数学物理学报  2016, Vol. 36 Issue (2): 317-327   PDF (366 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
魏含玉
夏铁成
广义Broer-Kaup-Kupershmidt孤子方程的拟周期解
魏含玉1 , 夏铁成2    
1. 周口师范学院数学与统计学院 河南周口 466001;
2. 上海大学数学系 上海 200444
摘要: 该文从新谱问题出发,得到一个新的(2+1)-维广义Broer-Kaup-Kupershmidt孤子方程在Lax对非线性化下被分解成可积的常微分方程.接着,给出了一个有限维Hamilton系统并且证明在Liouville意义下是完全可积的.通过引进Abel-Jacobi坐标把Hamilton流进行了拉直,借助Riemann θ函数得到了(2+1)-维Broer-Kaup-Kupershmidt孤子方程的拟周期解.
关键词: 非线性化     Abel-Jacobi坐标     Riemann θ函数     拟周期解    
Quasi-Periodic Solution of the Generalized Broer-Kaup-Kupershmidt Soliton Equation
Wei Hanyu1, Xia Tiecheng2     
1 College of Mathematics and Statistics, Zhoukou Normal University, Henan Zhoukou 466001;
2 Department of Mathematics, Shanghai University, Shanghai 200444
Foundation Item: Supported by the NSFC (11271008, 61072147, 11547175, 11447220), the First-class Discipline of University in Shanghai, the Science and Technology Department of Henan Province (152300410230), the Key Scientific Research Projects of Henan Province (16A110026) and the Doctoral Research Fundation of Zhoukou Normal University (ZKNU2014130)
Abstract: In this paper, starting from a new spectral problem, a new (2+1)-dimensional generalized Broer-Kaup-Kupershmidt soliton equation is decomposed into systems of integrable ordinary differential equations resorting to the nonlinearization of Lax pairs. Then, a finite-dimensional Hamiltonian system is obtained and is proved to be completely integrable in Liouville sense. The Abel-Jacobi coordinates are constructed to straighten out the Hamiltonian flows, from which the quasi-periodic solution of the (2+1)-dimensional generalized Broer-Kaup-Kupershmidt soliton equation is obtained in terms of Riemann theta functions.
Key words: Nonlinearization     Abel-Jacobi coordinates     Riemann theta function     Quasi-periodic solution    
1 引言

孤子方程是一种描述自然界中发生的非线性现象重要模型,在物理学的各个领域都有广泛应用,比如: 等离子物理、磁流体等. 研究孤子方程的精确解不仅有利于了解方程的本质属性和代数结构,而且有助于对它们所反映的现实自然现象进行分析和研究. 目前在孤子理论中已经有一批行之有效求精确解的方法,如反散射方法[1, 2]、代数几何方法[3, 4, 5]、Hirota双线性方法[6, 7, 8]、Lax对非线性化方法[9, 10, 11, 12, 13],以及其它一些方法[14, 15, 16, 17].其中Lax对非线性化方法是研究$(1+1)$ -维和$(2+1)$ -维孤子方程的有效工具,它将$(1+1)$-维孤子方程分离成相容的常微分方程,可以证明是Liouville意义下的有限维完全可积系. $(2+1)$-维孤子方程可以采用相似的方法分离成$(1+1)$ -维孤子方程,然后再分离成相容的常微分方程.

本文我们将构造$(2+1)$ -维广义Broer-Kaup-Kupershmidt孤子方程的拟周期解. 主要内容安排如下: 在第二节,$(2+1)$-维广义Broer-Kaup-Kupershmidt孤子方程分离成两个相容的$(1+1)$ -维孤子方程; 在第三节,在特征函数与位势之间的Bargmann约束下,谱问题被非线性化,并证明了原谱问题对应的Hamilton守恒积分的对合性; 在第四节,借助于椭圆坐标和拟Abel-Jacobi坐标,证明了此有限维Hamilton系统的完全可积性; 在第五节,通过Abel-Jacobi坐标反演,利用Riemann $\theta$函数得到了孤子方程的拟周期解.

2 Lenard序列与孤子族

考虑新谱问题如下

\begin{eqnarray}\phi_{x}=U\phi,U= \left(\begin{array}{cc}\lambda+u ~~&v+\beta u\\ 1~~&- \lambda-u\end{array}\right),\phi=\left(\begin{array}{l} p\\ q \end{array} \right),\end{eqnarray} (2.1)
其中$\lambda$是谱参数,$u,v$是位势,$\beta$ 是常数. 定义线性映射 $\sigma_{\lambda}:{\Bbb C}^{3}\mapsto sl(2,{\Bbb C})$
\begin{equation} \sigma_{\lambda}(\alpha)=\left( \begin{array}{cc} \alpha_1+\lambda\alpha_3 ~~&\alpha_2+\beta\alpha_1\\ \alpha_3~~&-\alpha_1-\lambda\alpha_3\end{array} \right),~~\alpha\in {\Bbb C}^{3}. \end{equation} (2.2)

设$V=\sigma_{\lambda}\ (G),G\in {\Bbb C}^{3}$,直接计算给出

\begin{eqnarray} V_{x}-[U,V]=\sigma_{\lambda}\{(K-\lambda J)G\} ,\end{eqnarray} (2.3)
其中$K,J$是Lenard算子
\begin{equation} K=\left( \begin{array}{ccc} \partial+\beta&1&-(v+\beta u)\\ 2v-\beta^{2}&~~\partial-\beta-2u~~&\beta(v+\beta u)\\ -2&0&\partial+2u\end{array}\right),~~J=\left(\begin{array}{ccc}-2&0&2u\\4\beta&~~2~~&-2(v+2\beta u)\\ 0&0&0\end{array} \right),\end{equation} (2.4)
这里$\partial=\partial/\partial x$. 令$G=\sum\limits_{m=0}^{\infty}\lambda^{-m}g_{m-1}$,$g_m=(g_m^{1},g_m^{2},g_m^{3})^{T}\in {\Bbb C}^{3}$,可得下面的命题.

命题2.1 令 $V=\sigma_{\lambda}\ (G)$,则$V_x-[U,V]=0$ 的充分必要条件是 $Kg_m=Jg_{m+1},Jg_{-1}=0,$ $ m=-1,0,1,\cdots .$

Lenard序列$g_m$和广义Broer-Kaup-Kupershmidt向量场$X_m$的递归关系定义如下

\begin{eqnarray} \begin{array}{l} Kg_m=Jg_{m+1},Jg_{-1}=0,\\ X_m=PJg_m=PKg_{m-1},m=0,1,2,\cdots,\end{array}\end{eqnarray} (2.5)
其中投射 $P$: $\gamma=(\gamma_1,\gamma_2,\gamma_3)^{T}\mapsto(\gamma_1,\gamma_2)^{T}$. 序列$g_m(m\geq-1)$的分量式为
\begin{eqnarray}\left\{\begin{array}{l} g_{m+1}^{1}=\frac{1}{2}(\partial+2u)g_{m+1}^{3},\\ g_{m+1}^{2}=-2\beta g_{m+1}^{1}+(v+2\beta u)g_{m+1}^{3}+\frac{1}{2}(2v-\beta^{2})g_{m}^{1} \\\qquad\qquad +\frac{1}{2}(\partial-\beta-2u)g_{m}^{2} +\frac{1}{2}\beta(v+\beta u)g_{m}^{3},\\ g_{m+1 x}^{3}=-g_{m x}^{1}-\beta g_{m}^{1}-g_{m}^{2}+(v+\beta u)g_{m }^{3},\end{array}\right.\end{eqnarray} (2.6)
其中
\begin{eqnarray} g_{-1}&=&(u,v,1),\\ g_{0}&=&(-\frac{1}{2}u_x-u^{2},\frac{1}{2}v_x-uv+\beta u_x,-u),\\ g_{1}&=&(\frac{1}{4}u_{xx}-\frac{1}{4}v_{x}-\frac{1}{4}\beta u_{x}-\frac{1}{2}uv-\frac{1}{2}\beta u^{2}+\frac{3}{2}uu_x+u^{3},\frac{1}{4}v_{xx}+\frac{1}{4}\beta v_{x}+\frac{1}{4}\beta ^{2}u_{x}\\ && -\frac{1}{2}vu_x-\frac{1}{2}v^{2}-\frac{1}{2}\beta uv-uv_x+u^{2}v-3\beta uu_x,\frac{1}{2}u_x-\frac{1}{2}v-\frac{1}{2}\beta u+u^{2}),\\ g_{2}&=&(-\frac{1}{8}u_{xxx}-\frac{3}{4}u_{x}^{2}+\frac{3}{4}u_xv+\frac{3}{4}uv_x+\frac{3}{2}u^{2}v+\frac{3}{2}\beta u^{3}-uu_{xx}-u^{4}-3u^{2}u_x,\\ &&\frac{1}{8}v_{xxx}+\frac{1}{4}\beta u_{xxx}-\frac{1}{4}vu_{xx}-\frac{3}{4}uv_{xx}-\frac{3}{4}u_xv_x-\frac{3}{4}vv_x+\frac{3}{4}\beta^{2}uu_x\\ && -\frac{3}{2}\beta vu_x+\frac{3}{2}uv^{2}+\frac{3}{2}uvu_x+\frac{3}{2}u^{2}v_x+\frac{5}{2}\beta u^{2}v-\beta uv_x-\beta u^{2}v-u^{3}v\\ && +6\beta u^{2}u_x,-\frac{1}{4}u_{xx}-\frac{3}{2}uu_x+\frac{3}{2}uv+\frac{3}{2}\beta u^{2}-u^{3}),\cdots . \end{eqnarray} (2.7)

\begin{equation} G_N=(\lambda^{N}G)_+=\sum_{m=1}^{N}\lambda^{N-m}g_{m-1},V_N=\sigma_{\lambda}(G_N). \end{equation} (2.8)
从零曲率方程 $U_{t_{N}}- V_{N,x}+ [U,V_N]=0$,可得广义Broer-Kaup-Kupershmidt孤子族
\begin{equation} \left(\begin{array}{c} u\\ v\end{array}\right)_{t_{N}}=X_N. \end{equation} (2.9)

设 $t_1=y,t_2=t$,则有

\begin{eqnarray}\left\{\begin{array}{l} u_y=(-\frac{1}{2}u_x+\frac{1}{2}v+\frac{1}{2}\beta u-u^{2})_x,\\ v_y=(\frac{1}{2}v_x-\frac{1}{2}\beta v-\frac{1}{2}\beta^{2}u+\beta u_x-\beta u^{2}-2uv)_x,\end{array}\right.\end{eqnarray} (2.10)
\begin{eqnarray}\left\{\begin{array}{l} u_t=(\frac{1}{4}u_{xx}+\frac{3}{2}uu_x-\frac{3}{2}uv+u^{3})_x,\\ v_t=(\frac{1}{4}v_{xx}-\frac{3}{4} v^{2}+\frac{3}{4}\beta^{2}u^{2}-\frac{3}{2}uv_x+2\beta u^{3}-3\beta uu_x+3u^{2}v)_x+\beta uv_x. \end{array}\right.\end{eqnarray} (2.11)
若 $(u(x,y,t),v(x,y,t))$ 是方程(2.10)和(2.11)式的相容解,则 $(u(x,y,t),v(x,y,t))$ 是下面$(2+1)$ -维广义Broer-Kaup-Kupershmidt孤子方程的解
\begin{eqnarray}\left\{\begin{array}{l} u_t=(\frac{1}{4}u_{xx}+\frac{3}{2}\beta u^{2}-2u^{3}-3u\partial^{-1}u_y)_x,\\ v_t=(\frac{1}{4}v_{xx}-\frac{3}{4} v^{2}-\frac{9}{4}\beta^{2}u^{2}-\frac{3}{2}uv_x-3\beta uv+3u^{2}v+6\beta u\partial^{-1}u_y+8\beta u^{3})_x+\beta uv_x. \end{array}\right.\end{eqnarray} (2.12)
若令 $\beta=0$,则方程(2.10)约化成经典的Broer-Kaup-Kupershmidt孤子方程[18]
\begin{eqnarray}\left\{\begin{array}{l} u_t=-\frac{1}{2}u_{xx}+\frac{1}{2}v_x-2uu_x,\\ v_t=\frac{1}{2}v_{xx}-2uv_x-2vu_x. \end{array}\right.\end{eqnarray} (2.13)
若取 $v=\beta=0$,则方程(2.10)的第一个方程约化成Burgers方程
\begin{eqnarray} u_t=-\frac{1}{2}u_{xx}-2uu_x. \end{eqnarray} (2.14)
若在方程(2.12)的第二个方程中取 $\beta=0$ ,可得 $(2+1)$ -维mKdV方程
\begin{eqnarray} u_t=(\frac{1}{4}u_{xx}-2u^{3}-3u\partial^{-1}u_y)_x. \end{eqnarray} (2.15)
3 特征值问题的非线性化和守恒积分的对合性

设 $\alpha_{j},1\leq j\leq N$是谱问题(2.1)的$N$个互异特征值,$\phi=(p_{j},q_{j})^{T}$是相应的特征函数,考虑谱问题的分量形式

\begin{eqnarray} \left( \begin{array}{l} p_j\\ q_j \end{array} \right)_x= \left( \begin{array}{cc} \alpha_j+u &v+\beta u\\ 1&- \alpha_j -u\end{array} \right)\left( \begin{array}{l} p_j\\ q_j \end{array} \right),1\leq j \leq N. \end{eqnarray} (3.1)
直接的计算给出 $KS_j=\alpha_jJS_j$,其中 $S_j=(p_jq_j-\alpha_jq_j^{2},-p_j^{2}+\beta\alpha_jq_j^{2}-\beta p_jq_j,q_j^{2})$. 考虑Bargmann约束
\begin{eqnarray} g_0=\sum_{j=1}^{N}S_j,\end{eqnarray} (3.2)
利用(3.1)式可得其精确表示为
\begin{eqnarray}\left\{\begin{array}{l} u=-\langle q,q\rangle,\\ v=-2\langle p,q\rangle+\beta\langle q,q\rangle,\end{array}\right. \end{eqnarray} (3.3)
其中 $p=(p_1,\cdots,p_N)^{T},q=(q_1,\cdots,q_N)^{T}$,$\langle\cdot,\cdot\rangle$ 是${\Bbb R}^{N}$上的内积. 把(3.3)式代入(3.1)式,则谱问题(2.1)被非线性化为
\begin{eqnarray}\left\{\begin{array}{l} p_x=(\Lambda-\langle q,q\rangle)p-2\langle p,q\rangle q=-\frac{\partial H}{\partial q},\\ q_x=p-(\Lambda-\langle q,q\rangle)q=\frac{\partial H}{\partial p},\end{array}\right.\end{eqnarray} (3.4)
这里 $ \Lambda= diag(\alpha_1,\cdots,\alpha_N)$ 和
\begin{eqnarray} H=\frac{1}{2}\langle p,p\rangle-\langle\Lambda p,q\rangle+\langle p,q\rangle\langle q,q\rangle. \end{eqnarray} (3.5)

构造Lenard特征值问题的解如下

\begin{eqnarray} G_\lambda=g_{-1}+\sum_{j=1}^{N}\frac{S_j}{\lambda-\alpha_j},\end{eqnarray} (3.6)
易证 $(K-\lambda J)G_\lambda = 0$. 于是,驻定Lax方程 $V_x-[U,V]=0$ 沿 $x$ -流有解
\begin{eqnarray} V_\lambda=\sigma_\lambda(G_\lambda)=\left( \begin{array}{cc} \lambda+Q_\lambda(p,q)~~&-2\langle p,q\rangle-Q_{\lambda}(p,p)\\ 1+Q_{\lambda}(q,q)~~&- \lambda-Q_{\lambda}(p,q)\end{array}\right)=\left(\begin{array}{cc}V_{11}~~&V_{12}\\ V_{21}~~&-V_{11}\end{array} \right),\end{eqnarray} (3.7)
其中 $Q_{\lambda}(\xi,\eta)=\sum\limits_{j=1}^{N}\frac{\xi_j\eta_j}{\lambda-\alpha_j} =\sum\limits_{n=0}^{\infty}\frac{\langle\Lambda^{n}\xi,\eta\rangle}{\lambda^{n+1}}$. 由驻定方程 $V_x-[U,V]=0$ 可知,$F_\lambda=\frac{1}{2}\det V_\lambda$ 沿 $x$ -流是不变的,因此可得(3.4)式的积分母函数为
\begin{eqnarray} F_{\lambda}=\frac{1}{2}\det V_{\lambda}=-\frac{\lambda^{2}}{2}+\sum\limits_{n=0}^{\infty}\lambda^{-n-1}F_{n},\end{eqnarray} (3.8)
其中
\begin{eqnarray}\begin{array}{rl} F_0=&-\langle\Lambda p,q\rangle+\frac{1}{2}\langle p,p\rangle+\langle p,q\rangle\langle q,q\rangle=H,\\ F_n=&-\langle\Lambda^{n+1} p,q\rangle+\frac{1}{2}\langle\Lambda^{n} p,p\rangle+\langle p,q\rangle\langle\Lambda^{n} q,q\rangle\\ & +\frac{1}{2}\sum_{i+j=n-1}[\langle\Lambda^{i} q,q\rangle\langle\Lambda^{j}p,p\rangle-\langle\Lambda^{i}p,q\rangle\langle\Lambda^{j}p,q\rangle]. \end{array} \end{eqnarray} (3.9)

视母函数$F_{\lambda}$为辛空间 $({\Bbb R}^{2N}$,d$p\wedge {\rm d}q)$ 的一个Hamilton函数,由光滑函数 $F$和$G$的Poisson括号定义[19]

\begin{eqnarray}\{F,G\}=\sum\limits_{j=1}^{N}\bigg(\frac{\partial F}{\partial q_{j}} \frac{\partial G}{\partial p_{j}}-\frac{\partial F}{\partial p_{j}}\frac{\partial G}{\partial q_{j}}\bigg),\end{eqnarray} (3.10)
设$F_{\lambda}$的流变量为 $t_{\lambda}$,直接给出正则方程
\begin{eqnarray} \frac{\rm d}{{\rm d}t_\lambda}\left( \begin{array}{l} p_k\\ q_k \end{array} \right)= \left( \begin{array}{l} -\frac{\partial F_\lambda}{\partial q_k}\\ \frac{\partial F_\lambda}{\partial p_k} \end{array} \right)=W(\lambda,\alpha_k)\left( \begin{array}{l} p_k\\ q_k \end{array} \right),1\leq k \leq N,\end{eqnarray} (3.11)
其中
\begin{equation} W(\lambda,\alpha_k)=\frac{V_\lambda}{\lambda-\alpha_k}+V_0(\lambda),V_0(\lambda)=\left( \begin{array}{cc} -V_{21}~~&0~~\\ 0&V_{21} \end{array} \right). \end{equation} (3.12)

命题3.1 沿 $t_{\lambda}$ -流,Lax矩阵$V_{\mu}$满足Lax方程

\[\frac{{\text{d}}}{{{\text{d}}{t_\lambda }}}{V_\mu } = [\;W(\lambda ,\mu ),{V_\mu }],\forall \lambda ,\mu \in \mathbb{C}\] (3.13)
\begin{equation} \{F_{\lambda},F_{\mu}\}=0,\forall \lambda,\mu \in{\Bbb C},\end{equation} (3.14)
\begin{equation} \{F_{m},F_{n}\}=0,\forall m,n=0,1,2,\cdots.\end{equation} (3.15)
4 椭圆坐标和可积性

因为$F_\lambda,V_{\lambda}^{12}$,$V_{\lambda}^{21}$都是$\lambda$的有理函数,且$V_{\lambda}^{12},V_{\lambda}^{21}$在$\alpha_{j}$处有单一极点,故可设

\begin{eqnarray} V_{\lambda}^{12}=-2\langle p,q\rangle-Q_\lambda(p,p)=-2\langle p,q\rangle\frac{m(\lambda)}{a(\lambda)},~~V_{\lambda}^{21}=1+Q_\lambda(q,q)=\frac{n(\lambda)}{a(\lambda)} , \end{eqnarray} (4.1)
其中 $$m(\lambda)=\prod_{j=1}^{N}(\lambda-\mu_j),~~n(\lambda)=\prod_{j=1}^{N}(\lambda-\nu_j),~~a(\lambda)=\prod_{j=1}^{N}(\lambda-\alpha_j), $$ 则$\{\mu_j\}$和$\{\nu_j\}$被称为Hamilton系统的两族椭圆坐标[20]. 若将$V_{\lambda}^{12},V_{\lambda}^{21}$按$\lambda^{-1}$的幂进行展开,可得
\begin{eqnarray} \langle q,q\rangle=\sum\limits_{j=1}^{N}(\alpha_{j}-\nu_{j}),~~ \langle p,p\rangle=2\langle p,q\rangle\sum\limits_{j=1}^{N}(\alpha_{j}-\mu_{j}),\end{eqnarray} (4.2)
于是有
\begin{eqnarray}\begin{array}{l} u=-\langle q,q\rangle=\sum\limits_{j=1}^{N}(\nu_{j}-\alpha_j),\\ v=-2\langle p,q\rangle+\beta\langle q,q\rangle=\exp\bigg\{2\partial^{-1}\sum\limits_{j=1}^{N}(\nu_{j}-\mu_j)\bigg\}-\beta\sum\limits_{j=1}^{N}(\nu_{j}-\alpha_j). \end{array}\end{eqnarray} (4..3)

命题4.1 椭圆坐标沿 $t_{\lambda}$ -流满足演化方程

\begin{eqnarray}\left\{\begin{array}{l}laystyle{\frac{1}{2\sqrt{R(\mu_{k})}}\frac{{\rm d}\mu_{k}}{{\rm d}t_{\lambda}}=\frac{m(\lambda)}{a(\lambda)}\frac{1}{(\lambda-\mu_{k})m'(\mu_{k})}},\\laystyle{\frac{1}{2\sqrt{R(\nu_{k})}}\frac{{\rm d}\nu_{k}}{{\rm d}t_{\lambda}}=-\frac{n(\lambda)}{a(\lambda)}\frac{1}{(\lambda-\nu_{k})n'(\nu_{k})}},\end{array}\right.\end{eqnarray} (4.4)
其中 $$R(\lambda)=a(\lambda)b(\lambda),~~b(\lambda)=\prod_{j=1}^{N+2}(\lambda-\beta_j),~~{\rm deg}R(\lambda)=2N+2. $$

令 $\lambda=\mu_j,\nu_j$ 分别代入(4.1)式中,得

$$V_{\mu_j}^{11}=\frac{\sqrt{R(\mu_j)}}{a(\mu_j)},V_{\nu_j}^{11}=\frac{\sqrt{R(\nu_j)}}{a(\nu_j)}. $$ 借助Lax方程 $\frac{\rm d}{{\rm d}t_{\lambda}}V_{\mu}=[W(\lambda,\mu),V_{\mu}]$,有
\begin{eqnarray} \begin{array}{l} \frac{\rm d}{{\rm d}t_{\lambda}}V_{\mu}^{12}=2\bigg(\frac{V_{\lambda}^{11}}{\lambda-\mu}-V_{\lambda}^{21}\bigg)V_{\mu}^{12} -2\frac{V_{\lambda}^{12}}{\lambda-\mu}V_{\mu}^{11} ,\\ \frac{\rm d}{{\rm d}t_{\lambda}}V_{\mu}^{21}=2\frac{V_{\lambda}^{21}}{\lambda-\mu}V_{\mu}^{11} -2\bigg(\frac{V_{\lambda}^{11}}{\lambda-\mu}-V_{\lambda}^{21}\bigg)V_{\mu}^{21},\end{array}\end{eqnarray} (4.5)
分别令 $\mu=\mu_j$,$\nu=\nu_j$,直接计算可得(4.4)式.

利用多项式的插值公式,可得

\begin{eqnarray} \sum_{k=1}^{N}\frac{\mu_{k}^{N-j}}{2\sqrt{R(\mu_k)}}\frac{{\rm d}\mu_k}{{\rm d}t_\lambda}=-\frac{\lambda^{N-j}}{a(\lambda)},\sum_{k=1}^{N}\frac{\nu_{k}^{N-j}}{2\sqrt{R(\nu_k)}}\frac{{\rm d}\nu_k}{{\rm d}t_\lambda}=\frac{\lambda^{N-j}}{a(\lambda)}. \end{eqnarray} (4.6)
对某一固定的$\lambda_0$,引入拟Abel-Jacobi坐标
\begin{eqnarray} \tilde{\phi}_j=\sum_{k=1}^{N}\int_{\lambda_0}^{\mu_k}\frac{\lambda^{N-j}{\rm d}\lambda}{2\sqrt{R(\mu)}},\tilde{\psi}_j=\sum_{k=1}^{N}\int_{\lambda_0}^{\nu_k}\frac{\lambda^{N-j}{\rm d}\lambda}{2\sqrt{R(\nu)}},j=1,2,\cdots,N,\end{eqnarray} (4.7)
于是有
\begin{eqnarray} \frac{{\rm d}\tilde{\phi}_j}{{\rm d}t_\lambda}=-\frac{\lambda^{N-j}}{a(\lambda)},\frac{{\rm d}\tilde{\psi}_j} {{\rm d}t_\lambda}=-\frac{\lambda^{N-j}}{a(\lambda)}. \end{eqnarray} (4.8)

命题4.2 由(3.9)式给出的 $F_{0},F_{1},\cdots ,F_{N-1}$ 是函数独立的.

$$\frac{{\rm d}\tilde{\phi}_j}{{\rm d}t_\lambda}=\{\tilde{\phi}_j,F_\lambda\}=\sum_{k=0}^{\infty}\frac{1}{\lambda^{k+1}}\{\tilde{\phi}_j,F_k\}=\sum_{k=0}^{\infty}\frac{1}{\lambda^{k+1}}\frac{{\rm d}\tilde{\phi_j}}{{\rm d}t_k}. $$ 另一方面 $$\frac{\lambda^{N-j}}{a(\lambda)}=\frac{1}{\lambda^{j}}\frac{\lambda^{N}}{(\lambda-\alpha_1)\cdots(\lambda-\alpha_N)} =\frac{1}{\lambda^{j}}\bigg(1+\frac{A_1}{\lambda}+\frac{A_2}{\lambda^{2}}+\cdots\bigg), $$ 其中 $$A_1=\sigma_1,~~A_k=\frac{1}{k}\bigg(\sigma_k+\sum_{i+j=k,i,j\geq1}\sigma_iA_j\bigg),~~\sigma_k=\sum_{j=1}^{N}\alpha^{k}_j,~~k\geq2. $$ 根据(4.8)式的第一个表达式,可得 $$\frac{{\rm d}\tilde{\phi}_j}{{\rm d}t_k}=A_{k-j+1,} k\geq1. $$ 则有
\begin{eqnarray} (\frac{{\rm d}\tilde{\phi}}{{\rm d}t_0},\cdots,\frac{{\rm d}\tilde{\phi}}{{\rm d}t_{N-1}})=\left( \begin{array}{ccccc} 1 &~~A_1~~&A_2&~~\cdots~~&A_{N-1}\\ &1&A_1&\cdots&A_{N-2}\\ &&\ddots&\ddots&\vdots\\&&&\ddots&A_1\\ &&&&1\\ \end{array} \right),\end{eqnarray} (4.9)
其中 $\tilde{\phi}=(\tilde{\phi}_1,\cdots,\tilde{\phi}_N)^{T}$,设 $\sum\limits_{k=0}^{N-1}\zeta_k\omega^{2}{\rm d}F_k=0$,于是 $$0=\sum_{k=0}^{N-1}\zeta_k\omega^{2}(I{\rm d}F_k,I{\rm d}\tilde{\phi}_j)=\sum_{k=0}^{N-1}\zeta_k\frac{{\rm d}\tilde{\phi}_j}{{\rm d}t_k},~~1\leq j\leq N. $$ 由(4.9)式可知行列式为1,则 $\zeta_0=\cdots=\zeta_{N-1}=0$,因此 $F_{0},F_{1},\cdots ,F_{N-1}$ 是函数独立的.

定理4.1 有限维Hamilton系统(3.4)在Liouville意义下是完全可积的.

5 流的拉直与拟周期解

对于本文中所对应的超椭圆函数曲线 $\Gamma:\zeta^{2}-4R(\lambda)=0$,其亏格为$N$. 取椭圆曲线$\Gamma$上正则闭链 $a_{1},a_{2},\cdots ,a_{N}$; $b_{1},b_{2},\cdots ,b_{N}$,使其满足

$$a_{i}\circ a_{j}=0,\ \ b_{i}\circ b_{j}=0,\ \ a_{i}\circ b_{j}=\delta_{ij},\ i,j=1,2,\cdots ,N. $$则$\Gamma$上的$N$个全纯微分基底 $$\tilde{\omega}_{l}=laystyle{\frac{\lambda^{N-l}{\rm d}\lambda}{2\sqrt{R(\lambda)}} l=1,2,\cdots ,N} $$是线性无关的. 令 $C=(C_{il})_{N\times N}$ 为周期矩阵 $(A_{lj})_{N\times N}$ 的逆
\begin{eqnarray} C=(A_{lj})^{-1}_{N\times N},A_{lj}=\int_{a_{j}}\tilde{\omega}_{l}. \end{eqnarray} (5.1)

则$\tilde{\omega}$经线性规范变换为

\begin{eqnarray} \omega_j=\sum_{l=1}^{N}C_{jl}\tilde{\omega_l},\omega=(\omega_1,\cdots,\omega_N)^{T}=C\tilde{\omega},\end{eqnarray} (5.2)
使其满足
\begin{eqnarray} \int_{a_j}\omega_i=\delta_{ij},\int_{b_j}\omega_i=B_{ij},1\leq i,j\leq N,\end{eqnarray} (5.3)
其中 $B=(B_{ij})_{N\times N}$ 对称且虚部正定,因而可定义$\Gamma$上的$\theta$函数[21, 22]
\begin{eqnarray} \theta(\zeta)=\sum\limits_{Z\in {\Bbb Z}^{N}}\exp (\pi {\rm i}\langle BZ,Z\rangle +2\pi {\rm i}\langle\zeta,Z\rangle),\ \zeta\in {\Bbb C}^{N}. \end{eqnarray} (5.4)
此时,对于固定的 $P_{0}\in\Gamma$,引进Abel映射${\cal A}(P)$和Abel-Jacobi坐标如下
\begin{eqnarray*} {\cal A}(P)=\int_{P_{0}}^{P}\omega,{\cal A}(\sum n_{k}P_{k})=\sum n_{k}{\cal A}(P_{k}),\end{eqnarray*} \begin{eqnarray} \phi={\cal A}\bigg(\sum\limits_{k=1}^{N}P(\mu_{k})\bigg)= \sum\limits_{k=1}^{N}\int_{P_{0}}^{P(\mu_{k})}\omega,\psi={\cal A}\bigg(\sum\limits_{k=1}^{N}P(\nu_{k})\bigg)= \sum\limits_{k=1}^{N}\int_{P_{0}}^{P(\nu_{k})}\omega. \end{eqnarray} (5.5)

令 $S_k=\lambda^{k}_1+\cdots+\lambda^{k}_{2N+2}$,那么 $\frac{1}{\sqrt{R_{*}(z)}}=\sum\limits_{k=0}^{N}R_kz^{k}$ 系数满足递推公式

\begin{eqnarray} R_0=1,~~R_1=\frac{1}{2}S_1,~~R_k=\frac{1}{2k}\bigg(S_k+\sum_{i+j=k,i,j\geq1}S_jR_k\bigg). \end{eqnarray} (5.6)

设 $C_1,\cdots,C_N$ 是矩阵$C$的列向量,通过直接的计算可得

\begin{eqnarray} \frac{1}{2\sqrt{R_{*}(z)}}(C_1+C_2z+\cdots+C_Nz^{N-1})=\sum_{k=0}^{\infty}\Omega_kz^{k},\end{eqnarray} (5.7)
其系数为
\begin{eqnarray} \Omega_k=\frac{1}{2}(R_kC_1+\cdots+R_1C_k+C_{k+1}),~~1\leq k \leq N. \end{eqnarray} (5.8)

命题5.1 利用Abel-Jacobi坐标,$H_k$ -流得以直化

\begin{eqnarray} \frac{{\rm d}\phi}{{\rm d}\tau_k}=\Omega_k,\frac{{\rm d}\psi}{{\rm d}\tau_k}=-\Omega_k. \end{eqnarray} (5.9)

从(4.8)式可得

$$\frac{{\rm d}\tilde{\phi}}{{\rm d}t_\lambda}=\frac{\lambda^{N}}{2\sqrt{R(\lambda)}}(\lambda^{-1},\cdots,\lambda^{-N}), $$ $$\frac{{\rm d}\phi}{{\rm d}t_\lambda}=C\frac{{\rm d}\tilde{\phi}}{{\rm d}t_\lambda}=\frac{\lambda^{N}}{2\sqrt{R(\lambda)}}(C_1\lambda^{-1},\cdots,C_N\lambda^{-N})=\sum_{k=1}^{\infty}\Omega_k\lambda^{-k-1}, $$通过比较$\lambda^{-k-1}$的系数可得(5.9)式的第一个等式,同理,(5.9)式的第二个等式也可证.

经过直化的方程(5.9)很容易被积出 $\phi=\phi_0+\sum\Omega_kt_k$. 从"Abel-Jacobi窗口"中观察,$H_k$ -流和$X_k$ -流二者的解都是线性函数

\begin{eqnarray}\begin{array}{l} \hbox{ } H_{k}: \phi=\phi_{0}+\Omega_{k}t_{k},\psi=\psi_{0}-\Omega_{k}t_{k},\\\hbox{ } X_{k}:\phi=\phi_{0}+\Omega_{0}x+\Omega_{k}t_{k},\psi=\psi_{0}-\Omega_{0}x-\Omega_{k}t_{k}. \end{array} \end{eqnarray} (5.10)

根据Riemann定理知,存在常向量 $M_{1},M_{2}\in{\Bbb C}^{N}$,使得 $\theta({\cal A}(P(\lambda))-\phi-M_{1})$ 有$N$个零点,分别为 $\lambda=\mu_{1},\cdots ,\mu_{N}$; $\theta({\cal A}(P(\lambda))-\psi-M_{2})$ 也有$N$个零点,分别为 $\lambda=\nu_{1},\cdots ,\nu_{N}$. 对于同一个$\lambda$,在$\Gamma$的不同页上有两个点$(\lambda,\sqrt{R}(\lambda))$和$(\lambda,-\sqrt{R}(\lambda))$. 因此,在$\infty_{s}(s=1,2)$处的局部坐标下,可得

$${\cal A}(P(z^{-1}))=-\eta_{s}+\frac{(-1)^{s-1}}{2}\sum\limits_{k=1}^{\infty}\frac{1}{k}\Omega_{k}z^{k}, $$ 其中 $ {\eta_{s}=-\int^{P_{0}}_{\infty_{s}}\omega}.$ 由文献[10, 22]的结论可得
\begin{equation} \sum_{j=1}^{N}\mu_j=I_1(\Gamma)+\frac{1}{2}\partial \ln\frac{\theta_1}{\theta_2},\end{equation} (5.11)
\begin{equation} \sum_{j=1}^{N}\nu_j=I_1(\Gamma)-\frac{1}{2}\partial \ln\frac{\theta^{*}_1}{\theta^{*}_2},\end{equation} (5.12)
其中 $I_1(\Gamma)=\sum\limits_{j=1}^{N}\int_{a_j}\lambda\omega_j$,$\theta_s=(\phi+K+\eta_s)$,$\theta^{*}_s=(-\psi-K-\eta_s),s=1,2$,$K$是一个常数.

命题5.2 广义Broer-Kaup-Kupershmidt方程(2.10)的拟周期解为

\begin{eqnarray}\left\{\begin{array}{rl} u(x,y)=& N_1-\frac{1}{2}\partial \ln\frac{\theta(\Omega_0x+\Omega_1y-\psi_0-K-\eta_1)} {\theta(\Omega_0x+\Omega_1y-\psi_0-K-\eta_2)},\\ v(x,y)=& -\beta N_1+\frac{1}{2}\beta\partial \ln\frac{\theta(\Omega_0x+\Omega_1y-\psi_0-K-\eta_1)} {\theta(\Omega_0x+\Omega_1y-\psi_0-K-\eta_2)}\\& +N_2\frac{\theta(\Omega_0x+\Omega_1y+\phi_0+K+\eta_2) \theta(\Omega_0x+\Omega_1y-\psi_0-K-\eta_2)} { \theta(\Omega_0x+\Omega_1y+\phi_0+K+\eta_1) \theta(\Omega_0x+\Omega_1y-\psi_0-K-\eta_1)},\end{array}\right.\end{eqnarray} (5.13)
其中$N_1,N_2$为常数.

命题5.3 广义Broer-Kaup-Kupershmidt方程(2.11)的拟周期解为

\begin{eqnarray}\left\{\begin{array}{rl} u(x,t)=& N_1-\frac{1}{2}\partial \ln\frac{\theta(\Omega_0x+\Omega_2t-\psi_0-K-\eta_1)} {\theta(\Omega_0x+\Omega_2t-\psi_0-K-\eta_2)},\\ v(x,t)=& -\beta N_1+\frac{1}{2}\beta\partial \ln \frac{\theta(\Omega_0x+\Omega_2t-\psi_0-K-\eta_1)} {\theta(\Omega_0x+\Omega_2t-\psi_0-K-\eta_2)}\\& +N_2\frac{\theta(\Omega_0x+\Omega_2t+\phi_0+K+\eta_2) \theta(\Omega_0x+\Omega_2t-\psi_0-K-\eta_2)} { \theta(\Omega_0x+\Omega_2t+\phi_0+K+\eta_1) \theta(\Omega_0x+\Omega_2t-\psi_0-K-\eta_1)},\end{array}\right.\end{eqnarray} (5.14)
其中$N_1,N_2$为常数.

命题5.4 $(2+1)$ -维广义Broer-Kaup-Kupershmidt方程(2.12)的拟周期解为

\begin{eqnarray}\left\{\begin{array}{rl}u(x,y,t)=& N_1-\frac{1}{2}\partial\ln\frac{\theta(\Omega_0x+\Omega_1y+\Omega_2t-\psi_0-K-\eta_1)}{\theta(\Omega_0x+\Omega_1y+\Omega_2t-\psi_0-K-\eta_2)},\\v(x,y,t)=& -\beta N_1+\frac{1}{2}\beta\partial\ln\frac{\theta(\Omega_0x+\Omega_1y+\Omega_2t-\psi_0-K-\eta_1)}{\theta(\Omega_0x+\Omega_1y+\Omega_2t-\psi_0-K-\eta_2)}\\& +N_2\frac{\theta(\Omega_0x+\Omega_1y+\Omega_2t+\phi_0+K+\eta_2)\theta(\Omega_0x+\Omega_1y+\Omega_2t-\psi_0-K-\eta_2)}{\theta(\Omega_0x+\Omega_1y+\Omega_2t+\phi_0+K+\eta_1)\theta(\Omega_0x+\Omega_1y+\Omega_2t-\psi_0-K-\eta_1)},\end{array}\right.\end{eqnarray} (5.15)
其中$N_1,N_2$为常数.
6 小结

在本文中,一个$(2+1)$ -维广义Broer-Kaup-Kupershmidt 孤子方程被分解为相容的常微分方程,借助于Riemann $\theta$函数给出了$(2+1)$ -维广义Broer-Kaup-Kupershmidt孤子方程的拟周期解. 在求解过程中,利用生成函数证明了对合性和函数独立性,通过引入Abel-Jacobi坐标把流进行了拉直.

参考文献
[1] Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia:SIAM, 1981
[2] Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E. Theory of Solitons, the Inverse Scattering Methods. New York:Consultants Bureau, 1984
[3] Cao C W, Geng X G, Wang H Y. Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable. J Math Phys, 2002, 43:621-643
[4] Pan H F, Xia T C, Chen D Y. A two-component generalization of Burgers' equation with quasi-periodic solution. Rep Math Phys, 2014, 74:235-250
[5] 孙玉娟, 丁琦, 梅建琴, 张鸿庆. D-AKNS方程的代数几何解. 数学物理学报, 2013, 33A(2):276-284 Sun Y J, Ding Q, Mei J Q, Zhang H Q. Algebro-gemetric solutions of the D-AKNS equations. Acta Math Sci, 2013, 33A(2):276-284
[6] Hu X B, Wu Y T. Application of the Hirota bilinear formalism to a new integrable differential-difference equation. Phys Lett A, 1998, 246:523-529
[7] Hu X B, Ma W X. Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions. Phys Lett A, 2002, 293:161-165
[8] Hu X B, Tam H W. Application of Hirota's bilinear formalism to a two-dimensional lattice by Leznov. Phys Lett A, 2000, 276:65-72
[9] Cao C W. Nonlinearization of the Lax system for AKNS hierarchy. Sci China (A), 1990, 33:528-536
[10] Cao C W, Wu Y T, Geng X G. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system. J Math Phys, 1999, 40:3948-3970
[11] 周汝光. 一个求孤子方程有限带势解的方法. 数学物理学报, 1998,18A(2):228-234 Zhou R G. A method to seek the finite-band solution of soliton equation. Acta Math Sci, 1998,18A(2):228-234
[12] Dai H H, Fan E G. Variable separation and algebro-geometric solutions of the Gerdjikov-Ivanov equation. Chaos Soliton Fract, 2004, 22:93-101
[13] Hon Y C, Fan E G. An algebro-geometric solution for a Hamiltonian system with application to dispersive long wave equation. J Math Phys, 2005, 46:032701
[14] Yue C, Xia T C. Algebro-geometric solutions for the complex Sharma-Tasso-Olver hierarchy. J Math Phys, 2014, 55:083511
[15] He G L, Geng X G, Wu L H. Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy. SIAM J Math Anal, 2014, 46:1348-1384
[16] Wang Z Y, Zhang J S. Explicit solutions for a new (2+1)-dimensional coupled mKdV equation. Commun Theor Phys, 2008, 49:396-400
[17] Ma W X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chinese Ann Math Ser A, 1992, 13:115-123
[18] Yang H X, Sun Y P. Hamiltonian and super-Hamiltonian extensions related to Broer-Kaup-Kupershmidt system. Int J Theor Phys, 2010, 49:349-364
[19] Arnold V I. Mathematical Methods of Classical Mechanics. Berlin:Springer, 1978
[20] Griffiths P, Harris J. Principles of Algebraic Geometry. New York:Wiley, 1994
[21] Mumford D. Tata Lectures on Theta I, II. Boston:Birkhauser, 1984
[22] Tracy E R, Chen H H, Lee Y C. Study of quasiperiodic solutions of the nonlinear schrödinger equation and the nonlinear modulational instability. Phys Rev Lett, 1984, 53:218-221