数学物理学报  2016, Vol. 36 Issue (2): 307-316   PDF (300 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
李琴
杨作东
带有非线性边界条件的非齐次拟线性椭圆型方程组的多解性
李琴1, 杨作东1,2    
1. 南京师范大学数学科学学院 南京 210023;
2. 南京师范大学教师教育学院 南京 210097
摘要: 主要研究一组带有非线性边界条件的非齐次拟线性椭圆型方程组非平凡解的存在性和多解性.利用山路引理和Ekeland变分准则,得到当λ属于特定区间时,此方程组至少存在两个非平凡解.
关键词: 存在性     多解性     非齐次     非线性边界条件    
Multiple Solutions for a Class of Quasilinear Nonhomogeneous Elliptic Systems with Nonlinear Boundary Conditions
Li Qin1, Yang Zuodong1,2    
1 Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023;
2 School of Teacher Education, Nanjing Normal University, Nanjing 210097
Foundation Item: Supported by the NSFC (11171092, 11471164) and Project on Graduate Students Education and Innovation of Jiangsu Province (KYZZ_,0209)
Abstract: In this paper, we study the existence and multiplicity of nontrivial solutions for a class of quasilinear elliptic systems involving nonhomogeneous nonlinearities and nonlinear boundary conditions. By using the Mountain Pass Theorem and the Ekeland's variational principle, we prove that the system has at least two nontrivial solutions when the parameter λ belongs to a certain subset of R.
Key words: Existence     Multiplicity     Nonhomogeneous     Nonlinear boundary conditions    
1 引言

本文主要考虑如下拟线性椭圆型问题

$$\left\{ \begin{array}{ll} -\mbox{div}(|\nabla u|^{p-2}\nabla u) +|u|^{p-2}u=\frac{1}{\alpha}F_{u}(u,v)+f(x),&x\in \Omega,\\[3mm] -\mbox{div}(|\nabla v|^{p-2}\nabla v) +|v|^{p-2}v=\frac{1}{\alpha}F_{v}(u,v)+g(x),&x\in \Omega,\\[3mm] |\nabla u|^{p-2}\frac{\partial u}{\partial n}=\lambda G_{u}(u,v),\ |\nabla v|^{p-2}\frac{\partial v}{\partial n}=\lambda G_{v}(u,v),~~ &x\in\partial\Omega,\end{array}\right. $$ (1.1)
其中$\Omega\subset{\Bbb R}^{N}$是有界光滑区域,$1<p<N$,$p<\alpha<p^{*}=\frac{Np}{N-p}$,$\lambda>0$,$\frac{\partial }{\partial n}$表示外法向导数,且函数$f$,$g$,$F$,$G$满足条件:

$(A_{1})$ $f$,$g\in C(\overline{\Omega})$,且存在非空区域$\Omega_{1}\subset \Omega$使得对任意$x\in\Omega_{1}$,$f$,$g>0$;

$(A_{2})$ $F$,$G\in C^{1}({\Bbb R}^{2},{\Bbb R}^{+})$ 分别是正的$\alpha$次,$\beta$次齐次函数,即

$$F(t u,tv)=t^{\alpha}F(u,v) (t>0,p<\alpha<p^{*}),G(t u,tv)=t^{\beta}G(u,v) (t>0,1<\beta<p). $$

近年来,带有非线性边界条件的椭圆型方程组引起了许多学者的关注,特别地,Brown和Wu在文献[13]中研究了如下问题

$$\left\{ \begin{array}{ll} -\triangle u+u=\frac{\alpha}{\alpha+\beta}f(x)|u|^{\alpha-2}u|v|^{\beta},&x\in \Omega,\\[3mm] -\triangle v+v=\frac{\beta}{\alpha+\beta}f(x)|u|^{\alpha}|v|^{\beta-2}v,&x\in \Omega,\\[3mm] \frac{\partial u}{\partial n}=\lambda g(x)|u|^{q-2}u,\ \frac{\partial v}{\partial n}=\mu h(x)|v|^{q-2}v,~~ &x\in\partial\Omega,\end{array}\right. $$ (1.2)
其中 $\Omega\subset{\Bbb R}^{N}$为有界光滑区域,$2<\alpha+\beta<2^{*}$. 利用变分法,作者得到了当$(\lambda,\mu)$属于某一特定区间时,问题(1.2)至少存在两个非平凡的非负解. 接着,Liu和Chen[11]把以上结果推广到拟线性情形
$$\left\{ \begin{array}{ll} -\mbox{div}(a(x)|\nabla u|^{p-2}\nabla u) +b(x)|u|^{p-2}u=d^{-1}F_{u}(x,u,v),&x\in \Omega,\\[1mm] -\mbox{div}(a(x)|\nabla v|^{p-2}\nabla v) +b(x)|v|^{p-2}v=d^{-1}F_{v}(x,u,v),&x\in \Omega,\\[2mm] a(x)|\nabla u|^{p-2}\frac{\partial u}{\partial n}=\lambda h(x)|u|^{m-2}u,\ a(x)|\nabla v|^{p-2}\frac{\partial v}{\partial n}=\mu H(x)|v|^{m-2}v,~~ &x\in\partial\Omega,\end{array}\right. $$ (1.3)
且证明了当$\Omega$为一光滑的外部区域时,问题(1.3)至少存在两个非平凡的非负解.

同时,问题

$$\left\{ \begin{array}{ll} -\triangle u+u=\lambda f(x)|u|^{q-2}u,&x\in \Omega,\\[1mm]-\triangle v+v=\mu g(x)|v|^{q-2}v,&x\in \Omega,\\[2mm] \frac{\partial u}{\partial n}=\frac{\alpha}{\alpha+\beta} h(x)|u|^{\alpha-2}u|v|^{\beta},&x\in\partial\Omega,\\[3mm] \frac{\partial v}{\partial n}=\frac{\beta}{\alpha+\beta} h(x)|u|^{\alpha}|v|^{\beta-2}v,~~ &x\in\partial\Omega\end{array}\right. $$ (1.4)
也得到了广泛研究. 例如,当$2<\alpha+\beta<2^{*}$,$1<q<2$ 时,Lu[12]研究了问题(1.4). 随后,Rasouli和Afrouzi在文献[4]中考虑了如下问题
$$\left\{ \begin{array}{ll} -\triangle_{p}u+m(x)|u|^{p-2}u=\lambda a(x)|u|^{\gamma-2}u,~~ &x\in \Omega,\\[1mm]-\triangle_{p}v+m(x)|v|^{p-2}v=\mu b(x)|v|^{\gamma-2}v,&x\in \Omega,\\[2mm] |\nabla u|^{p-2}\frac{\partial u}{\partial n}=\frac{\alpha}{\alpha+\beta} |u|^{\alpha-2}u|v|^{\beta},&x\in\partial\Omega,\\[3mm] |\nabla v|^{p-2}\frac{\partial v}{\partial n}=\frac{\beta}{\alpha+\beta} |u|^{\alpha}|v|^{\beta-2}v,~~ &x\in\partial\Omega,\end{array}\right. $$ (1.5)
其中 $2<\alpha+\beta<p<\gamma<p^{*}$.

最近,Zhou和Kim在文献[3]中研究了更一般的问题

$$\left\{ \begin{array}{ll} -\triangle_{p}u+m(x)|u|^{p-2}u=\lambda F_{u}(u,v),~~ &x\in \Omega,\\[1mm]-\triangle_{p}v+n(x)|v|^{p-2}v=\lambda F_{v}(u,v),&x\in \Omega,\\[2mm] |\nabla u|^{p-2}\frac{\partial u}{\partial n}=G_{u}(u,v),&x\in\partial\Omega,\\[3mm] |\nabla v|^{p-2}\frac{\partial v}{\partial n}=G_{v}(u,v),&x\in\partial\Omega,\end{array}\right. $$ (1.6)
其中 $F$,$G\in C^{1}({\Bbb R}\times {\Bbb R})$满足$F(t u,tv)=t^{\alpha}F(u,v)$,$G(t u,tv)=t^{\beta}G(u,v)$,$t\geq0$,$\alpha\in (p,p^{*})$,$\beta\in(1,p)$. 利用Nehari流形方法,作者证明了当$\lambda$充分小时,问题(1.6)至少存在两个非平凡的非负解.

对于带有非齐次项椭圆型问题的研究,参见文献[1, 6, 14]. 然而,据我们所知,还没有文章研究过同时含有非齐次项和非线性边界条件的问题. 此外,在本文中,我们将不再利用文献[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]中所采用的Nehari 流形方法,而是利用山路引理和Ekeland变分准则去研究问题(1.1)解的存在性与多解性. 事实上,利用Nehari流形方法很难得到相同的结果.

本文主要结果如下:

定理 1.1 假设条件 $(A_{1})$-$(A_{2})$ 成立. 则存在 $\lambda^{*}$,$L>0$ 使得当 $\lambda\in (0,\lambda^{*})$ 且 $\|f\|_{\sigma}^{\frac{p}{p-1}}+\|g\|_{\sigma}^{\frac{p}{p-1}}\in (0,L\lambda^{\frac{p(\alpha-p)}{\alpha-\beta}})$ 时,问题(1.1)至少存在两个非平凡解,其中 $\sigma=\frac{p^{*}}{p^{*}-1}.$

注 1.2 由条件$(A_{2})$可得

(i) $u F_{u}(u,v)+v F_{v}(u,v)=\alpha F(u,v),\ u G_{u}(u,v)+v G_{v}(u,v)=\beta G(u,v)$;

(ii) 存在 $M_{1}>0$ 使得对任意$(u,v)\in {\Bbb R}^{2}$,有

$$F(u,v)\leq M_{1}(|u|^{p}+|v|^{p})^{\frac{\alpha}{p}},\ G(u,v)\leq M_{1}(|u|^{p}+|v|^{p})^{\frac{\beta}{p}}, $$ 其中$M_{1}=\max\{\max_{|u|^{p}+|v|^{p}=1} F(u,v),\max_{|u|^{p}+|v|^{p}=1} G(u,v)\}$;

(iii) $F_{u}$,$F_{v}\in C({\Bbb R}^{2},{\Bbb R})$ 为正的$\alpha-1$次齐次函数,$G_{u}$,$G_{v}\in C({\Bbb R}^{2},{\Bbb R})$ 为 $\beta-1$次齐次函数.

2 记号和相关引理

对有界区域 $\Omega\subset{\Bbb R}^{N}$,记 $\|\cdot\|,\|\cdot\|_{p}$ 分别为 $W^{1,p}(\Omega)$ 和 $L^{p}(\Omega)$中的范数,即

$$\|u\|=\bigg(\int_{\Omega}(|\nabla u|^{p}+|u|^{p}){\rm d}x\bigg)^{\frac{1}{p}},\ \mbox{和} \ \|u\|_{p}=\bigg(\int_{\Omega}|u|^{p}{\rm d}x\bigg)^{\frac{1}{p}}. $$ 显然,$X=W^{1,p}(\Omega)\times W^{1,p}(\Omega)$ 是Banach 空间. 令 $X'$为$X$ 的对偶空间,且 $\langle ,\rangle$ 表示$X'$与$X$之间的对偶积. 空间$X$中的范数定义为 $$\|(u,v)\|=(\|u\|^{p}+\|v\|^{p})^{\frac{1}{p}}. $$

另外,我们用"$\rightharpoonup$"表示"弱收敛","$\rightarrow$" 表示"强收敛",$C$,$C_{i}$ $(i=1,2,\cdots)$ 表示不同的正数,$S$ 和 $\overline{S}$ 分别表示$W^{1,p}(\Omega)\hookrightarrow L^{p^{*}}(\Omega)$ 的最佳Sobolev常数和$W^{1,p}(\Omega)\hookrightarrow L^{\beta}(\partial\Omega)$ 的最佳Sobolev迹常数.

接下来,考虑与问题(1.1)相对应的能量泛函

$$I_{\lambda}(u,v)=\frac{1}{p}\|(u,v)\|^{p}-\frac{1}{\alpha}\int_{\Omega}F(u,v){\rm d}x-\int_{\Omega}(fu+gv){\rm d}x-\lambda\int_{\partial\Omega}G(u,v){\rm d}s. $$

由条件$(A_{1})$-$(A_{2})$,易知$I_{\lambda}\in C^{1}(X,{\Bbb R})$,且对任意$(\varphi_{1},\varphi_{2})\in X,$ 有

\begin{eqnarray*}\langle I'_{\lambda}(u,v),(\varphi_{1},\varphi_{2})\rangle&=&\int_{\Omega}(|\nabla u|^{p-2}\nabla u\nabla \varphi_{1}+|u|^{p-2}u\varphi_{1}+|\nabla v|^{p-2}\nabla v\nabla \varphi_{2}+|v|^{p-2}v\varphi_{2}){\rm d}x\\&&-\int_{\Omega}(f\varphi_{1}+g\varphi_{2}){\rm d}x-\frac{1}{\alpha}\int_{\Omega}(F_{u}(u,v)\varphi_{1}+F_{v}(u,v)\varphi_{2}){\rm d}x\\&&-\lambda\int_{\partial\Omega}(G_{u}(u,v)\varphi_{1}+G_{v}(u,v)\varphi_{2}){\rm d}s.\end{eqnarray*}特别地,由注 1.2(i)得到 $$\langle I'_{\lambda}(u,v),(u,v)\rangle=\|(u,v)\|^{p}-\int_{\Omega}F(u,v){\rm d}x-\int_{\Omega}(fu+gv){\rm d}x-\lambda\beta\int_{\Omega}G(u,v){\rm d}s. $$事实上,泛函$I_{\lambda}$的临界点即为问题(1.1)的弱解,且$(u,v)\in X$称为(1.1)的弱解,若对任意$(\varphi_{1},\varphi_{2})\in X,$都有\begin{eqnarray*}&&\int_{\Omega}(|\nabla u|^{p-2}\nabla u\nabla \varphi_{1}+|u|^{p-2}u\varphi_{1}+|\nabla v|^{p-2}\nabla v\nabla \varphi_{2}+|v|^{p-2}v\varphi_{2}){\rm d}x\\&&-\int_{\Omega}(f\varphi_{1}+g\varphi_{2}){\rm d}x-\frac{1}{\alpha}\int_{\Omega}(F_{u}(u,v)\varphi_{1}+F_{v}(u,v)\varphi_{2}){\rm d}x\\&&-\lambda\int_{\partial\Omega}(G_{u}(u,v)\varphi_{1}+G_{v}(u,v)\varphi_{2}){\rm d}s=0.\end{eqnarray*}

首先,验证 $I_{\lambda}$具有山路结构.

引理 2.1 假设条件 $(A_{1})$-$(A_{2})$ 成立. 则有

(i) 存在 $\rho$,$d_{0}>0$ 使得当$\|(u,v)\|=\rho$时,$I_{\lambda}(u,v)\geq d_{0}$;

(ii) 存在 $(\overline{u},\overline{v})\in X\setminus\{(0,0)\}$ 使得$\|(\overline{u},\overline{v})\|>\rho$ 且 $I_{\lambda}(\overline{u},\overline{v})<0$.

(i) 由注1.2 (ii),Sobolev嵌入定理和Sobolev迹不等式,存在常数 $C_{1}$,$C_{2}>0$使得

\begin{equation}\bigg|\int_{\Omega}F(u,v){\rm d}x\bigg|\leq M_{1}\int_{\Omega}(|u|^{p}+|v|^{p})^{\frac{\alpha}{p}}{\rm d}x\leq C_{1}\|(u,v)\|^{\alpha},\end{equation} (2.1)
\begin{equation}\bigg|\int_{\partial\Omega}G(u,v){\rm d}s\bigg|\leq M_{1}\int_{\partial\Omega}(|u|^{p}+|v|^{p})^{\frac{\beta}{p}}{\rm d}s\leq C_{2}\|(u,v)\|^{\beta}.\end{equation} (2.2)
利用Hölder和Young不等式,得
\begin{equation}\bigg|\int_{\Omega}fu{\rm d}x\bigg|\leq \|f\|_{\sigma}\|u\|_{p^{*}}\leq S\|f\|_{\sigma}\|u\|\leq \epsilon \|(u,v)\|^{p}+C_{\epsilon}\|f\|_{\sigma}^{\frac{p}{p-1}},\end{equation} (2.3)
\begin{equation}\bigg|\int_{\Omega}gv{\rm d}x\bigg|\leq \|g\|_{\sigma}\|v\|_{p^{*}}\leq S\|g\|_{\sigma}\|v\|\leq \epsilon \|(u,v)\|^{p}+C_{\epsilon}\|g\|_{\sigma}^{\frac{p}{p-1}},\end{equation} (2.4)
其中 $\sigma=\frac{p^{*}}{p^{*}-1}$,$C_{\epsilon}>0.$

于是,对$0<\epsilon\leq \frac{1}{4p}$,有

\begin{eqnarray*}I_{\lambda}(u,v)&\geq&\frac{1}{p}\|(u,v)\|^{p}-\frac{C_{1}}{\alpha}\|(u,v)\|^{\alpha}-2\epsilon\|(u,v)\|^{p}-C_{\epsilon}\Big(\|f\|_{\sigma}^{\frac{p}{p-1}}+\|g\|_{\sigma}^{\frac{p}{p-1}}\Big)-\lambda C_{2}\|(u,v)\|^{\beta}\\&\geq& \frac{1}{2p}\|(u,v)\|^{p}-\frac{C_{1}}{\alpha}\|(u,v)\|^{\alpha}-\lambda C_{2}\|(u,v)\|^{\beta}-C_{\epsilon}\Big(\|f\|_{\sigma}^{\frac{p}{p-1}}+\|g\|_{\sigma}^{\frac{p}{p-1}}\Big)\\&=& \|(u,v)\|^{p}\bigg[\frac{1}{2p}-\frac{C_{1}}{\alpha}\|(u,v)\|^{\alpha-p}-\lambda C_{2}\|(u,v)\|^{\beta-p}\bigg]-C_{\epsilon}\Big(\|f\|_{\sigma}^{\frac{p}{p-1}}+\|g\|_{\sigma}^{\frac{p}{p-1}}\Big).\end{eqnarray*} 令 $$\phi(z)=\frac{C_{1}}{\alpha}z^{\alpha-p}+\lambda C_{2}z^{\beta-p}. $$ 则有$\lim\limits_{z\rightarrow 0^{+}}\phi(z)=\lim\limits_{z\rightarrow +\infty}\phi(z)=+\infty$,且 $\phi(z)$ 在 $z_{1}>0$ 处达到其最小值. 通过直接的计算,易得 $$z_{1}=\bigg[\frac{\alpha(p-\beta)C_{2}}{(\alpha-p)C_{1}}\bigg]^{\frac{1}{\alpha-\beta}}\lambda^{\frac{1}{\alpha-\beta}} $$且 $$\phi(z_{1})=\bigg[\frac{C_{1}(\alpha-\beta)}{\alpha(p-\beta)}\bigg]\bigg[\frac{\alpha(p-\beta)C_{2}}{(\alpha-p)C_{1}}\bigg]^{\frac{\alpha-p}{\alpha-\beta}}\lambda^{\frac{\alpha-p}{\alpha-\beta}}>0. $$

显然,存在$\lambda^{*}>0$ 使得当 $0<\lambda<\lambda^{*}$时,$\phi(z_{1})< \frac{1}{2p}$. 此外,易知存在 $L>0$ (与 $\lambda$ 无关) 使得对

$$\|f\|_{\sigma}^{\frac{p}{p-1}}+\|g\|_{\sigma}^{\frac{p}{p-1}}<L\lambda^{\frac{p(\alpha-p)}{\alpha-\beta}}, $$ 有 $$z_{1}^{p}\bigg[\frac{1}{2p}-\phi(z_{1})\bigg]-C_{\epsilon}\Big(\|f\|_{\sigma}^{\frac{p}{p-1}}+\|g\|_{\sigma}^{\frac{p}{p-1}}\Big)>0. $$因此,对$0<\lambda<\lambda^{*}$且$\|f\|_{\sigma}^{\frac{p}{p-1}}+\|g\|_{\sigma}^{\frac{p}{p-1}}<L\lambda^{\frac{p(\alpha-p)}{\alpha-\beta}}$,存在$\rho$,$d_{0}>0$ 使得若$\|(u,v)\|=\rho$,$I_{\lambda}(u,v)\geq d_{0}$.

(ii) 令 $(u,v)\in X\setminus\{(0,0)\}$,有

$$I_{\lambda}(tu,tv)=\frac{t^{p}}{p}\|(u,v)\|^{p}-\frac{t^{\alpha}}{\alpha}\int_{\Omega}F(u,v){\rm d}x-t\int_{\Omega}(fu+gv){\rm d}x-\lambda t^{\beta}\int_{\partial \Omega}G(u,v){\rm d}s. $$由于$\alpha>p$,可知$\lim\limits_{t\rightarrow+\infty} I_{\lambda}(t u,tv)=-\infty$. 于是,对固定的$(u,v)\in X\setminus \{(0,0)\}$,存在$\overline{t}>0$使得$\|(\overline{t}u,\overline{t}v)\|>\rho$且$I_{\lambda}(\overline{t}u,\overline{t}v)<0.$令$(\overline{u},\overline{v})=(\overline{t}u,\overline{t}v)$. 证毕.

定义

$$c=\inf_{\gamma\in\Gamma}\max_{0\leq t\leq 1} I_{\lambda}(\gamma (t)), $$ 其中 $\Gamma=\{\gamma\in C^{1}([0, 1],X)| \ \gamma(0)=0,\ I_{\lambda}(\gamma(1))<0\}.$

接下来,我们将证明$I_{\lambda}$在$X$中满足$(PS)_{c}$条件.

引理 2.2 假设条件 $(A_{1})$-$(A_{2})$ 成立. 则 $I_{\lambda}$ 在$X$中满足 $(PS)_{c}$ 条件.

令 $\{(u_{n},v_{n})\}\subset X$为$I_{\lambda}$的任意$(PS)_{c}$ 序列,即

\begin{equation}I_{\lambda}(u_{n},v_{n})\rightarrow c,\ I'_{\lambda}(u_{n},v_{n})\rightarrow 0,\ n\rightarrow\infty. \end{equation} (2.5)
首先,证明$\{(u_{n},v_{n})\}$在$X$中有界. 事实上,由(2.2)-(2.5) 式可知,当$n$充分大时,有\begin{eqnarray*}c+o(1)+o(1)\|(u_{n},v_{n})\|&\geq& I_{\lambda}(u_{n},v_{n})-\frac{1}{\alpha}\langle I'_{\lambda}(u_{n},v_{n}),(u_{n},v_{n})\rangle\\&=&\Big (\frac{1}{p}-\frac{1}{\alpha}\Big)\|(u_{n},v_{n})\|^{p}+\Big(\frac{1}{\alpha}-1\Big)\int_{\Omega}(fu_{n}+gv_{n}){\rm d}x\\&&+\lambda\Big(\frac{\beta}{\alpha}-1\Big)\int_{\partial\Omega}G(u_{n},v_{n}){\rm d}s\\&\geq& \Big(\frac{1}{p}-\frac{1}{\alpha}\Big)\|(u_{n},v_{n})\|^{p}+\Big(\frac{1}{\alpha}-1\Big)S(\|f\|_{\sigma}+\|g\|_{\sigma})\|(u_{n},v_{n})\|\\&&+\lambda\Big(\frac{\beta}{\alpha}-1\Big)C_{2}\|(u_{n},v_{n})\|^{\beta}.\end{eqnarray*}于是,$\{(u_{n},v_{n})\}$ 在 $X$ 中有界. 故存在子序列(仍记为 $\{(u_{n},v_{n})\}$) 和 $(u,v)\in X$ 满足 $$u_{n}\rightharpoonup u,\ v_{n}\rightharpoonup v \ \mbox{于} \ W^{1,p}(\Omega), $$ $$u_{n}\rightarrow u,\ v_{n}\rightarrow v \ \mbox{于} \ L^{\alpha}(\Omega) \ \mbox{和} \ L^{\beta}(\partial\Omega), $$ $$u_{n}\rightarrow u,\ v_{n}\rightarrow v \ \mbox{a.e.} \ \mbox{于} \ \Omega. $$ 因此,结合$W^{1,p}(\Omega)$中弱收敛的定义,当 $n\rightarrow\infty$时,有
\begin{eqnarray}&&\int_{\Omega}\big{[}|\nabla u|^{p-2}\nabla u\nabla (u_{n}-u)+|u|^{p-2}u(u_{n}-u)\\&&+|\nabla v|^{p-2}\nabla v\nabla (v_{n}-v)+|v|^{p-2}v(v_{n}-v)\big{]}{\rm d}x\rightarrow 0,\end{eqnarray} (2.6)
且由(2.5)式可得到
\begin{eqnarray}&&\int_{\Omega}\big{[}|\nabla u_{n}|^{p-2}\nabla u_{n}\nabla (u_{n}-u)+|u_{n}|^{p-2}u_{n}(u_{n}-u)\\&&+|\nabla v_{n}|^{p-2}\nabla v_{n}\nabla (v_{n}-v) +|v_{n}|^{p-2}v_{n}(v_{n}-v)\big{]}{\rm d}x\\&=& \langle I'_{\lambda}(u_{n},v_{n}),(u_{n}-u,v_{n}-v)\rangle+\frac{1}{\alpha}\int_{\Omega}(F_{u}(u_{n},v_{n})(u_{n}-u)+F_{v}(u_{n},v_{n})(v_{n}-v)){\rm d}x\\&&+\int_{\Omega}(f(u_{n}-u)+g(v_{n}-v)){\rm d}x+\lambda \int_{\partial\Omega}(G_{u}(u_{n},v_{n})(u_{n}-u)+G_{v}(u_{n},v_{n})(v_{n}-v)){\rm d}s\\&=& \frac{1}{\alpha}\int_{\Omega}(F_{u}(u_{n},v_{n})(u_{n}-u)+F_{v}(u_{n},v_{n})(v_{n}-v)){\rm d}x+\int_{\Omega}(f(u_{n}-u)+g(v_{n}-v)){\rm d}x\\&&+\lambda \int_{\partial\Omega}(G_{u}(u_{n},v_{n})(u_{n}-u)+G_{v}(u_{n},v_{n})(v_{n}-v)){\rm d}s+o(1). \end{eqnarray} (2.7)
利用注1.2 (iii),存在$M_{2}>0$使得 $$F_{u}(u,v)\leq M_{2} (|u|^{p}+|v|^{p})^{\frac{\alpha-1}{p}},\ F_{v }(u,v)\leq M_{2}(|u|^{p}+|v|^{p})^{\frac{\alpha-1}{p}}, $$ $$G_{u}(u,v)\leq M_{2}(|u|^{p}+|v|^{p})^{\frac{\beta-1}{p}},\ G_{v }(u,v)\leq M_{2}(|u|^{p}+|v|^{p})^{\frac{\beta-1}{p}}, $$其中 \begin{eqnarray*}M_{2}=\max&\Big\{& \max_{|u|^{p}+|v|^{p}=1} F_{u}(u,v),\max_{|u|^{p}+|v|^{p}=1} F_{v}(u,v),\\ && \max_{|u|^{p}+|v|^{p}=1} G_{u}(u,v),\max_{|u|^{p}+|v|^{p}=1} G_{v}(u,v)\Big\}.\end{eqnarray*}

于是,利用Hölder,Sobolev和Sobolev迹不等式,存在常数$C_{3}$,$C_{4}>0$使得

\begin{eqnarray}\bigg|\int_{\Omega}F_{u}(u_{n},v_{n})(u_{n}-u){\rm d}x\bigg|&\leq& \bigg(\int_{\Omega}|F_{u}(u_{n},v_{n})|^{\frac{\alpha}{\alpha-1}}{\rm d}x\bigg)^{\frac{\alpha-1}{\alpha}}\bigg(\int_{\Omega}|u_{n}-u|^{\alpha}{\rm d}x\bigg)^{\frac{1}{\alpha}}\\&\leq& M_{2}\bigg(\int_{\Omega}(|u_{n}|^{p}+|v_{n}|^{p})^{\frac{\alpha}{p}}{\rm d}x\bigg)^{\frac{\alpha-1}{\alpha}}\bigg(\int_{\Omega}|u_{n}-u|^{\alpha}{\rm d}x\bigg)^{\frac{1}{\alpha}}\\&\leq& C_{3}\|(u_{n},v_{n})\|^{\alpha-1}\bigg(\int_{\Omega}|u_{n}-u|^{\alpha}{\rm d}x\bigg)^{\frac{1}{\alpha}}\rightarrow 0,~~ n\rightarrow\infty,\end{eqnarray} (2.8)
\begin{eqnarray}\bigg|\int_{\partial\Omega}G_{u}(u_{n},v_{n})(u_{n}-u){\rm d}s\bigg|&\leq& \bigg(\int_{\partial\Omega}|G_{u}(u_{n},v_{n})|^{\frac{\beta}{\beta-1}}{\rm d}s\bigg)^{\frac{\beta-1}{\beta}}\bigg(\int_{\partial\Omega}|u_{n}-u|^{\beta}{\rm d}s\bigg)^{\frac{1}{\beta}}\\&\leq& M_{2}\bigg(\int_{\partial\Omega}(|u_{n}|^{p}+|v_{n}|^{p} )^{\frac{\beta}{p}}{\rm d}s\bigg)^{\frac{\beta-1}{\beta}}\bigg(\int_{\partial\Omega}|u_{n}-u|^{\beta}{\rm d}s\bigg)^{\frac{1}{\beta}}\\&\leq& C_{4}\|(u_{n},v_{n})\|^{\beta-1}\bigg(\int_{\partial\Omega}|u_{n}-u|^{\beta}{\rm d}s\bigg)^{\frac{1}{\beta}}\rightarrow 0,~~ n\rightarrow\infty.\end{eqnarray} (2.9)
类似地,易证
$$\int_{\Omega}F_{v}(u_{n},v_{n})(v_{n}-v){\rm d}x\rightarrow 0,\ n\rightarrow\infty, $$ (2.10)
$$\int_{\partial\Omega}G_{v}(u_{n},v_{n})(v_{n}-v){\rm d}s\rightarrow 0,\ n\rightarrow\infty. $$ (2.11)
此外,由条件 $(A_{1})$ 推出
$$\bigg|\int_{\Omega}f(u_{n}-u){\rm d}x\bigg|\leq \|f\|_{\infty}\int_{\Omega}|u_{n}-u|{\rm d}x\rightarrow0,\ n\rightarrow\infty, $$ (2.12)
$$\bigg|\int_{\Omega}g(v_{n}-v){\rm d}x\bigg|\leq \|g\|_{\infty}\int_{\Omega}|v_{n}-v|{\rm d}x\rightarrow0,\ n\rightarrow\infty. $$ (2.13)
于是,由(2.6)-(2.13)式得\begin{eqnarray*}&&\int_{\Omega}\big{[}(|\nabla u_{n}|^{p-2}\nabla u_{n}-|\nabla u|^{p-2}\nabla u)(\nabla u_{n}-\nabla u)+(|u_{n}|^{p-2}u_{n}-|u|^{p-2}u)(u_{n}-u)\\&&+ (|\nabla v_{n}|^{p-2}\nabla v_{n}-|\nabla v|^{p-2}\nabla v)(\nabla v_{n}-\nabla v)+(|v_{n}|^{p-2}v_{n}-|v|^{p-2}v)(v_{n}-v)\big{]} {\rm d}x\rightarrow 0.\end{eqnarray*}利用基本不等式 $$\langle |x|^{p-2}x-|y|^{p-2}y,x-y\rangle\geq C_{p}|x-y|^{p},\ p\geq 2, $$ $$\langle |x|^{p-2}x-|y|^{p-2}y,x-y\rangle\geq \frac{C_{p}|x-y|^{2}}{(|x|+|y|)^{2-p}},\ 1<p<2, $$ 得到\begin{eqnarray*}&& \int_{\Omega}\big{[}(|\nabla u_{n}|^{p-2}\nabla u_{n}-|\nabla u|^{p-2}\nabla u)(\nabla u_{n}-\nabla u)+(|u_{n}|^{p-2}u_{n}-|u|^{p-2}u)(u_{n}-u)\big{]}{\rm d}x\\&\geq& \left\{\begin{array}{lll}C\|u_{n}-u\|^{p},~~&p\geq2,\\C\|u_{n}-u\|^{2},&1<p<2&,\end{array}\right.\end{eqnarray*} \begin{eqnarray*}&& \int_{\Omega}\big{[}(|\nabla v_{n}|^{p-2}\nabla v_{n}-|\nabla v|^{p-2}\nabla v)(\nabla v_{n}-\nabla v)+(|v_{n}|^{p-2}v_{n}-|v|^{p-2}v)(v_{n}-v)\big{]}{\rm d}x\\&\geq & \left\{\begin{array}{lll}C\|v_{n}-v\|^{p},~~&p\geq2,\\C\|v_{n}-v\|^{2},&1<p<2&.\end{array}\right.\end{eqnarray*}于是,当$n\rightarrow\infty$时,易得$\|(u_{n}-u,v_{n}-v)\|\rightarrow 0$. 证毕.
3 定理1.1的证明

定理1.1的证明 由引理2.1,2.2和山路引理(参见文献[16, 19]),存在$(u^{1},v^{1})\in X$使得$(u^{1},v^{1})$ 是问题(1.1)的解且满足

$$I_{\lambda}(u^{1},v^{1})\geq d_{0}>0. $$

接下来,利用Ekeland变分准则(参见文献[18])寻找问题(1.1)的另一个解$(u^{2},v^{2})$. 首先,选取$(\phi_{1},\phi_{2})\in C_{0}^{\infty}(\Omega)\times C_{0}^{\infty}(\Omega)$满足

$$\int_{\Omega}(f\phi_{1}+g\phi_{2}){\rm d}x>0. $$ 于是,当$t$充分小时,有\begin{eqnarray*}I_{\lambda}(t\phi_{1},t\phi_{2})&=&\frac{t^{p}}{p}\|(\phi_{1},\phi_{2})\|^{p}-\frac{t^{\alpha}}{\alpha}\int_{\Omega}F(\phi_{1},\phi_{2}){\rm d}x-t\int_{\Omega}(f\phi_{1}+g\phi_{2}){\rm d}x\\&&-\lambda t^{\beta}\int_{\partial\Omega}G(\phi_{1},\phi_{2}){\rm d}s<0.\end{eqnarray*} 因此,对任意开球$B_{r}\subset X$,有 $$-\infty < c_{r}=\inf_{\overline{B_{r}}} I_{\lambda}(u,v)<0. $$ 这就意味着,存在 $\delta>0$ 使得 $$c_{\delta}=\inf_{(u,v)\in \overline{B_{\delta}}} I_{\lambda}(u,v)<0 \ \mbox{且} \ \inf_{(u,v)\in \partial B_{\delta}} I_{\lambda}(u,v)>0. $$于是,得到
$$\inf_{(u,v)\in \partial B_{\delta}} I_{\lambda}(u,v)-\inf_{(u,v)\in B_{\delta}} I_{\lambda}(u,v)>\varepsilon_{n}>0, $$ (3.1)
其中$\varepsilon_{n}\rightarrow 0$,$n\rightarrow\infty$.

利用 Ekeland 变分准则,存在 $\{(u_{n},v_{n})\}\subset \overline{B_{\delta}}$ 使得

$$c_{\delta}\leq I_{\lambda}(u_{n},v_{n})<c_{\delta}+\varepsilon_{n}, $$ (3.2)
$$I_{\lambda}(u_{n},v_{n})<I_{\lambda}(u,v)+\varepsilon_{n}\|(u_{n}-u,v_{n}-v)\|, \ \forall(u,v)\in \overline{B_{\delta}},\ u\neq u_{n},\ v\neq v_{n}. $$ (3.3)
由 (3.1)-(3.2)式可得 $$I_{\lambda}(u_{n},v_{n})<c_{\delta}+\varepsilon_{n}\leq \inf_{(u,v)\in B_{\delta}} I_{\lambda}(u,v)+\varepsilon_{n}<\inf_{(u,v)\in \partial B_{\delta}} I_{\lambda}(u,v), $$从而推出$(u_{n},v_{n})\in B_{\delta}.$

考虑泛函 $\Phi: \overline{B_{\delta}}\rightarrow \bf{R}$,定义如下

$$\Phi(u,v)=I_{\lambda}(u,v)+\varepsilon_{n}\|(u_{n}-u,v_{n}-v)\|,\ \forall(u,v)\in \overline{B_{\delta}}. $$ (3.4)
由(3.3) 和 (3.4) 式得到 $$\Phi(u_{n},v_{n})<\Phi(u,v),\ \forall(u,v)\in \overline{B_{\delta}},\ u\neq u_{n},\ v\neq v_{n}. $$ 于是,$(u_{n},v_{n})$ 是$\Phi$ 的局部极小元.

并且,对$t>0$充分小和任意$(\varphi_{1},\varphi_{2})\in B_{1}$,有

$$\frac{\Phi(u_{n}+t\varphi_{1},v_{n}+t\varphi_{2})-\Phi(u_{n},v_{n})}{t}\geq 0, $$从而可得 $$\frac{I_{\lambda}(u_{n}+t\varphi_{1},v_{n}+t\varphi_{2})-I_{\lambda}(u_{n},v_{n})}{t}+\varepsilon_{n}\|(\varphi_{1},\varphi_{2})\|\geq 0. $$令$t\rightarrow 0^{+}$,有 $$\langle I'_{\lambda}(u_{n},v_{n}),(\varphi_{1},\varphi_{2})\rangle+\varepsilon_{n}\|(\varphi_{1},\varphi_{2})\|\geq 0,\ \forall (\varphi_{1},\varphi_{2})\in B_{1}. $$ 用$(-\varphi_{1},-\varphi_{2})$替代上式中的$(\varphi_{1},\varphi_{2})$,则有 $$-\langle I'_{\lambda}(u_{n},v_{n}),(\varphi_{1},\varphi_{2})\rangle+\varepsilon_{n}\|(\varphi_{1},\varphi_{2})\|\geq 0,\ \forall (\varphi_{1},\varphi_{2})\in B_{1}. $$ 故易得 $$\|I'_{\lambda}(u_{n},v_{n})\|\leq \varepsilon_{n}\rightarrow 0,~~n\rightarrow\infty. $$ 于是,存在序列$\{(u_{n},v_{n})\}\subset B_{\delta}$ 使得 $I_{\lambda}(u_{n},v_{n})\rightarrow c_{\delta}<0$,且 $I'_{\lambda}(u_{n},v_{n})\rightarrow 0$,$n\rightarrow\infty.$ 利用引理 2.2,$\{(u_{n},v_{n})\}$ 在 $X$中存在一强收敛的子序列 (仍记为 $\{(u_{n},v_{n})\}$) 满足$(u_{n},v_{n})\rightarrow (u^{2},v^{2})$. 因此,$(u^{2},v^{2})$ 是问题(1.1) 的解且满足$I_{\lambda}(u^{2},v^{2})<0$. 证毕.
参考文献
[1] de Morais Filho D C, Pereira F R. Critical Ambrosetti-Prodi type problems for systems of elliptic equations. Nonlinear Anal, 2008, 68:194-207
[2] Lv D F, Liu Q. Multiplicity of solutions for a class of quasilinear Schrödinger systems in RN. Computers and Mathematics with Applications, 2014, 66:2532-2544
[3] Zhou J, Kim C G. Multipple solutions for a p-Laplacian system with nonlinear boundary conditions. Bull Korean Math Soc, 2014, 51:99-113
[4] Rasouli S H, Afrouzi G A. The Nehari manifold for a class of concave-convex elliptic systems involving the p-Laplacian and nonlinear boundary condition. Nonlinear Anal, 2010, 73:3390-3401
[5] Brown K J, Wu T F. A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function. J Math Anal Appl, 2008, 337:1326-1336
[6] Duan S Z, Wu X. An existence result for a class of p-Laplacian elliptic systems involving homogeneous nonlinearities in RN. Nonlinear Anal, 2011, 74:4723-4737
[7] Afrouzi G A, Rasouli S H. A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system. Nonlinear Anal, 2009, 71:445-455
[8] Benmouloud S, Echarghaoui R, Sbai S M. Multiplicity of positive solutions for a critical quasilinear elliptic system with concave and convex nonlinearities. J Math Anal Appl, 2012, 396:375-385
[9] Wu T F. The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions. Nonlinear Anal, 2008, 68:1733-1745
[10] Hsu T S. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities. Nonlinear Anal, 2009, 71:2688-2698
[11] Liu S, Chen C S. Multiple solutions of a quasilinear elliptic system involving the nonlinear boundary conditions on exterior domain. Math Meth Appl Sci, 2013, 36:5-17
[12] Lu F Y. The Nehari manifold and application to a semilinear elliptic system. Nonlinear Anal, 2009, 71:3425-3433
[13] Brown K J, Wu T F. A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function. J Math Anal Appl, 2008, 337:1326-1336
[14] Zhang Y J. Multiple solutions of an inhomogeneous Neumann problem for an elliptic system with critical Sobolev exponent. Nonlinear Anal, 2012, 75:2047-2059
[15] Li Q, Yang Z D. Multiplicity of positive solutions for a p-q-Laplacian system with concave and critical nonlinearities. J Math Anal Appl, 2015, 423:660-680
[16] Willem M. Minimax Theorems. Boston:Birkhäuser, 1996
[17] Struwe M. Variational Methods, Applications to Nonlinear Partional Differential Equations and Hamiltonian Systems. Berlin:Springer-Verlag, 2000
[18] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47:324-353
[19] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 141:349-381