The Weighted Poincaré Inequality in the Upper Half Space of Nilpotent Lie Group
半空间 ${\Bbb R}^{N}_{+}=\{(x_{1},\cdots,x_{n})|x_{1}>0\}$ 上Hardy不等式是说,若$N\geq 3$,则对所有的$u\in C^{\infty}_{0}({\Bbb R}^{N}_{+})$,
\begin{equation}\label{1.1}\int_{{\Bbb R}^{N}_{+}}|\nabla u|^{2}{\rm d}x\geq\frac{N^{2}}{4}\int_{{\Bbb R}^{N}_{+}}\frac{u^{2}}{|x|^{2}}{\rm d}x,\end{equation}
| (1.1) |
其中常数 $\frac{N^{2}}{4}$ 是最佳的 (见文献[
1,
2]). 注意到欧式空间的Hardy不等式为
\begin{equation}\label{1.2}\int_{{\Bbb R}^{N}}|\nabla u|^{2}{\rm d}x\geq\frac{(N-2)^{2}}{4}\int_{{\Bbb R}^{N}}\frac{u^{2}}{|x|^{2}}{\rm d}x,\end{equation}
| (1.2) |
其中常数$\frac{(N-2)^{2}}{4}$也是最佳的.这意味着,当奇异性位于边界的时候,Hardy常数发生了某种跳跃.
本文试图对幂零李群上的Poincaré不等式也证明类似的结果. 有关幂零李群上的加权Poincaré不等式肇始于文献[3]. 文中 Ferrari 和 Valdinoci利用稳定解的方法建立了一大类不等式. 通过选取不同类型的稳定解,他们得到了诸如Heisenberg群和Engel群上的加权Poincaré不等式. 不过遗憾的是有些常数不是最佳的. 最佳常数的计算可参考文献[4, 5, 10].
本文主要考虑一类称之为Carnot群的幂零李群. 一个幂零李群$G$称之为Carnot 群,如果$G$是分次的单连通幂零李群,并且其李代数${\mathfrak g}$可分解为${\mathfrak g}=\bigoplus\limits^{r}_{i=1}V_{i}$,其中$r$称为幂零李群的阶,线性子空间$\{V_{i}\}$满足条件
$$[V_{1},V_{j}]=V_{j+1},1\leq j\leq r-1.
$$为了表述所要证明的结果,我们先介绍一些与之相关的记号.分别记各子空间的维数为$n_{j}=\dim V_{j}$ ($1\leq j\leq r$). 再记$\{X_{1},\cdots,X_{n_{1}}\}$为第一层子空间$V_{1}$的一个基底. 算子$\nabla_{G}=(X_{1},\cdots,X_{n_{1}})$称为群$G$的亚椭圆梯度. 为简单起见,记$\xi^{(1)}=\xi_{1}X_{1}+\cdots+\xi_{n_{1}}X_{n_{1}}$ 以及 $|\xi^{(1)}|=\sqrt{\xi^{2}_{1}+\cdots+\xi^{2}_{n_{1}}}$.
本文主要结果如下
定理1 设$\alpha\geq0$. 如果$G$是一个幂零李群,则对所有$\phi \in C^{\infty}_{0}(G_{+})$,
\begin{equation}\label{1.3}\left(\frac{(n_{1}+2+\alpha)^{2}}{4}-\alpha-2\right)\int_{G_{+}}|\phi|^{2}|\xi^{(1)}|^{\alpha}\leq\int_{G_{+}}|\nabla_{G}\phi|^{2}|\xi^{(1)}|^{\alpha+2},\end{equation}
| (1.3) |
其中 $G_{+}=\{\xi\in G: \xi_{1}>0\}$,并且常数 $\frac{(n_{1}+2+\alpha)^{2}}{4}-\alpha-2$是最佳的.
为了证明该定理,我们选用了一个新的技技巧,既不同于稳定解方法,也不同于原来欧式空间中的方法(见文献[1, 2, 6]). 事实上,不难看出文献[1, 2, 6]所用的方法无法适用于本文所考虑的情形. 我们的结果也验证了上面的想法,即当奇异性位于边界的时候其常数会发生某种变化. 这不难从下述最佳带权Poincaré不等式看出[5]
\begin{equation}\label{1.4} \left(\frac{n_{1}+\alpha}{2}\right)^{2}\int_{G}|\phi|^{2}|\xi^{(1)}|^{\alpha}\leq \int_{G}|\nabla_{G}\phi|^{2}|\xi^{(1)}|^{\alpha+2}. \end{equation}
| (1.4) |
在定理证明之前我们先简要介绍一下本文所需要的幂零李群的知识. 更多详细的介绍可参考书籍[7, 8, 9]. 设$G$是一个Carnot幂零李群,其李代数${\mathfrak g}=\bigoplus\limits^{r}_{i=1}V_{i}$ 满足条件$[V_{1},V_{j}]=V_{j+1}$,$1\leq j\leq r-1$. 由于$G$是单连通的,$G$因此和欧式空间${\Bbb R}^{N}$同胚,其中$N=\sum\limits^{r}_{i=1}\dim V_{i}=\sum\limits^{r}_{i=1}n_{i}$. 并且同胚映射可通过指数映射$\exp: {\mathfrak g}\rightarrow G$获得. 这样一来,群上的左右不变的Haar测度可由欧式空间上的Lebesgue所诱导. 事实上,可证明$G$上的Haar测度同欧式空间${\Bbb R}^{N}$上Lebesgue测度是一致的.
记$\xi=(\xi^{(1)},\cdots,\xi^{(r)})\in {\Bbb R}^{N}$,其中$\xi^{(i)}=(\xi^{(i)}_{1},\cdots,\xi^{(i)}_{n_{i}})\in{\Bbb R}^{n_{i}}$. 对每一个$j= 1,\cdots ,n_{1}$,记$X_{j}$为满足下述条件的唯一向量场: 在原点与切向量$\partial/\partial\xi^{(1)}_{j}$ 重合.由此构造的二阶微分算子$\Delta_{G}=-\sum\limits^{n_{1}}_{j=1}X^{\ast}_{j}X_{j}=\sum\limits^{n_{1}}_{j=1}X^{2}_{j}$称之为$G$上的亚Laplace算子. 我们记对应的梯度为$\nabla_{G}=(X_{1},\cdots,X_{n_{1}})$.
利用 Campbell-Hausdorff公式 (见文献[9,p2-4]),$X_{j}$ ($1\leq j\leq n_{1}$)有如下的坐标表示
\begin{equation}\label{1.5}X_{j}=\frac{\partial}{\partial\xi^{(1)}_{j}}+\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}p^{j}_{k,s}(\xi^{(1)},\cdots,\xi^{(k-1)})\frac{\partial}{\partial\xi^{(k)}_{s}},\end{equation}
| (2.1) |
其中 $p^{j}_{k,s}(\xi^{(1)},\cdots,\xi^{(k-1)})$ 是关于变量$\xi^{(1)},\cdots,\xi^{(k-1)}$的多项式. 从而当$|\xi^{(1)}|\neq 0$时,我们有
\begin{eqnarray}\label{1.6}\Delta_{G}(\xi_{1}|\xi^{(1)}|^{\alpha})&=&\sum^{n_{1}}_{j=1}\left(\frac{\partial}{\partial\xi^{(1)}_{j}}\right)^{2}(\xi_{1}|\xi^{(1)}|^{\alpha})\\&=&\xi_{1}\sum^{n_{1}}_{j=1}\left(\frac{\partial}{\partial\xi^{(1)}_{j}}\right)^{2}|\xi^{(1)}|^{\alpha}+2\frac{\partial|\xi^{(1)}|^{\alpha}}{\partial \xi^{(1)}_{j}}\\&=&\alpha(n_{1}+\alpha-2)\xi_{1}|\xi^{(1)}|^{\alpha-2}+2\alpha\xi_{1}|\xi^{(1)}|^{\alpha-2}\\&=&\alpha(n_{1}+\alpha)\xi_{1}|\xi^{(1)}|^{\alpha-2}.\end{eqnarray}
| (2.2) |
在定理证明之前,我们还需要如下的引理.
引理2 设 $f\in C^{\infty}({\Bbb R}^{N}_{+})$ 以及$\alpha\geq0$. 则
\begin{equation}\label{1.7}\left(\frac{(N+2+\alpha)^{2}}{4}-\alpha-2\right)\int_{{\Bbb R}^{N}_{+}}|x|^{\alpha}f^{2}{\rm d}x\leq\int_{{\Bbb R}^{N}_{+}}|\nabla f|^{2}|x|^{\alpha+2}{\rm d}x.\end{equation}
| (2.3) |
特别的,常数$\frac{(N+2+\alpha)^{2}}{4}-\alpha-2$是最佳的.
证 将不等式(1.1)中的 $u$ 替换为 $|x|^{\frac{\alpha+2}{2}}f$可得
\begin{equation}\label{1.8}\int_{{\Bbb R}^{N}_{+}}|\nabla(|x|^{\frac{\alpha+2}{2}}f)|^{2}{\rm d}x\geq\frac{N^{2}}{4}\int_{{\Bbb R}^{N}_{+}}f^{2}|x|^{\alpha}{\rm d}x.\end{equation}
| (2.4) |
简单计算可知
\begin{eqnarray}\label{1.9}&&\int_{{\Bbb R}^{N}_{+}}|\nabla(|x|^{\frac{\alpha+2}{2}}f)|^{2}{\rm d}x\\&=&\int_{{\Bbb R}^{N}_{+}}\left(|\nabla f|^{2}|x|^{\alpha+2}+f^{2}|\nabla |x|^{\frac{\alpha+2}{2}}|+ \frac{1}{2}\langle\nabla|x|^{\alpha+2},\nabla f^{2}\rangle\right){\rm d}x \\&=&\int_{{\Bbb R}^{N}_{+}}\left(|\nabla f|^{2}|x|^{\alpha+2}+\frac{(\alpha+2)^{2}}{4}f^{2}|x|^{\alpha}\right){\rm d}x- \frac{1}{2}\int_{{\Bbb R}^{N}_{+}}f^{2}\Delta|x|^{\alpha+2}{\rm d}x\\ &=&\int_{{\Bbb R}^{N}_{+}}|\nabla f|^{2}|x|^{\alpha+2}{\rm d}x-\frac{(\alpha+2)(2N+\alpha+2)}{4}\int_{{\Bbb R}^{N}_{+}}f^{2}|x|^{\alpha}{\rm d}x.\end{eqnarray}
| (2.5) |
联立(2.4)和(2.5)式即可得到 (2.3)式.由于(2.4)式中的常数$\frac{N^{2}}{4}$是最佳的,因此$\frac{(N+2+\alpha)^{2}}{4}-\alpha-2$ 也是最佳的. 证毕.
定理1的证明 作变量代换 $u=|\xi^{(1)}|^{\frac{\alpha+2}{2}}\phi$可得
\begin{eqnarray}\label{1.10}& &\int_{G_{+}}|\nabla_{G}\phi|^{2}|\xi^{(1)}|^{\alpha+2}\\&=&\int_{G}\left|\nabla_{G}(|\xi^{(1)}|^{-\frac{\alpha+2}{2}}u)\right|^{2}|\xi^{(1)}|^{\alpha+2}\\ &=& \int_{G_{+}}\left(|\nabla_{G}u|^{2}|\xi^{(1)}|^{-\alpha-2}+u^{2}|\nabla_{G}|\xi^{(1)}|^{-\frac{\alpha+2}{2}}|+ \frac{1}{2}\left\langle\nabla_{G}|\xi^{(1)}|^{-\alpha-2},\nabla_{G}u^{2}\right\rangle\right)|\xi^{(1)}|^{\alpha+2}\\ &=&\int_{G_{+}}\left(|\nabla_{G}u|^{2}+\frac{(\alpha+2)^{2}}{4}\frac{u^{2}}{|\xi^{(1)}|^{2}}\right)-\frac{\alpha+2}{2}\int_{G_{+}}\langle\nabla_{G}\ln |\xi^{(1)}|,\nabla_{G}u^{2}\rangle\\& =&\int_{G_{+}}\left(|\nabla_{G}u|^{2}+\frac{(\alpha+2)^{2}}{4}\frac{u^{2}}{|\xi^{(1)}|^{2}}\right)+\frac{\alpha+2}{2}\int_{G_{+}}u^{2}\Delta_{G}\ln |\xi^{(1)}|\\ &=&\int_{G_{+}}\left(|\nabla_{G}u|^{2}+\frac{(\alpha+2)^{2}}{4}\frac{u^{2}}{|\xi^{(1)}|^{2}}+\frac{(\alpha+2)(n_{1}-2)}{2}\frac{u^{2}}{|\xi^{(1)}|^{2}}\right),\end{eqnarray}
| (2.6) |
其中等式(2.6)的最后一步我们用了如下事实
$$\Delta_{G}\ln|\xi^{(1)}|=\sum^{n_{1}}_{j=1}\left(\frac{\partial}{\partial\xi^{(1)}_{j}}\right)^{2}\ln|\xi^{(1)}|=\frac{n_{1}-2}{2}\frac{1}{|\xi^{(1)}|^{2}}.
$$
另一方面,如果作代换 $u=\xi_{1}|\xi^{(1)}|^{-\frac{n_{1}}{2}}u$,我们有
\begin{eqnarray}\label{1.11} \int_{G_{+}}|\nabla_{G}u|^{2}&=& \int_{G_{+}}\left(|\nabla_{G}v|^{2}\xi^{2}_{1}|\xi^{(1)}|^{-n_{1}} +v^{2}\left|\nabla_{G}\left(\xi_{1}|\xi^{(1)}|^{-\frac{n_{1}}{2}}\right)\right|^{2}\right.\\ &&\left.+\frac{1}{2}\left\langle\nabla_{G}v^{2},\nabla_{G}\left(\xi^{2}_{1}|\xi^{(1)}|^{-n_{1}}\right)\right\rangle\right)\\ &\geq&\int_{G_{+}}\left(v^{2}\left|\nabla_{G}\left(\xi_{1}|\xi^{(1)}|^{-\frac{n_{1}}{2}}\right)\right|^{2}-\frac{1}{2}v^{2}\Delta_{G}\left(\xi^{2}_{1}|\xi^{(1)}|^{-n_{1}}\right)\right)\\&=&\int_{G_{+}}v^{2}\left(\left|\nabla_{G}\left(\xi_{1}|\xi^{(1)}|^{-\frac{n_{1}}{2}}\right)\right|^{2}-\frac{1}{2}\Delta_{G}\left(\xi^{2}_{1}|\xi^{(1)}|^{-n_{1}}\right)\right).\end{eqnarray}
| (2.7) |
注意到如果$g\in C^{2}(G)$,
$$ \Delta_{G}g^{2}=\sum^{m}_{j=1}X^{2}_{j}g^{2}=2g\sum^{m}_{j=1}X^{2}_{j}g+2\sum^{m}_{j=1}|X_{j}g|^{2}=2g \Delta_{G}g+2|\nabla_{G}g|^{2}.
$$因此由(2.2)式可得
\[\begin{array}{l}
{\left| {{\nabla _G}\left( {{\xi _1}|{\xi ^{(1)}}{|^{ - \frac{{{n_1}}}{2}}}} \right)} \right|^2} - \frac{1}{2}{\Delta _G}\left( {\xi _1^2|{\xi ^{(1)}}{|^{ - {n_1}}}} \right)\\
= - {\xi _1}|{\xi ^{(1)}}{|^{ - \frac{{{n_1}}}{2}}}{\Delta _G}({\xi _1}|{\xi ^{(1)}}{|^{ - \frac{{{n_1}}}{2}}})\\
= \frac{{n_1^2}}{4}\xi _1^2|{\xi ^{(1)}}{|^{ - {n_1} - 2}}.
\end{array}\]
| (2.8) |
联立 (2.6)和 (2.8)式可得
\begin{eqnarray}\label{1.13} \int_{G_{+}}|\nabla_{G}u|^{2}\geq \frac{n^{2}_{1}}{4}\int_{G_{+}}\xi^{2}_{1}|\xi^{(1)}|^{-n_{1}-2}v^{2}=\frac{n^{2}_{1}}{4}\int_{G_{+}}\frac{u^{2}}{|\xi^{(1)}|^2}.\end{eqnarray}
| (2.9) |
再由(2.6)及 (2.9)式可得到,
\begin{eqnarray}\label{1.14} \int_{G_{+}}|\nabla_{G}\phi|^{2}|\xi^{(1)}|^{\alpha+2}&\geq&\int_{G_{+}}\left(\frac{n^{2}_{1}}{4}\frac{u^{2}}{|\xi^{(1)}|^2}+\frac{(\alpha+2)^{2}}{4}\frac{u^{2}}{|\xi^{(1)}|^{2}}+\frac{(\alpha+2)(n_{1}-2)}{2}\frac{u^{2}}{|\xi^{(1)}|^{2}}\right).\\ &=&\left(\frac{(n_{1}+2+\alpha)^{2}}{4}-\alpha-2\right)\int_{G_{+}}\frac{u^{2}}{|\xi^{(1)}|^2}\\&=&\left(\frac{(n_{1}+2+\alpha)^{2}}{4}-\alpha-2\right)\int_{G_{+}}|\phi|^{2}|\xi^{(1)}|^{\alpha}.\end{eqnarray}
| (2.10) |
为完成证明,我们只需证明常数$\frac{(n_{1}+2+\alpha)^{2}}{4}-\alpha-2$的最佳性.遵循文献[5]中所使用的方法,我们考虑如下的测试函数
$$f(\xi)=u(\xi^{(1)})g(\xi^{(2)},\cdots,\xi^{(r)}),
$$其中$u\in C^{\infty}_{0}({\Bbb R}^{n_{1}})$,$g=\prod\limits^{r}_{k=2}\prod\limits^{n_{k}}_{s=1}w_{k,s}(\xi^{(k)}_{s})$,$w_{k,s}(\cdot)\in C^{\infty}_{0}({\Bbb R})$. 为简单起见,我们记
$$w_{1,s}\equiv 1,\ \ 1\leq s\leq n_{k}.
$$ 利用(2.1)式,
\begin{eqnarray*}\int_{G_{+}}|\nabla_{G}f|^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi&=&\sum^{n_{1}}_{j=1}\left\{\int_{G_{+}}\left(\frac{\partial u}{\partial\xi^{(1)}_{j}}\right)^{2}g^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi \right. \\&&+ \left.\int_{G_{+}}u^{2}\left|\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}p^{j}_{k,s}\frac{\partial g}{\partial\xi^{(k)}_{s}}\right|^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi+(\ast)\right\},\end{eqnarray*}
其中
\begin{eqnarray*}(\ast)&=&2\int_{G_{+}}u^{2}g\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}p^{j}_{k,s}\frac{\partial g}{\partial\xi^{(k)}_{s}}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi\\&=&\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}\int_{G_{+}}u^{2}p^{j}_{k,s}(\xi^{(1)},\cdots,\xi^{(k-1)})\frac{\partial g^{2}}{\partial\xi^{(k)}_{s}}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi.\end{eqnarray*}
由于 $w_{k,s}(\cdot)\in C^{\infty}_{0}({\Bbb R})$,我们有\[\int_{{\Bbb R}}\frac{\partial w^{2}_{k,s}(\xi^{(k)}_{s})}{\partial\xi^{(k)}_{s}}{\rm d}\xi^{(k)}_{s}=0.\]因此\[\int_{{\Bbb R}}\frac{\partial g^{2}}{\partial\xi^{(k)}_{s}}{\rm d}\xi^{(k)}_{s}=0.\]
从而 $(\ast)=0$,并且
\begin{eqnarray}\label{c3}\int_{G_{+}}|\nabla_{G}f|^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi&=&\sum^{n_{1}}_{j=1}\left\{\int_{G_{+}}\left(\frac{\partial u}{\partial\xi^{(1)}_{j}}\right)^{2}g^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi \right. \\&&+ \left.\int_{G_{+}}u^{2}\left|\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}p^{j}_{k,s}\frac{\partial g}{\partial\xi^{(k)}_{s}}\right|^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi\right\}.\end{eqnarray}
| (2.11) |
取足够大的正数 $C_{G}$使得
$$\left|\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}p^{j}_{k,s}\frac{\partial g}{\partial\xi^{(k)}_{s}} \right|^{2}\leq C_{G}\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}\left|p^{j}_{k,s}\frac{\partial g}{\partial\xi^{(k)}_{s}} \right|^{2}.
$$则由(2.11)式可得
\begin{eqnarray*}&&\frac{\int_{G_{+}}|\nabla_{G}f|^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi}{\int_{G_{+}}f^{2}|\xi^{(1)}|^{\alpha}{\rm d}\xi}\\&\leq&\frac{\int_{{\Bbb R}_{+}^{n_{1}}}\sum\limits^{n_{1}}_{j=1}\Big(\frac{\partial u}{\partial\xi^{(1)}_{j}}\Big)^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi^{(1)}}{\int_{{\Bbb R}_{+}^{n_{1}}}u^{2}|\xi^{(1)}|^{\alpha}{\rm d}\xi^{(1)}}+C_{G}\sum^{r}_{k=2}\sum^{n_{k}}_{s=1}\frac{\int_{G}u^{2}\left|p^{j}_{k,s}\frac{\partial g}{\partial\xi^{(k)}_{s}}\right|^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi}{\int_{G}f^{2}|\xi^{(1)}|^{\alpha}{\rm d}\xi},\end{eqnarray*}
其中${\Bbb R}_{+}^{n_{1}}=\{(\xi_{1},\cdots,\xi_{n_{1}})\in{\Bbb R}^{n_{1}}:\xi_{1}>0\}$.由于 $2\leq k\leq r$ 以及 $1\leq s\leq n_{l}$,我们有\[\inf_{w_{k,s}\in C^{\infty}_{0}({\Bbb R})\setminus\{0\}}\frac{\int_{{\Bbb R}}|w'_{k,s}|^{2}{\rm d}\xi^{(k)}_{s}}{\int_{{\Bbb R}}|w_{k,s}|^{2}{\rm d}\xi^{(k)}_{s}}=0.\]从而
\begin{eqnarray*}&&\inf_{w_{k,s}\in C^{\infty}_{0}({\Bbb R})\setminus \{0\}}\frac{\int_{G_{+}}u^{2}\left|p^{j}_{k,s}\frac{\partial g}{\partial\xi^{(k)}_{s}}\right|^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi}{\int_{G_{+}}f^{2}|\xi^{(1)}|^{\alpha}{\rm d}\xi}\\&=&\frac{\int_{{\Bbb R}_{+}^{n_{1}}\times{\Bbb R}^{n_{2}+\cdots+n_{k-1}}}u^{2}|p^{j}_{k,s}|^{2}\prod\limits^{k-1}_{l=1}\prod\limits^{n_{l}}_{i=1}w^{2}_{l,i}|\xi^{(1)}|^{\alpha+2}}{\int_{{\Bbb R}_{+}^{n_{1}}\times{\Bbb R}^{n_{2}+\cdots+n_{k-1}}}u^{2}\prod\limits^{k-1}_{l=1}\prod\limits^{n_{l}}_{i=1}w^{2}_{l,i}|\xi^{(1)}|^{\alpha}}\cdot\inf_{w_{k,s}\in C^{\infty}_{0}({\Bbb R})\setminus \{0\}}\frac{\int_{{\Bbb R}}|w'_{k,s}|^{2}{\rm d}\xi^{(k)}_{s}}{\int_{{\Bbb R}}|w_{k,s}|^{2}{\rm d}\xi^{(k)}_{s}}\\&=& 0.\end{eqnarray*}
再利用引理2,有
\begin{eqnarray*}\inf_{\phi\in C^{\infty}_{0}(G_{+})\setminus\{0\}}\frac{\int_{G_{+}}|\nabla_{G}\phi|^{p}|\xi^{(1)}|^{\alpha+2}}{\int_{G_{+}}|\phi|^{p}|\xi^{(1)}|^{\alpha}}&\leq &\inf_{u\in C^{\infty}_{0}({\Bbb R}_{+}^{n_{1}})\setminus\{0\}}\frac{\int_{{\Bbb R}_{+}^{n_{1}}}\sum\limits^{n_{1}}_{j=1}\Big(\frac{\partial u}{\partial\xi^{(1)}_{j}}\Big)^{2}|\xi^{(1)}|^{\alpha+2}{\rm d}\xi^{(1)}}{\int_{{\Bbb R}_{+}^{n_{1}}}u^{2}|\xi^{(1)}|^{\alpha}{\rm d}\xi^{(1)}}\\&=& \left(\frac{(n_{1}+2+\alpha)^{2}}{4}-\alpha-2\right).\end{eqnarray*}定理1证毕.