm d}u}\frac{1}{\gamma(s)e}\beta (s){\rm d}s \leq \int_{-\infty}^{t}e^{-\int_{s}^{t}a(u){\rm d}u}[a(s)M] {\rm d}s \leq M,\ \ \forall \ t\in R$ (3.7)
$x_{2}^{\phi}(t) \leq \int_{-\infty}^{t}e^{-\int_{s}^{t}\lambda(u){\rm d}u}b (s)M{\rm d}s \leq \int_{-\infty}^{t}e^{-\int_{s}^{t}\lambda(u){\rm d}u}\lambda(s)L {\rm d}s \leq L,\ \ \forall \ t\in R .$ (3.8)

由 (2.1),(2.2),(3.6)式和 $$\mbox{ 对任意的 } \ s\in R,\ \min\limits_{\kappa\leq u \leq\widetilde{\kappa} } ue^{- u}= \kappa e^{ - \kappa} ,\\kappa\leq\gamma (s) \phi_{1} (s-\tau (s))\leq \gamma ^{+}M \leq \widetilde{\kappa}, $$ 我们有,对任意的$ t\in R $

$ x_{1}^{\phi}(t) \geq \int_{-\infty}^{t}e^{-\int_{s}^{t}a(u){\rm d}u}a(s)\kappa{\rm d}s \geq \kappa$ (3.9)
$x_{2}^{\phi}(t) \geq \int_{-\infty}^{t}e^{-\int_{s}^{t}\lambda(u){\rm d}u}b (s)\kappa{\rm d}s \geq \int_{-\infty}^{t}e^{-\int_{s}^{t}\lambda(u){\rm d}u}\lambda(s)l {\rm d}s \geq l.$ (3.10)
再结合(3.7) 和(3.8)式,可得对任意的$ t\in R $ $$ \kappa\leq x_{1}^{\phi}(t) \leq M,\ l\leq x_{2}^{\phi}(t)\leq L. $$接下来,由(3.4)式,可知$ \Big((x_{1}^{\phi}(t))',(x_{2}^{\phi}(t) )'\Big)$ 在任意的 $ t\in R$上有界,且
$(x_{1}^{\phi},x_{2}^{\phi} ) \in(R,R^{2}) \ \mbox{ 在 $R$ 上一致连续} .$ (3.11)
因而,$ x ^{\phi}=(x_{1}^{\phi},x_{2}^{\phi} )\in B$,故映射$T$ 为 $B$ 到 $ B $的自映射.

定义$\Pi_{1} (\cdot) $ 和 $\Pi_{2}(\cdot) $ 如下 $$ \Pi_{1} (u) = \sup\limits_{t\in R }\bigg\{- \frac{a(t)}{e^{u r}} + \beta (t)\frac{1}{e^{2}} +c(t)(M+L) \bigg\} $$ 和 $$ \Pi_{2} (u) = \sup\limits_{t\in R }\bigg\{- \frac{\lambda(t)}{e^{u r}} + b (t) \bigg\}, $$ 其中 $ u\in [0,\ 1].$则由(3.3)式 可知存在$ \eta>0 $ 和 $\varsigma\in (0,\ 1]$ 使得

$\Pi_{1}(\varsigma) = \sup\limits_{t\in R }\bigg\{-\frac{a(t)}{e^{\varsigma r}} + \beta (t)\frac{1}{e^{2}} +c(t)(M+L) \bigg\}< -\eta <0$ (3.12)
$\Pi_{2} (\varsigma) = \sup\limits_{t\in R }\bigg\{- \frac{\lambda(t)}{e^{\varsigma r}} + b (t) \bigg\} < -\eta <0 .$ (3.13)

接下来我们将证明 $T$为 $B $上的压缩映射.

事实上,对任意的 $ \varphi,\psi \in B $,我们有

$\begin{align} & \underset{t\in R}{\mathop{\sup }}\,|{{(T(\varphi )(t)-T(\psi )(t))}_{1}}|= \\ & \underset{t\in R}{\mathop{\sup }}\,|\int_{-\infty }^{t}{{{e}^{-\int_{s}^{t}{a}(u)\text{d}u}}}[\frac{\beta (s)}{\gamma (s)}(\gamma (s){{\varphi }_{1}}(s-\tau (s)){{e}^{-\gamma (s){{\varphi }_{1}}(s-\tau (s))}} \\ & -\gamma (s){{\psi }_{1}}(s-\tau (s)){{e}^{-\gamma (s){{\psi }_{1}}(s-\tau (s))}})- \\ & c(s)({{\varphi }_{1}}(s){{\varphi }_{2}}(s-\eta (s)-{{\psi }_{1}}(s){{\psi }_{2}}(s-\eta (s)))]\text{d}s|. \\ \end{align}$ (3.14)
再结合 $\sup\limits_{\kappa\leq u\leq\widetilde{\kappa}}|\frac{1-u}{e^{u}}|=\frac{1}{e^{2}}$ 和不等式
$\begin{align} & |x{{e}^{-x}}-y{{e}^{-y}}|=|\frac{1-(x+\theta (y-x))}{{{e}^{x+\theta (y-x)}}}||x-y| \\ & \le \frac{1}{{{e}^{2}}}|x-y|,\ 其中x,y\in [\kappa ,\infty ),\ 0<\theta <1,\\ \end{align}$ (3.15)
由(3.11)-(3.14) 式可知 $$ \underset{t\in R}{\mathop{\sup }}\,|{{(T(\varphi )(t)-T(\psi )(t))}_{1}}|\le \|\varphi -\psi {{\|}_{\infty }}\underset{t\in R}{\mathop{\sup }}\,\int_{-\infty }^{t}{{{e}^{-\int_{s}^{t}{a}(u)\text{d}u}}}a(s)\frac{1}{{{e}^{\varsigma r}}}\text{d}s\le \frac{1}{{{e}^{\varsigma r}}}\|\varphi -\psi {{\|}_{\infty }} $$且 $$ \underset{t\in R}{\mathop{\sup }}\,|{{(T(\varphi )(t)-T(\psi )(t))}_{2}}|\le \|\varphi -\psi {{\|}_{\infty }}\underset{t\in R}{\mathop{\sup }}\,\int_{-\infty }^{t}{{{e}^{-\int_{s}^{t}{\lambda }(u)\text{d}u}}}b(s)\text{d}s\le \frac{1}{{{e}^{\varsigma r}}}\|\varphi -\psi {{\|}_{\infty }}. $$注意到 $\frac{1}{e ^{\varsigma r}}<1$,易知$T$为$B$上的压缩映射.再根据文献[17]中的引理3.1和定理0.3.1,可得$T$ 存在唯一的 不动点$\varphi^{*}\in B $并满足 $T\varphi^{*}=\varphi^{*}$. 由(3.4)式,$\varphi^{*}$ 满足 系统(1.2).故 $\varphi^{*}$ 为$B$中的系统(1.2)的伪概周期正解. 定理得证.

定理3.2 假设定理3.1中的所有条件都满足. 设$x^{*}(t)$为定理3.1所得的方程(1.2)的伪概周期正解,则$x^{*}(t)$ 全局指数稳定,也即,满足初始条件(1.5)的方程(1.2)的解$x(t; t_{0},\varphi)$ 当$t\rightarrow+\infty$时指数收敛到$ x ^{* }(t )$.

证 设 $x(t)= x(t; t_{0},\varphi) $,$y_{i}(t)= x_{i}(t)-x_{i}^{*}(t)$,其中 $t\in [t_{0}-r_{i},+\infty),\ i\in I$. 则

$\begin{equation}\left\{\begin{array}{rcl}y_{1} '(t)&=& -a(t) y_{1}(t)\\& &+ \beta(t)x_{1}(t-\tau(t))e^{-\gamma(t)x_{1}(t-\tau(t))}-\beta(t)x_{1}^*(t-\tau(t))e^{-\gamma(t)x_{1}^*(t-\tau(t))}\\& &-c(t)x_{1}(t)x_2(t-\eta(t))+c(t)x_{1}^*(t)x_2^*(t-\eta(t)),\\y_{2} '(t)&=& -\lambda(t) y_{2}(t)+ b(t) y_{1}(t-\delta(t)).\end{array}\right. \end{equation}$ (3.16)
设 $$ \Gamma _{1}(u) =\sup\limits_{t\in R}\bigg\{(u- a(t)) +\frac{\beta(t)}{e^2} e^{u r} +c(t)M e^{u r} +c(t)L\bigg\} ,~~ u\in [0,\ 1] $$和 $$\Gamma _{2}(u) =\sup\limits_{t\in R}\{u- \lambda(t)+b(t)e^{u r }\} ,~~ u\in[0,\ 1]. $$显然有,$\Gamma _{i}(u),i = 1,2 ,$在$[0,\ 1]$上连续. 由 (3.3)式,可选取常数 $\overline{\eta}>0$和$\zeta\in (0,\ 1]$使得
$\begin{equation} \Gamma _{1}(\zeta) =\sup\limits_{t\in R} \bigg\{(\zeta- a(t)) +\frac{\beta(t)}{e^2} e^{\zeta r} +c(t)M e^{\zeta r} +c(t)L\bigg\}<-\overline{\eta}<0\end{equation}$ (3.17)
且 \begin{equation}\Gamma _{2}(\zeta) =\sup\limits_{t\in R}\{\zeta- \lambda(t)+b(t)e^{\zeta r }\}<0. \end{equation} 令 $ V_{i} (t) = |y _{i}(t)|e^{\zeta t},\ i \in I.$ 沿(3.16)式的解$y(t)$计算$V_{i} (t) (i \in I)$的左上导数,有
$\begin{eqnarray} D^-(V_{1} (t)) & \leq & [(\zeta -a(t))|y_{1}(t)|+\beta(t)|x_{1}(t-\tau(t))e^{-\gamma(t)x_{1}(t-\tau(t))}\\& &-x_{1}^*(t-\tau(t))e^{-\gamma(t)x_{1}^*(t-\tau(t))}|\\&&+c(t)|x_{1}(t)x_2(t-\eta(t))-x_{1}^*(t)x_2^*(t-\eta(t))|]e^{\nabla},\end{eqnarray} $ (3.19)
${{D}^{-}}({{V}_{2}}(t))\le [(\zeta -\lambda (t))|{{y}_{2}}(t)|+b(t)|{{y}_{1}}(t-\nabla (t))|]{{e}^{t}},~~对任意的\text{ }\ t>{{t}_{0}}.$ (3.20)

由引理2.2可知存在$t_{\varphi}>t_{0}+r$ 使得

$\kappa < x _{1}(t ) < M,\ l < x _{2}(t ) < L,\ \mbox{ 对任意的 }\ t \geq t_{\varphi}-r.$ (3.21)
设 $\underset{i=1,2}{\mathop{\max }}\,\{{{e}^{{{\nabla }_{\varphi }}}}(\underset{t\in [{{t}_{0}}-{{r}_{i}}{{,}_{\varphi }}]}{\mathop{\max }}\,|{{\varphi }_{i}}(t)-x_{i}^{*}(t)|+1)\}:={{\Omega }^{*}}$. 我们断言
${{V}_{i}}(t)=|{{y}_{i}}(t)|{{e}^{t}}\text{}{{\Omega }^{*}}\ for\ all\ t>{{t}_{\varphi }},\ i\in I.$ (3.22)
如若不然,则有下面的情况发生.

情形1 存在 $T_{1}>t_{\varphi}$ 使得

$V _{1}(T_{1})=\Omega^{*} \ \mbox{ 且}\ V _{i}(t)<\Omega ^{*}\ \mbox{ 对任意的 } \ \ t\in [t_{0}-r_{i},\ T_{1}),i=1,2.$ (3.23)

情形2 存在 $T_{2}>t_{\varphi}$ 使得

$V _{2}(T_{2})=\Omega^{*} \ \mbox{且}\ V _{i}(t)<\Omega^{*}\ \mbox{ 对任意的 } \ \ t\in [t_{0}-r_{i},\ T_{2}),i=1,2.$ (3.24)

若情形1 成立,结合 $(3.15)$,$(3.19)$,(3.21) 和(3.23) 式可得\begin{eqnarray*} 0 & \leq & D^-(V_{1} (T_{1})-\Omega^{*} ) \\& \leq & (\zeta- a(T_{1}))|y_{1} (T_{1})|e^{\zeta T_1}+\frac{\beta(T_{1})}{e^2}|y_1(T_1-\tau(T_1))|e^{\zeta(T_1-\tau(T_1))}e^{\zeta \tau(T_1)} \\& &+c(T_{1})M|y_2(T_1-\eta(T_1))|e^{\zeta (T_1-\eta(T_1))}e^{\zeta \eta(T_1)} +c(T_{1})L|y_1(T_1)|e^{ \zeta T_1}\\ & \leq & \bigg[(\zeta- a(T_{1})) +\frac{\beta(T_{1})}{e^2} e^{\zeta r} +c(T_{1})M e^{\zeta r} +c(T_{1})L\bigg]\Omega^{*} ,\end{eqnarray*}且 $$0 \leq (\zeta- a(T_{1})) +\frac{\beta(T_{1})}{e^2} e^{\zeta r} +c(T_{1})M e^{\zeta r} +c(T_{1})L, $$ 这与 (3.17)式矛盾. 因此,(3.23)式不成立.

若 情形2 成立,结合$(3.19)$,(3.21) 和 (3.24) 式可得 $$0 \leq D^-(V_{2} (T_{2})-\Omega^{*} ) = D^-(V_{2} (T_{2})) \leq [\zeta- \lambda(T_{2})+b(T_{2})e^{\zeta r }]\Omega^{*},\ 0 \leq \zeta- \lambda(T_{2})+b(T_{2})e^{\zeta r }, $$ 这与(3.18)式矛盾. 因此,(3.24)式 不成立. 从而 (3.22) 式成立,且有$ |y _{i}(t)|<\Omega^{*} e^{-\zeta t} \ \forall t>t_{\varphi},\ i\in I .$ 定理得证.

4 实例

例4.1 考虑如下具反馈控制的时滞飞蝇方程模型

$\left\{\begin{array}{rl} x_{1} '(t) = & - 0.4040326x_{1}(t) + \frac{100+ \frac{\cos t}{1+t^{2}}}{100+ \sin t} x_{1}(t-2e^{ \sin ^{4 }t }) e^{ -x_{1}(t-2e^{ \sin ^{4} t })} \\[2mm]& -0.00001e^{-1+\sin \sqrt{5}t}x_1(t)x_2(t-2e^{\cos \sqrt{5}t}),\\[2mm] x_{2} '(t) =& -( 5+\sin^{2}t)x_{2}(t)+(3+\cos ^{2} t)x_{1}(t-e^{ \sin\sqrt{3}t}).\end{array}\right.$ (4.1)
显然,$c(t)=0.00001e^{-1+\sin \sqrt{5}t},\ b(t)=3+\cos ^{2} t,\ \lambda(t)= 5+\sin^{2}t,$ $r=r_{1}=r_{2}=2e,$ $ a = 0.4040326,$ $ \beta^-\geq\frac{99}{101},$ $\beta ^+\leq \frac{101}{99},$ $\gamma ^-=\gamma ^+=1 .$ 注意到 $\kappa\approx 0.7215355$ 和 $\tilde{\kappa}\approx1.342276$.设$M=1.203432,L=5$ ,$ l=0.3$. 则容易验证系统(4.1) 满足定理3.2的所有条件.因此,系统(4.1)存在唯一的指数稳定的伪概周期正解$x^*(t)$,其指数收敛速率约为$\lambda\approx 0.01$. 由数值模拟的给出的图形1-2有力地说明了相应结论的正确性.

图 1 方程(4.1) 在初值$x_{0}\equiv (0.7, 0.1), (1.5, 0.5), (2.1, 0.8)$条件下的数值解$ x _1(t) $

图 2 方程(4.1) 在初值$x_{0}\equiv (0.7, 0.1), (1.5, 0.5), (2.1, 0.8)$条件下的数值解$ x_2 (t) $

注4.1 据我们所知,至今为止尚未有文献考虑带反馈控制项的飞蝇方程的伪概周期正解的全局指数稳定性. 值得指出的是,文献 [12, 13, 14, 15, 18]等中的相应方法不能证明本文所研究系统伪概周期正解的全局指数稳定性. 因此,本文的结果完善了飞蝇方程的相关研究.

参考文献
[1] Zhang C. Pseudo almost periodic solutions of some differential equations. J Math Anal Appl, 1994, 181(1):62-76
[2] Zhang C. Pseudo almost periodic solutions of some differential equations. Ⅱ. J Math Anal Appl, 1995,192(2):543-561
[3] Zhang C. Integration of vector-valued pseudo almost periodic functions. Proc Amer Math Soc, 1994,121(1):167-174
[4] N'Guérékata G M. Almost Automorphic Functions and Almost Periodic Functions in Abstract Spaces. New York, London, Moscow:Kluwer Academic/Plenum Publishers, 2001
[5] N'Guérékata G M. Topics in Almost Automorphy. New York:Springer-Verlag, 2005
[6] Farouk Chérif. Existence and global exponential stability of pseudo almost periodic solution for SICNNs with mixed delays. J Appl Math Comput, 2012, 39:235-251
[7] Wang W, Liu B. Global exponential stability of pseudo almost periodic solutions for SICNNs with time-varying leakage delays. Abstr Appl Anal, 2014, Article ID:967328
[8] Pankov A A. Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations. Dordrecht:Kluwer Academic Publishers, 1985
[9] Diaganaa T, Mahopa C M, N'Guérékata G M. Pseudo-almost-periodic solutions to some semilinear differential equations. Math Comput Modelling, 2006, 43:89-96
[10] Zhang H. New results on the positive pseudo almost periodic solutions for a generalized model of hematopo-iesis. Electron J Qual Theory Differ Equ, 2014, 24:1-10
[11] Zhang C. Almost Periodic Type Functions and Ergodicity. Beijing:Kluwer Academic/Science Press, 2003
[12] Wang L, Fang Y. Permanence for a discrete Nicholson's Blowflies model with feedback control and delay. Int Jour Biomath, 2008, 1:433-442
[13] Zhao C, Wang L. Convergence and permanence of a delayed Nicholson's Blowflies model with feedback control. J Appl Math Comput, 2012, 38:407-415
[14] Jia R. Positive almost periodic solution for a delayed Nicholson's blow ies model with feedback control. J Advanced Research in Dynamical and Control Systems, 2012, 4(2):29-41
[15] Liu B. Global exponential stability of positive periodic solutions for a delayed Nicholson's blowflies model. J Math Anal Appl, 2014, 412:212-221
[16] Smith H L. An Introduction to Delay Differential Equations with Applications to the Life Sciences. New York:Springer, 2011
[17] Hale J K. Ordinary Differential Equations. Florida:Krieger, 1980
[18] Liu B. Positive periodic solutions for a nonlinear density dependent mortality Nicholson's blowflies model. Kodai Math J, 2014, 37(1):157-173