数学物理学报  2016, Vol. 36 Issue (3): 433-440   PDF (285 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王朝君
崔艳艳
刘浩
Roper-Suffridge延拓算子与Loewner链
王朝君1 , 崔艳艳1, 刘浩2    
1 周口师范学院数学与统计学院 河南 周口 466001;
2 河南大学数学与信息科学学院 开封 475001
摘要: 主要讨论一类推广的Roper-Suffridge算子在一定条件下能够嵌入Loewner链,并从α次殆β型螺形映照的解析特征出发证明推广的Roper-Suffridge算子在一类有界完全Reinhardt域上保持α次殆β型螺形性. 所得结果推广了已有的结论.
关键词: Roper-Suffridge算子     α次殆β型螺形映照     Loewner链    
Generalized Roper-Suffridge Extension Operators and Loewner Chains
Wang Chaojun1 , Cui Yanyan1, Liu Hao2    
1 College of Mathematics and Statistics, Zhoukou Normal University, Henan Zhoukou 466001;
2 College of Mathematics and Information Science, Henan University, Kaifeng 475001
Abstract: In this paper, we mainly seek conditions under which a kind of generalized Roper-Suffridge operators can be embedded in Loewner chains. Sequentially, by the analytical characteristics of almost spirallikeness of order α and type β, we discuss the generalized Roper-Suffridge operators preserve almost spirallikeness of order α and type β on a bounded and completely Reinhardt domain. The conclusions generalize the previous results.
Key words: Roper-Suffridge operators     Almost spirallike mappings of type β and order α     Loewner Chains    
1 引言

由于Roper-Suffridge算子的引入使得我们可以由单复变中具有特殊几何性质的双全纯函数构造多复变中相应的映照,因此许多人都致力于研究该算子[1, 2, 3]. 后来人们发现推广的Roper-Suffridge算子与Loewner链有着非常紧密的联系.Hamada和Kohr[4]利用Loewner链得到了复Banach空间单位球上$\beta$型螺形映照的解析特征. Graham,Hamada和Kohr[5, 6]证明了一些推广的Roper-Suffridge算子在${{\Bbb C}}^{n}$中单位球$B^n$上能够嵌入Loewner链,并得到了一些推广的Roper-Suffridge算子在$B^n$上保持星形性和$\beta$型螺形性. 刘太顺和徐庆华[7]得到了$\alpha$次殆星形映照的解析特征. 冯淑霞,刘小松和徐庆华[8]得到了$\alpha$次殆$\beta$型螺形映照的解析特征,并证明了一些推广的Roper-Suffridge算子能够嵌入Loewner链.

本文是在前人工作的基础上讨论一类推广的Roper-Suffridge算子与Loewner链的关系,从而讨论推广的Roper-Suffridge算子的性质.

在本文中$D$表示${\Bbb C}$中的单位圆盘,$X$表示具有范数$\|\cdot\|$的复Banach空间,$X^*$是$X$的对偶空间. 对于$x\in X\setminus\{0\}$,定义

$$T(x)=\{T_{x}\in X^*:\|T_{x}\|=1,T_{x}(x)=\|x\|\}. $$ $H(\Omega)$ 表示$\Omega$上的全纯映照. $Df(z)=(\frac{\partial f_{j}}{\partial z_{k}})_{1\leq j,k\leq n}$表示$f(z)\in H(\Omega)$的Fréchet导数. $B$表示复Banach空间中的单位球. 令 $$P=\{p\in H(D):p(0)=1,\Re ep(z)>0,z\in D\}, $$ $$M=\{h\in H(B): h(0)=0,Dh(0)=I,\Re e[T_{z}h(z)]\geq 0,z\in B,T_{z}\in T(z)\}. $$
2 定义及引理

定义 2.1 (Poreda[9]) 令$\{f(z,t)\}_{t\geq 0}={\rm e}^t z+\cdots:B\times[0,+\infty)\rightarrow X$,$h(z,t):B\times[0,+\infty)\rightarrow X$. 如果

(1) 对于$\forall t\geq 0$,有$f(\cdot,t)\in H(B)$且$h(\cdot,t)\in M$;

(2) 对于$\forall z\in B$,$f(z,\cdot)$在$[0,+\infty)$上绝对连续,$h(z,\cdot)$在$[0,+\infty)$上可测且对于$z\in B$有

$$\frac{\partial}{\partial t}f(z,t)=Df(z,t)h(z,t),\ \ {\rm a.e.}\ t\geq 0, $$ 并且存在$G\in H(B)$和一个非负递增趋于$+\infty$的序列$\{t_{m}\}$使得$\lim\limits_{m\rightarrow+\infty}{\rm e}^{-t_{m}}f(z,t_{m})=G(z)$在$B$上局部一致地成立.

则$f(z,t)$是一个Loewner链.

引理 2.2 (Pommerenke[10]) 函数族$\{f(z,t)\}_{t\geq 0}$满足$f(0,t)=0,f'(0,t)={\rm e}^t$. 则$f(z,t)$是一个Loewner链当且仅当

(1) 对于$\forall t\geq 0$,$f(z,t)={\rm e}^t z+\cdots$在$\{z:|z|< r(r\in(0,1))\}$上全纯; 对于$\forall z(|z|< r)$,$f(z,\cdot)$在$[0,+\infty)$上绝对连续; 对于$\forall r\in (0,1)$,存在$M(r)>0$使得$|f(z,t)|\leq M(r){\rm e}^t$ $(t\geq0,|z|\leq r)$;

(2) 存在$p(z,t)\in H(D)$使得$p(\cdot,t)\in P$,$p(z,\cdot)$在$[0,+\infty)$上是可测的,且

$$\frac{\partial}{\partial t}f(z,t)=zf'(z,t)p(z,t),{\rm a.e.}\ t\geq 0. $$

引理 2.3 (Graham,Kohr[11]) 令$p(z)\in P$,则

$$\frac{1-|z|}{1+|z|}\leq|p(z)|\leq\frac{1+|z|}{1-|z|},\frac{1-|z|}{1+|z|}\leq \Re ep(z)\leq\frac{1+|z|}{1-|z|},|p'(z)|\leq\frac{2\Re ep(z)}{1-|z|^2}. $$

引理 2.4 (Liu,Zhu[12]) 令

$$\Omega=\Omega_{p_{1},p_{2},\cdots,p_{n}}=\bigg\{z\in {{\Bbb C}}^{n}:\sum^{n}_{j=1}|z_{j}|^{p_{j}}<1,p_{j}\geq1\bigg\}, $$ 其Minkowski泛函是$\rho(z)$. 如果$\rho(z)$在$\Omega\setminus\{0\}$上可微,则$T_{z}(\cdot)=2\langle\cdot,\overline{\frac{\partial\rho(z)}{\partial z}}\rangle$,其中$\frac{\partial\rho(z)}{\partial z}=(\frac{\partial\rho(z)}{\partial z_{1}},\frac{\partial\rho(z)}{\partial z_{2}},\cdots,\frac{\partial\rho(z)}{\partial z_{n}})$.

引理 2.5 (Liu,Zhu[12]) 令$\Omega\in {{\Bbb C}}^{n}$是一个有界完全Reinhardt域,其Minkowski泛函$\rho(z)$在除去一个低微流行外是$C^1$的. 则

$$\frac{\partial\rho(z)}{\partial z_{j}}z_{j}\geq 0,\rho(z)=2\sum^{n}_{j=1}\frac{\partial\rho(z)}{\partial z_{j}}z_{j}. $$

引理 2.6 (Muir[13]) 令$f(z)$是$D$上的一个正规化双全纯函数. 则

$$\left|\frac{1-|z|^2}{\alpha}\frac{f"(z)}{f'(z)}-\bar{z}\right|\leq\frac{4+(\alpha-2)|z|}{\alpha},z\in D, $$ 其中$\alpha\geq 2$.

{引理 2.7 (Feng,Liu,Xu[8]) 令$f(z)$是$B$上的一个正规化局部双全纯函数,$\alpha\in[0,1),$ $\beta\in(-\frac{\pi}{2},\frac{\pi}{2})$,$a=\tan\beta$. 则$f(z)$是$B$上的$\alpha$次殆$\beta$型螺形映照的充要条件是$g(z,t)={\rm e}^{\frac{1-{\rm i}a}{1-\alpha}t}f({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}z)\ (t\geq0)$是一个Loewner链.

3 主要结论及其证明

定理3.1

$$\Omega=\Omega_{p_{1},p_{2},\cdots,p_{n}}=\bigg\{z\in {{\Bbb C}}^{n}:\sum^n_{j=1}|z_{j}|^{p_{j}}<1,p_{j}\geq 1\bigg\}, $$ 其Minkowski泛函为$\rho(z)$. 令 $$F(z)=\left(rf\Big(\frac{z_{1}}{r}\Big),\Big(\frac{rf(\frac{z_{1}}{r})}{z_{1}}\Big)^{\beta_{2}}\Big(f'\Big(\frac{z_{1}}{r}\Big)\Big)^{\gamma_{2}}z_{2},\cdots,\Big(\frac{rf(\frac{z_{1}}{r})}{z_{1}}\Big)^{\beta_{n}}\Big(f'\Big(\frac{z_{1}}{r}\Big)\Big)^{\gamma_{n}}z_{n}\right)', $$ 其中$f$是$D$上正规化的双全纯函数,$r=\sup\{|z_{1}|:z=(z_{1},\cdots,z_{n})\in\Omega\}\ (n\geq2,n\in{\Bbb Z}^+)$,$\beta_{j},\gamma_{j}\in[0, 1]$,$\beta_{j}+\gamma_{j}\leq1$. 幂函数取分支使得 $$\Big(\frac{rf(\frac{z_{1}}{r})}{z_{1}}\Big)^{\beta_{j}}\Big|_{z_{1}=0}=1,\Big(f'\Big(\frac{z_{1}}{r}\Big)\Big)^{\gamma_{j}}\Big|_{z_{1}=0}=1. $$ 如果$r\leq\frac{1}{2}$,$\beta_{j}+M\gamma_{j}\leq1(M=\max\{M_{1},M_{2}\})$,其中 $$M_{1}=\sup_{0\leq|z_{1}|\leq(-1+\sqrt{2})r}\bigg\{\frac{r^2-|z_{1}|^2-2r|z_{1}|}{r(r+|z_{1}|)^2}-\frac{(1-r)(4r^2+2(1-r)|z_{1}|)|z_{1}|}{r^2(r-|z_{1}|)^2}\bigg\}, $$ $$M_{2}=\sup_{(-1+\sqrt{2})r<|z_{1}|< r}\frac{(3r-2r^2-2)|z_{1}|^2+2r^2(2r-3)|z_{1}|+r^3}{r^2(r-|z_{1}|)^2}, $$ 则$F(z)$在$\Omega$上能嵌入loewner链.

由于$f$是一个正规化的双全纯函数,则存在一个Loewner链$\{g(\frac{z_{1}}{r},t)\}_{t\geq 0}$使得$f(\frac{z_{1}}{r})=g(\frac{z_{1}}{r},0)$. 令

$$\begin{array}[b]{rl}F_{\psi}(z,t)&=\Big(rg\Big(\frac{z_{1}}{r},t\Big),{\rm e}^{(1-\beta_{2}-\gamma_{2})t}\Big(\frac{rg(\frac{z_{1}}{r},t)}{z_{1}}\Big)^{\beta_{2}}\Big(g'\Big(\frac{z_{1}}{r},t\Big)\Big)^{\gamma_{2}}z_{2},\cdots\\ [4mm]& {\rm e}^{(1-\beta_{n}-\gamma_{n})t}\Big(\frac{rg(\frac{z_{1}}{r},t)}{z_{1}}\Big)^{\beta_{n}}\Big(g'\Big(\frac{z_{1}}{r},t\Big)\Big)^{\gamma_{n}}z_{n}\Big)',\end{array} $$其中$z=(z_{1},\cdots,z_{n})\in\Omega,t\geq 0$. 由引理2.2,我们有以下结论.

(ⅰ) 对于$\forall\frac{z_{1}}{r}\in D_{r'}(D_{r'}=\{z_{1}\in C:|\frac{z_{1}}{r}|< r'\})$,$g(\frac{z_{1}}{r},\cdot)$在$[0,+\infty)$上是局部绝对连续的. 而且,对于$\forall r\in(0,1)$,存在$M(r')$使得

$$\Big|g\Big(\frac{z_{1}}{r},t\Big)\Big|\leq M(r'){\rm e}^t,\ \ t\geq 0. $$

(ⅱ) 存在$D$上的全纯函数$p(\frac{z_{1}}{r},t)$使得$p(\cdot,t)\in P$,$p(\frac{z_{1}}{r},\cdot)$在$[0,+\infty)$上是可测的,且

$$\frac{\partial}{\partial t}g\Big(\frac{z_{1}}{r},t\Big)=\frac{z_{1}}{r}g'\Big(\frac{z_{1}}{r},t\Big)p\Big(\frac{z_{1}}{r},t\Big). $$

显然$F_{\psi}(z,t)$在$\Omega$上全纯且在$[0,+\infty)$上局部绝对连续. 经简单计算可知$F_{\psi}(0,t)=0,$ $DF_{\psi}(0,t)={\rm e}^tI$,且

\begin{eqnarray*}\frac{\partial F_{\psi}}{\partial t}(z,t)&=&\Big(z_{1}g'\Big(\frac{z_{1}}{r},t\Big)p\Big(\frac{z_{1}}{r},t\Big),\\&& {\rm e}^{(1-\beta_{2}-\gamma_{2})t}\Big(\frac{rg}{z_{1}}\Big)^{\beta_{2}}(g')^{\gamma_{2}}z_{2} \Big[(1-\beta_{2}-\gamma_{2})+\beta_{2}\frac{z_{1}}{rg}g'p+\gamma_{2}\frac{1}{g'}\frac{\partial g'}{\partial t}\Big],\cdots,\\ && {\rm e}^{(1-\beta_{n}-\gamma_{n})t}\Big(\frac{rg}{z_{1}}\Big)^{\beta_{n}}(g')^{\gamma_{n}}z_{n}\Big[(1-\beta_{n}-\gamma_{n})+\beta_{n}\frac{z_{1}}{rg}g'p+\gamma_{n}\frac{1}{g'}\frac{\partial g'}{\partial t}\Big]\Big)',\end{eqnarray*} $$D F_{\psi}(z,t)= \left( \begin{array}{cccc} g'\Big(\frac{z_{1}}{r},t\Big) &0 &\cdots &~0\\ v_{2} & ~ {\rm e}^{(1-\beta_{2}-\gamma_{2})t}\Big(\frac{r g}{z_{1}}\Big)^{\beta_{2}}(g')^{\gamma_{2}} ~ &\cdots &~0\\ \cdots &\cdots &\cdots &~\cdots\\ v_{n} &0 &\cdots &~ {\rm e}^{(1-\beta_{n}-\gamma_{n})t}\Big(\frac{r g}{z_{1}}\Big)^{\beta_{n}}(g')^{\gamma_{n}} \end{array} \right), $$ 其中 $$v_{k}={\rm e}^{(1-\beta_{k}-\gamma_{k})t}\Big(\frac{rg}{z_{1}}\Big)^{\beta_{k}}(g')^{\gamma_{k}}z_{k}\Big[\beta_{k}\frac{z_{1}g'-rg}{rgz_{1}}+\frac{\gamma_{k}g"}{rg'}\Big],k=2,\cdots,n. $$ 于是 $$(D F_{\psi}(z,t))^{-1}= \left( \begin{array}{cccc} \frac{1}{g'(\frac{z_{1}}{r},t)} &0 &\cdots &~0\\ w_{2} & ~ {\rm e}^{(\beta_{2}+\gamma_{2}-1)t} \Big(\frac{r g}{z_{1}}\Big)^{-\beta_{2}}(g')^{-\gamma_{2}} ~ &\cdots &~0\\ \cdots &\cdots &\cdots &~\cdots\\ w_{n} &0 &\cdots & ~ {\rm e}^{(\beta_{n}+\gamma_{n}-1)t} \Big(\frac{r g}{z_{1}}\Big)^{-\beta_{n}}(g')^{-\gamma_{n}} \end{array} \right), $$ 其中 $$w_{k}=-\frac{z_{k}}{rg'}\Big[\beta_{k}\frac{z_{1}g'-rg}{gz_{1}}+\frac{\gamma_{k}g"}{g'}\Big],k=2,\cdots,n. $$ 由于 $$\frac{\partial g'}{\partial t}=\frac{1}{r^2}(rg'p+z_{1}g"p+z_{1}g'p'), $$ 则 $$(D F_{\psi}(z,t))^{-1}\frac{\partial F_{\psi}}{\partial t}(z,t)=\left(z_{1}p\Big(\frac{z_{1}}{r},t\Big),A_{2}z_{2},\cdots,A_{n}z_{n}\right)', $$ 其中 $$A_{k}=\beta_{k}p+(1-\beta_{k}-\gamma_{k})+\frac{\gamma_{k}}{r}p+\frac{1-r}{r^2}\gamma_{k}\frac{g"}{g'}z_{1}p+\frac{\gamma_{2}}{r^2}z_{1}p',k=2,\cdots,n. $$ 令
$h(z,t)=\left(z_{1}p\Big(\frac{z_{1}}{r},t\Big),A_{2}z_{2},\cdots,A_{n}z_{n}\right)'.$ (3.1)
显然$h(z,t)$在$\Omega$上全纯且$h(0,t)=0,Dh(0,t)=I$.又由引理2.3可得
$\Re e(z_{1}p')\geq-|z_{1}p'|\geq-|z_{1}|\frac{2r^2\Re ep}{r^2-|z_{1}|^2}.$ (3.2)
由(3.1),(3.2)式和引理2.4,2.5,有
\begin{eqnarray} & &\Re e\bigg\{\Big\langle h(z,t),\overline{\frac{\partial \rho(z)}{\partial z}}\Big\rangle\bigg\} \\ &=&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\Re eplaystyle\sum^{n}_{j=2}\Big(\beta_{j}+\frac{\gamma_{j}}{r}\Big)\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\sum^{n}_{j=2}(1-\beta_{j}-\gamma_{j})\frac{\partial \rho(z)}{\partial z_{j}}z_{j} \\&&+laystyle\frac{1-r}{r^2}\Re e\Big[\frac{g"}{g'}z_{1}p\Big]laystyle\sum^{n}_{j=2}\gamma_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\frac{\Re e(z_{1}p')}{r^2}\sum^{n}_{j=2}\gamma_{j}\frac{\partial\rho(z)}{\partial z_{j}}z_{j} \\ &\geq&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\Re ep laystyle\sum^{n}_{j=2}\Big(\beta_{j}+\frac{\gamma_{j}}{r}\Big)\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\sum^{n}_{j=2}(1-\beta_{j}-\gamma_{j})\frac{\partial \rho(z)}{\partial z_{j}}z_{j} \\&&+laystyle\frac{1-r}{r^2}\Re e\Big[\frac{g"}{g'}z_{1}p\Big] laystyle\sum^{n}_{j=2}\gamma_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}-\frac{2|z_{1}|\Re ep}{r^2-|z_{1}|^2}laystyle\sum^{n}_{j=2}\gamma_{j}\frac{\partial\rho(z)}{\partial z_{j}}z_{j} \\ &=&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\Re ep laystyle\sum^{n}_{j=2}\beta_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\Big[\frac{1}{r}-\frac{2|z_{1}|}{r^2-|z_{1}|^2}\Big]\Re ep\sum^{n}_{j=2}\gamma_{j}\frac{\partial\rho(z)}{\partial z_{j}}z_{j} \\&&+laystyle\sum^{n}_{j=2}(1-\beta_{j}-\gamma_{j})\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\frac{1-r}{r^2}\Re e\Big[\frac{g"}{g'}z_{1}p\Big]\sum^{n}_{j=2}\gamma_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}.\end{eqnarray} (3.3)
由引理2.3和2.6,我们有
\begin{eqnarray} \Re e\Big[laystyle\frac{g"}{g'}z_{1}p\Big]&\geq&-\Big|laystyle\frac{g"}{g'}z_{1}p\Big| \\ &=&-\Big|\Big[\Big(laystyle\frac{r^2-|z_{1}|^2}{r}\frac{g"}{g'}-\frac{\overline{z_{1}}}{r}\Big)+\frac{\overline{z_{1}}}{r}\Big]\frac{r}{r^2-|z_{1}|^2}z_{1}p\Big| \\ &\geq&-\Big[\Big|laystyle\frac{r^2-|z_{1}|^2}{r}\frac{g"}{g'}-\frac{\overline{z_{1}}}{r}\Big|+\frac{|z_{1}|}{r}\Big]\frac{r}{r^2-|z_{1}|^2}|z_{1}p| \\ &\geq&-\Big[laystyle\frac{4r^2+(1-2r)|z_{1}|}{r}+\frac{|z_{1}|}{r}\Big]\frac{r}{r^2-|z_{1}|^2}|z_{1}p| \\ &=&-laystyle\frac{4r^2+2(1-r)|z_{1}|}{r^2-|z_{1}|^2}|z_{1}||p| \\ &\geq&-laystyle\frac{(4r^2+2(1-r)|z_{1}|)|z_{1}|}{(r-|z_{1}|)^2}.\end{eqnarray} (3.4)

(1) 当$0\leq|z_{1}|\leq(-1+\sqrt{2})r$时,由(3.3),(3.4)式和引理2.3有

\begin{eqnarray*}& &\Re e\bigg\{\Big\langle h(z,t),\overline{laystyle\frac{\partial \rho(z)}{\partial z}}\Big\rangle\bigg\}\\ &\geq&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\Re ep\sum^{n}_{j=2}\beta_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\frac{r^2-|z_{1}|^2-2r|z_{1}|}{r(r+|z_{1}|)^2}\sum^{n}_{j=2}\gamma_{j}\frac{\partial\rho(z)}{\partial z_{j}}z_{j}\\ &&+laystyle\sum^{n}_{j=2}(1-\beta_{j}-\gamma_{j})\frac{\partial \rho(z)}{\partial z_{j}}z_{j}-\frac{1-r}{r^2}\frac{(4r^2+2(1-r)|z_{1}|)|z_{1}|}{(r-|z_{1}|)^2}\sum^{n}_{j=2}\gamma_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &\geq&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\sum^{n}_{j=2}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\Big[\frac{r-|z_{1}|}{r+|z_{1}|}-1\Big] \sum^{n}_{j=2}\beta_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &&+\Big[laystyle\frac{r^2-|z_{1}|^2-2r|z_{1}|}{r(r+|z_{1}|)^2}-\frac{(1-r)(4r^2+2(1-r)|z_{1}|)|z_{1}|}{r^2(r-|z_{1}|)^2}\Big]\sum^{n}_{j=2}\gamma_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &=&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\sum^{n}_{j=2} \bigg\{1-\frac{2|z_{1}|}{r+|z_{1}|}\beta_{j}\\ [4mm]&&-\Big[laystyle\frac{r^2-|z_{1}|^2-2r|z_{1}|}{r(r+|z_{1}|)^2}-\frac{(1-r)(4r^2+2(1-r)|z_{1}|)|z_{1}|}{r^2(r-|z_{1}|)^2}\Big]\gamma_{j}\bigg\}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &\geq&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\sum^{n}_{j=2}(1-\beta_{j}-M_{1}\gamma_{j})\frac{\partial\rho(z)}{\partial z_{j}}z_{j} \geq 0,\end{eqnarray*} 其中$\beta_{j}+M_{1}\gamma_{j}\leq 1~ (j=2,\cdots,n)$和 $$M_{1}=\sup_{0\leq|z_{1}|\leq(-1+\sqrt{2})r}\bigg\{\frac{r^2-|z_{1}|^2-2r|z_{1}|}{r(r+|z_{1}|)^2}-\frac{(1-r)(4r^2+2(1-r)|z_{1}|)|z_{1}|}{r^2(r-|z_{1}|)^2}\bigg\}. $$

(2) 当$(-1+\sqrt{2})r<|z_{1}|< r$时,由(3.3),(3.4)式和引理2.3得

\begin{eqnarray*} & &\Re e\bigg\{\Big\langle h(z,t),\overline{laystyle\frac{\partial \rho(z)}{\partial z}}\Big\rangle\bigg\}\\ &\geq&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\Re ep\sum^{n}_{j=2}\beta_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\frac{r^2-|z_{1}|^2-2r|z_{1}|}{r(r-|z_{1}|)^2}\sum^{n}_{j=2}\gamma_{j}\frac{\partial\rho(z)}{\partial z_{j}}z_{j}\\ &&+laystyle\sum^{n}_{j=2}(1-\beta_{j}-\gamma_{j})\frac{\partial \rho(z)}{\partial z_{j}}z_{j}-\frac{1-r}{r^2}\frac{(4r^2+2(1-r)|z_{1}|)|z_{1}|}{(r-|z_{1}|)^2}\sum^{n}_{j=2}\gamma_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &\geq&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\sum^{n}_{j=2}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}+\Big[\frac{r-|z_{1}|}{r+|z_{1}|}-1\Big]\sum^{n}_{j=2}\beta_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &&+laystyle\frac{(3r-2r^2-2)|z_{1}|^2+2r^2(2r-3)|z_{1}|+r^3}{r^2(r-|z_{1}|)^2}\sum^{n}_{j=2}\gamma_{j}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &=&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\sum^{n}_{j=2} \bigg\{1-\frac{2|z_{1}|}{r+|z_{1}|}\beta_{j} \\&&-laystyle\frac{(3r-2r^2-2)|z_{1}|^2+2r^2(2r-3)|z_{1}|+r^3}{r^2(r-|z_{1}|)^2}\gamma_{j}\bigg\}\frac{\partial \rho(z)}{\partial z_{j}}z_{j}\\ &\geq&laystyle\frac{\partial \rho(z)}{\partial z_{1}}z_{1}\Re ep+\sum^{n}_{j=2}(1-\beta_{j}-M_{2}\gamma_{j})\frac{\partial\rho(z)}{\partial z_{j}}z_{j} \geq 0,\end{eqnarray*} 其中$\beta_{j}+M_{2}\gamma_{j}\leq 1~(j=2,\cdots,n)$,且 $$M_{2}=\sup_{(-1+\sqrt{2})r<|z_{1}|< r}\frac{(3r-2r^2-2)|z_{1}|^2+2r^2(2r-3)|z_{1}|+r^3}{r^2(r-|z_{1}|)^2}. $$

对于$z_{1}< r$,当$\beta_{j}+M\gamma_{j}\leq 1~(M=\max\{M_{1},M_{2}\})$时,(1)和(2)表明

$$\Re e\bigg\{\Big\langle h(z,t),\overline{\frac{\partial \rho(z)}{\partial z}}\Big\rangle\bigg\}\geq 0. $$ 因此$h(z,t)\in M(z\in\Omega)$.

由于${\rm e}^{-t}g(\frac{z_{1}}{r},t)(t\geq 0)$在$D$上局部一致有界,则存在一个非负递增趋于$+\infty$的序列$\{t_{m}\}$ 使得

$$\lim_{m\rightarrow+\infty}{\rm e}^{-t_{m}}g\Big(\frac{z_{1}}{r},t_{m}\Big)=f\Big(\frac{z_{1}}{r}\Big) $$ 在$D$上局部一致地成立. 而且,显然$h(z,t)$是可测的. 因此 \begin{eqnarray*}&&laystyle\lim_{m\rightarrow+\infty}{\rm e}^{-t_{m}}F_{\psi}(z,t_{m})\\ &=&\Big(r{\rm e}^{-t_{m}}g\Big(laystyle\frac{z_{1}}{r},t_{m}\Big),\Big({\rm e}^{-t_{m}}\frac{rg(\frac{z_{1}}{r},t_{m})}{z_{1}}\Big)^{\beta_{2}}\Big({\rm e}^{-t_{m}}g'\Big(\frac{z_{1}}{r},t_{m}\Big)\Big)^{\gamma_{2}}z_{2},\cdots\\ &&\Big({\rm e}^{-t_{m}}\frac{rg(\frac{z_{1}}{r},t_{m})}{z_{1}}\Big)^{\beta_{n}}\Big({\rm e}^{-t_{m}}g'\Big(laystyle\frac{z_{1}}{r},t_{m}\Big)\Big)^{\gamma_{n}}z_{n}\Big)'\\ &=&\Big(rf\Big(laystyle\frac{z_{1}}{r}\Big),\Big(\frac{rf(\frac{z_{1}}{r})}{z_{1}}\Big)^{\beta_{2}}\Big(f'\Big(\frac{z_{1}}{r}\Big)\Big)^{\gamma_{2}}z_{2},\cdots,\Big(\frac{rf(laystyle\frac{z_{1}}{r})}{z_{1}}\Big)^{\beta_{n}}\Big(f'\Big(laystyle\frac{z_{1}}{r}\Big)\Big)^{\gamma_{n}}z_{n}\Big)\\ &=&F(z).\end{eqnarray*} 由定义2.1知$F_{\psi}(z,t)$是一个Loewner链. 令$F_{\psi}(z)=F_{\psi}(z,0)$. 则$F_{\psi}(z)=F(z)$. 故$F(z)$在$\Omega$上能够嵌入Loewner链.

注3.2 在定理3.1中分别令$\beta_{j}=0$和$\gamma_{j}=0$,则可以得到相应的结论. 若$\gamma_{j}=0$,则得到文献[14]中的部分结论.

定理3.3 若$f$是$D$上的$\alpha$次殆$\beta$型螺形函数,$\alpha\in[0,1),\beta\in(-\frac{\pi}{2},\frac{\pi}{2})$且$a=\tan\beta$. $F(z)$和$\Omega$为定理3.1中所定义,$\beta_{j}$,$\gamma_{j}$及$r$满足定理3.1中的条件,则$F(z)$是$\Omega$上的$\alpha$次殆$\beta$型螺形映照.

由于$f$是$D$上的$\alpha$次殆$\beta$型螺形函数,由引理2.7可得

\begin{equation}g\Big(\frac{z_{1}}{r},t\Big)={\rm e}^{\frac{1-{\rm i}a}{1-\alpha}t}f\Big({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}\frac{z_{1}}{r}\Big)\end{equation} (3.5)
是一个Loewner链.由定理3.1得
\begin{eqnarray}F_{\psi}(z,t)&=&\Big(rg\Big(laystyle\frac{z_{1}}{r},t\Big),{\rm e}^{(1-\beta_{2}-\gamma_{2})t}\Big(\frac{rg(\frac{z_{1}}{r},t)}{z_{1}}\Big)^{\beta_{2}}\Big(g'\Big(\frac{z_{1}}{r},t\Big)\Big)^{\gamma_{2}}z_{2},\cdots\\&&{\rm e}^{(1-\beta_{n}-\gamma_{n})t}\Big(\frac{rg(\frac{z_{1}}{r},t)}{z_{1}}\Big)^{\beta_{n}}\Big(g'\Big(laystyle\frac{z_{1}}{r},t\Big)\Big)^{\gamma_{n}}z_{n}\Big)'\end{eqnarray} (3.6)
是一个Loewner链. 由(3.5),(3.6)式及$F_{\psi}(z)=F(z)$得 \begin{eqnarray*}F_{\psi}(z,t)&=&{\rm e}^{\frac{1-{\rm i}a}{1-\alpha}t}\Big(rf\Big({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}laystyle\frac{z_{1}}{r}\Big),\Big(\frac{rf({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}\frac{z_{1}}{r})}{{\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}z_{1}}\Big)^{\beta_{2}}\Big(f'\Big({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}\frac{z_{1}}{r}\Big)\Big)^{\gamma_{2}}{\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}z_{2},\cdots\\ &&\Big(\frac{rf({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}\frac{z_{1}}{r})}{{\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}z_{1}}\Big)^{\beta_{n}}\Big(f'\Big({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}laystyle\frac{z_{1}}{r}\Big)\Big)^{\gamma_{n}}{\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}z_{n}\Big)'\\ &=&{\rm e}^{\frac{1-{\rm i}a}{1-\alpha}t}F\Big({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}z\Big)\\ &=&{\rm e}^{\frac{1-{\rm i}a}{1-\alpha}t}F_{\psi}\Big({\rm e}^{\frac{{\rm i}a-\alpha}{1-\alpha}t}z\Big).\end{eqnarray*} 由引理2.7知$F(z)$是$\Omega$上的$\alpha$次殆$\beta$型螺形映照.

注3.4 在定理3.3中分别令$\beta_{j}=0$及$\gamma_{j}=0$可得相应的结论. 当$\gamma_{j}=0$时,则得到文献[14]中的部分结论.在定理3.3中分别令$\alpha=0$和$\beta=0$,则得到关于$\beta$型螺形映照及$\alpha$次殆星形映照的相应结论.

参考文献
[1] Graham I, Kohr G. Univalent mappings associated with the Roper-Suffridge extension operator. J Analyse Math, 2000, 81(1):331-342
[2] Muir J R. A modification of the Roper-Suffridge extension operator. Comput Methods Funct Theory, 2005, 5(1):237-251
[3] Feng S X, Liu T S. The generalized Roper-Suffridge extension operator. Acta Math Sci, 2008, 28B:63-80
[4] Hamada H, Kohr G. Subordination chains and the growth theorem of spirallike mappings. Mathematica (Cluj), 2000, 42(65):153-161
[5] Kohr G. Using the method of Loewner chains to introduce some subclasses of biholomorphic mappings in Cn. Rev Roum Math Pures Appl, 2001, 46:743-760
[6] Graham I, Kohr G, Kohr M. Loewner chains and the Roper-Suffridge extension operator. J Math Anal Appl, 2000, 247:448-465
[7] Liu T S, Xu Q H. Loewner chains associated with the Roper-Suffridge extension operator. J Math Anal Appl, 2006, 322:107-120
[8] Feng S X, Liu X S, Xu Q H. Loewner chains and the generalized Roper-Suffridge extension operator. Acta Mathematica Scientia, 2009, 29A(6):1601-1612
[9] Poreda T. On the univalent subordination chains of holomorphic mappings in Banach spaces. Commentationes Math, 1989, 28:295-304
[10] Pommerenke C. Über die subordination analytischer Funktion. J Reine Angew Math, 1965, 218:159-173
[11] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York:Marcel Dekker, 2003
[12] Liu M S, Zhu Y C. The generalized Roper-Suffridge extension operator on bounded completiy Reinhardt domains. Science in China, 2007, 37(10):1193-1206
[13] Muir J R. A class of Loewner chain preserving extension operators. J Math Anal Appl, 2008, 337(2):862-879
[14] 崔艳艳, 王朝君. Reinhardt域上推广的Roper-Suffridge算子与Lowner链. 中北大学学报(自然科学版), 2014, 35(4):376-393 Cui Y Y, Wang C J. The generalized Roper-Suffridge extension operator on Reinhardt domains and Lowner chains. J North Univ China (Natural Science Edition), 2014, 35(4):376-393