数学物理学报  2016, Vol. 36 Issue (2): 254-266   PDF (286 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
曾娟娟
刘慧芳
亚纯函数的非线性微分多项式分担多项式的唯一性
曾娟娟, 刘慧芳    
江西师范大学数学与信息科学学院 南昌 330022
摘要: 研究了亚纯函数的某类非线性微分多项式弱分担一个多项式的唯一性问题,得到两个亚纯函数的唯一性定理,推广了Li和Yi(Comput Math Appl,2011,62:539-550),Chen和Zhang等(Comput Math Appl,2008,56:3000-3014)所得的结果.
关键词: 唯一性     亚纯函数     分担值     微分多项式    
Uniqueness of Meromorphic Functions Concerning Nonlinear Differential Polynomials Sharing a Polynomial
Zeng Juanjuan, Liu Huifang    
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022
Foundation Item: Supported by the NSFC (11201195) and the Natural Science Foundation of Jiangxi Province (20122BAB201012, 20132BAB201008)
Abstract: In this paper, we prove some uniqueness theorems of meromorphic functions whose certain nonlinear differential polynomials share a polynomial weakly. Those results in this paper generalize and improve some previous results obtained by Li and Yi (Comput Math Appl, 2011, 62: 539-550), Chen and Zhang et al (Comput Math Appl, 2008, 56: 3000-3014).
Key words: Uniqueness     Meromorphic function     Shared values     Differential polynomial    
1 引言及主要结果

假定读者熟悉Nevanlinna值分布理论的标准记号和基本结果(参见文献[5, 10, 12]).设$f$为非常数亚纯函数,$S(r,f)$表示任一满足$S(r,f)=o(T(r,f))(r\longrightarrow \infty)$的量,可能须除去一个线测度有限的集合.

设$f$和$g$为非常数亚纯函数,$a$为任意有限复数,$k$是正整数或$+\infty$,定义$\overline{E}_{k)}(a,f)$为$f-a$的重数$\leq k$的零点集合,且不计重数; 若考虑重数,则记为$E_{k)}(a,f)$. 如果$\overline{E}_{\infty)}(a,f)=\overline{E}_{\infty)}(a,g)$ (或$E_{\infty)}(a,f)=E_{\infty)}(a,g)$),则称$f$和$g$IM(或CM)分担$a$. 定义$\overline{N}_{k)}\left(r,\frac{1}{f-a}\right)$为$f-a$的重数$\leq k$的零点的精简计数函数,$\overline{N}_{(k}\left(r,\frac{1}{f-a}\right)$为$f-a$的重数$> k$的零点的精简计数函数.记 $$N_{k}\left(r,\frac{1}{f-a}\right)=\overline{N}\left(r,\frac{1}{f-a}\right)+\overline{N}_{(2}\left(r,\frac{1}{f-a}\right)+\cdots+\overline{N}_{(k}\left(r,\frac{1}{f-a}\right), $$ $$\Theta (a,f)=1-\mathop{\overline{\lim}}\limits_{r\rightarrow\infty}\frac{\overline{N}\left(r,\frac{1}{f-a}\right)}{T(r,f)},\Theta_{k)}(a,f)=1-\mathop{\overline{\lim}}\limits_{r\rightarrow\infty}\frac{\overline{N}_{k)}\left(r,\frac{1}{f-a}\right)}{T(r,f)} $$(参见文献 [1, 7, 8, 12]等).

Hayman[6]和 Clunie[2]证明了如下结论.

定理 A 设$f(z)$为超越整函数,$n\geq 1$为整数,则$f^{n}f'=1$有无穷多个根.

相应于定理A,Fang和Hua[4],Yang和Hua[13]分别得到下述定理.

定理 B 设$f(z)$和$g(z)$为非常数整函数,$n\geq6$为整数. 如果$f^nf'$与$g^ng'$CM分担1,则$f(z)=c_1{\rm e}^{cz},g(z)=c_2{\rm e}^{-cz}$,其中$c_1$,$c_2$,$c$为满足$(c_1c_2)^{n+1}c^2=-1$的常数,或者$f(z)=tg(z)$,其中$t^{n+1}=1$.

2007年,Bhoosnurmath 和 Dyavanal推广定理A得到如下定理.

定理 C[1] 设$f$为超越亚纯函数,$n,k$ 为正整数满足$n\geq k+3$,则 $\{f^{n}(f-1)\}^{^{(k)}}=1$ 有无穷多个根.

相应于定理C,他们也得到了如下的唯一性定理.

定理 D[1] 设$f(z)$和$g(z)$为非常数亚纯函数满足$\Theta(\infty,f)>\frac{3}{n+1}$. $n,k$是正整数且$n\geq3k+13$.如果$[f^{n}(f-1)]^{(k)}$与 $[g^{n}(g-1)]^{(k)}$ CM分担1,则$f(z)\equiv g(z)$.

2008年,Chen 和Zhang等[3]考虑将"CM分担1"条件改为"IM分担1",在 $f$ 和 $g$ 为非常数整函数的情况下,得到下述结果.

定理 E设$f(z)$和$g(z)$为非常数整函数,$n,k$为正整数且$n>5k+13$.如果 $[f^{n}(f-1)]^{(k)}$与$[g^{n}(g-1)]^{(k)}$ IM分担1,则$f(z)\equiv g(z)$.

近来,Li和Yi[7]研究了当亚纯函数分担1个公共值改为分担1个多项式的唯一性问题,得到下述结果.

定理 F 设$f$和$g$为超越亚纯函数,$n,k$为正整数满足$n>9k+20$ 和 $\max\{\chi_1,$ $\chi_2\}<0$,其中

$ \begin{equation}\label{eq:a1}\chi_1=\frac{2}{n-2k+1}+\frac{2}{n+2k+1}+\frac{2k+1}{n+k+1}+1-\Theta_{k)}(1,f)-\Theta_{k-1)}(1,f),\end{equation}$ (1.1)
$\begin{equation}\label{eq:a2}\chi_2=\frac{2}{n-2k+1}+\frac{2}{n+2k+1}+\frac{2k+1}{n+k+1}+1-\Theta_{k)}(1,g)-\Theta_{k-1)}(1,g).\end{equation}$ (1.2)
如果$\Theta(\infty,f)>\frac{2}{n}$ 且$\{f^{n}(f-1)\}^{(k)}-P$和$\{g^{n}(g-1)\}^{(k)}-P$ IM分担$0$,其中$P$是非零多项式,则$f\equiv g$.

本文中,我们继续考虑减弱亚纯函数分担小函数的条件,得到如下结果,推广了定理E和定理F.

定理 1.1设$f$和$g$为超越亚纯函数,$n,k$为正整数满足$n>9k+20$ 和 $\max\{\chi_1,$ $\chi_2\}<0$,其中$\chi_1$ 和 $\chi_2$ 如(1.1)和(1.2)式所示. 如果$\Theta(\infty,f)>\frac{2}{n},$且 $$\overline{E}_{l)}\left(0,\{f^{n}(f-1)\}^{(k)}-P\right)=\overline{E}_{l)}\left(0,\{g^{n}(g-1)\}^{(k)}-P\right), $$其中$P$是非零多项式,$l$是正整数或$\infty$,则$f\equiv g$.

定理 1.2设$f$和$g$为超越整函数,$n,k$为正整数满足$n>5k+13$,如果 $$\overline{E}_{l)}\left(0,\{f^{n}(f-1)\}^{(k)}-P\right)=\overline{E}_{l)}\left(0,\{g^{n}(g-1)\}^{(k)}-P\right), $$其中$P$是非零多项式,$l$是正整数或$\infty$,则$f\equiv g$.

在定理1.1和定理1.2中,当 $l=\infty$ 时,我们得到 $\{f^{n}(f-1)\}^{(k)}-P$ 和$\{g^{n}(g-1)\}^{(k)}-P$ IM分担$0$,因此定理1.1和定理1.2是定理E和定理F的推广.

2 引理

设$f$和$g$为非常数亚纯函数,$a$为任意有限复数,$z_0$为$f-a$和$g-a$的公共零点,其重数分别为$r$和$q$. 我们用$\overline{N}_{L}(r,\frac{1}{f-a})$表示$f-a$和$g-a$的公共零点中满足$r>q\geq1$的那些零点的精简计数函数,用$\overline{N}^{1)}_{E}(r,\frac{1}{f-a})$表示$f-a$和$g-a$的公共零点中满足$r=q=1$的那些零点的精简计数函数,用$\overline{N}^{(2}_{E}(r,\frac{1}{f-a})$表示$f-a$和$g-a$的公共零点中满足$r=q\geq2$的那些零点的精简计数函数.类似地,可定义$\overline{N}_{L}(r,\frac{1}{g-a}),$$\overline{N}^{1)}_{E}(r,\frac{1}{g-a})$和$\overline{N}^{(2}_{E}(r,\frac{1}{g-a})$.同时我们用$\overline{N}_{\ast}(r,\frac{1}{f-a})$表示是$f-a$的零点但不是$g-a$的零点的精简计数函数. 类似地,可定义$\overline{N}_{\ast}(r,\frac{1}{g-a})$.

引理 2.1[11] 设$f$为非常数亚纯函数,$k(\geq1)$为整数,$\varphi(\not\equiv0,\infty)$ 为$f$的小函数. 则 $$ T(r,f) \leq \overline{N}(r,f)+N\left(r,\frac{1}{f}\right)+N\left(r,\frac{1}{f^{(k)}-\varphi}\right)-N\Bigg(r,\frac{1}{\Big(\frac{f^{(k)}}{\varphi}\Big)'}\Bigg)+S(r,f). $$

引理 2.2[9, 14] 设$f$为非常数亚纯函数,$k,p$为正整数. 则 $$ N_{p}\Big(r,\frac{1}{f^{(k)}}\Big)\leq N_{p+k}\Big(r,\frac{1}{f}\Big)+k\overline{N}(r,f)+S(r,f). $$

引理 2.3设$f$为超越亚纯函数,$P$为非零多项式,$k$为正整数. 令$F=\frac{f^{(k)}}{P}$,则 $$ \overline{N}_{(2}\Big(r,\frac{1}{F-1}\Big)\leq(k+1)\overline{N}(r,f)+N_{k+1}\Big(r,\frac{1}{f}\Big)+S(r,f). $$

由引理2.2 可得\begin{eqnarray*}\overline{N}_{(2}\Big(r,\frac{1}{F-1}\Big)&\leq&\overline{N}\Big(r,\frac{F}{F'}\Big)\\&\leq&T\Big(r,\frac{F'}{F}\Big)+O(1)\\&\leq&\overline{N}(r,F)+\overline{N}\Big(r,\frac{1}{F}\Big)+S(r,f)\\&\leq&\overline{N}(r,f)+N_1\Big(r,\frac{1}{f^{(k)}}\Big)+S(r,f)\\&\leq &(k+1)\overline{N}(r,f)+N_{k+1}\Big(r,\frac{1}{f}\Big)+S(r,f).\end{eqnarray*}证毕.

引理 2.4设$f$和$g$为超越亚纯函数,$P$是为非零多项式,令$F=\frac{f^{(k)}}{P},G=\frac{g^{(k)}}{P}$.如果$\overline{E}_{l)}\left(0,f^{(k)}-P\right) $$=\overline{E}_{l)}\left(0,g^{(k)}-P\right)$,其中$k$为正整数,$l$为正整数或$\infty$,则 $$ \overline{N}_{L}\Big(r,\frac{1}{F-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{F-1}\Big)\leq(k+1)\overline{N}(r,f)+N_{k+1}\Big(r,\frac{1}{f}\Big)+S(r,f), $$ $$ \overline{N}_{L}\Big(r,\frac{1}{G-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{G-1}\Big)\leq(k+1)\overline{N}(r,g)+N_{k+1}\Big(r,\frac{1}{g}\Big)+S(r,g). $$

由$F$的表达式可知$F-1$的零点可能来自$f^{(k)}-P$的零点和$P$的零点.若$z_0\not\in\{z:P(z)=0\}$是$F-1$的单零点,则$z_0$是$f^{(k)}-P$的单零点. 再结合条件$\overline{E}_{l)}(0,f^{(k)}-P)=\overline{E}_{l)}(0,g^{(k)}-P)$,我们得到$z_0$是$g^{(k)}-P$的零点. 因此$z_0$是$G-1$的零点. 由此可得 $$\begin{eqnarray*}\overline{N}_{L}\Big(r,\frac{1}{F-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{F-1}\Big)&\leq&\overline{N}_{(2}\Big(r,\frac{1}{F-1}\Big)+\overline{N}\Big(r,\frac{1}{P}\Big)\\&\leq& \overline{N}_{(2}\Big(r,\frac{1}{F-1}\Big)+O(\log r).\end{eqnarray*}$$由上述不等式和引理2.3,我们得到 $$\overline{N}_{L}\Big(r,\frac{1}{F-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{F-1}\Big)\leq(k+1)\overline{N}(r,f)+N_{k+1}\Big(r,\frac{1}{f}\Big)+S(r,f). $$类似地,我们有 $$\overline{N}_{L}\Big(r,\frac{1}{G-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{G-1}\Big)\leq(k+1)\overline{N}(r,g)+N_{k+1}\Big(r,\frac{1}{g}\Big)+S(r,g). $$证毕.

引理 2.5设$f$和$g$为超越亚纯函数,$P$为非零多项式,令

$F=\frac{{{f}^{(k)}}}{P},G=\frac{{{g}^{(k)}}}{P},$ (2.1)
$H=\left( \frac{F\text{''}}{{{F}'}}-\frac{2{F}'}{F-1} \right)-\left( \frac{G\text{''}}{{{G}'}}-\frac{2{G}'}{G-1} \right).$ (2.2)

如果$\overline{E}_{l)}\left(0,f^{(k)}-P\right)=\overline{E}_{l)}\left(0,g^{(k)}-P\right)$且$H\not\equiv 0$,其中$k$为正整数,$l$为正整数或$\infty$,则$$\begin{eqnarray*}T(r,f)&\leq&(2k+4)\overline{N}(r,f)+(2k+3)\overline{N}(r,g)+3N_{k+1}\left(r,\frac{1}{f}\right)+2N_{k+1}\left(r,\frac{1}{g}\right)\\& &+\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}\left(r,\frac{1}{g}\right)+S(r,f)+S(r,g).\end{eqnarray*}$$

由(2.1)和(2.2)式可得

$\begin{equation}m(r,H)=S(r,f)+S(r,g).\end{equation}$ (2.3)
由(2.2)式可知$H$的极点可能来自于$F$和$G$的极点,$F-1$和$G-1$的零点,$F'$和$G'$的零点,且$H$的每个极点都为单极点.

设$z_1$为$F$的单极点,通过简单的计算可知$F"/F'-2F'/(F-1)$在$z_1$处解析.类似地,如果$z_1$是$G$的单极点,则$G"/G'-2G'/(G-1)$在$z_1$处解析.

设$z_2$是为$F-1$和$G-1$具有相同重数的公共零点,则由(2.2)式可得$H$在$z_2$处解析.并且当$z_2$是$F-1$和$G-1$的公共单零点时,我们可得$H(z_2)=0$. 故由(2.3)式可得

$\begin{eqnarray}\overline{N}^{1)}_{E}\bigg(r,\frac{1}{F-1}\bigg)&=&\overline{N}^{1)}_{E}\bigg(r,\frac{1}{G-1}\bigg)\leq N\bigg(r,\frac{1}{H}\bigg)\\ &\leq& T(r,H)+O(1)\\ &\leq& N(r,H)+S(r,f)+S(r,g).\end{eqnarray}$ (2.4)
记$\overline{N_0}\Big(r,\frac{1}{F'}\Big)$为是$F'$零点,但不是$f(F-1)$零点的精简计数函数,由上述分析可得
$\begin{eqnarray}N(r,H)&\leq &\overline{N}_{(2}(r,F)+\overline{N}_{(2}(r,G)+\overline{N}_{L}\left(r,\frac{1}{F-1}\right)+\overline{N}_{L}\left(r,\frac{1}{G-1}\right)+\overline{N}_{*}\left(r,\frac{1}{F-1}\right)\\&&+\overline{N}_{*}\left(r,\frac{1}{G-1}\right)+\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}\left(r,\frac{1}{g}\right)+\overline{N}_{0}\left(r,\frac{1}{F'}\right)+\overline{N}_{0}\left(r,\frac{1}{G'}\right)\\&\leq &\overline{N}(r,f)+\overline{N}(r,g)+\overline{N}_{L}\left(r,\frac{1}{F-1}\right)+\overline{N}_{L}\left(r,\frac{1}{G-1}\right)+\overline{N}_{*}\left(r,\frac{1}{F-1}\right)\\&&+\overline{N}_{*}\left(r,\frac{1}{G-1}\right)+\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}\left(r,\frac{1}{g}\right)+\overline{N}_{0}\left(r,\frac{1}{F'}\right)+\overline{N}_{0}\left(r,\frac{1}{G'}\right)\\&&+O(\log r).\end{eqnarray}$ (2.5)
设$z_3\not\in \{z:P(z)=0\}$ 为$f$的$l(\geq k+2)$重零点,则由(2.1)式可知$z_3$为$F'$的$l-k-1(\geq 1)$重零点.于是由引理 2.1可得
$\begin{eqnarray}T(r,f) &\leq&\overline{N}(r,f)+N\Big(r,\frac{1}{f}\Big)+N\Big(r,\frac{1}{P(F-1)}\Big)-N\Big(r,\frac{1}{F'}\Big)+S(r,f)\\&\leq&\overline{N}(r,f)+N_{k+1}\Big(r,\frac{1}{f}\Big)+\overline{N}\Big(r,\frac{1}{F-1}\Big)-N_{0}\Big(r,\frac{1}{F'}\Big)+O(\log r)+S(r,f)\\&\leq&\overline{N}(r,f)+N_{k+1}\Big(r,\frac{1}{f}\Big)+\overline{N}\Big(r,\frac{1}{F-1}\Big)-N_{0}\Big(r,\frac{1}{F'}\Big)+S(r,f). \end{eqnarray}$ (2.6)
类似地
$ \begin{equation}T(r,g)\leq\overline{N}(r,g)+N_{k+1}\Big(r,\frac{1}{g}\Big)+\overline{N}\Big(r,\frac{1}{G-1}\Big)-N_{0}\Big(r,\frac{1}{G'}\Big)+S(r,g). \end{equation}$ (2.7)
由于$$\begin{eqnarray*} \overline{N}\Big(r,\frac{1}{F-1}\Big)&=&\overline{N}^{1)}_{E}\Big(r,\frac{1}{F-1}\Big)+\overline{N}^{(2}_{E}\Big(r,\frac{1}{F-1}\Big)+\overline{N}_{L}\Big(r,\frac{1}{F-1}\Big)\\&&+\overline{N}_{L}\Big(r,\frac{1}{G-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{F-1}\Big),\end{eqnarray*} $$结合(2.4)和(2.5)式得
$\begin{eqnarray} \overline{N}(r,\frac{1}{F-1})&\leq &\overline{N}(r,f)+\overline{N}(r,g)+2\overline{N}_{L}\left(r,\frac{1}{F-1}\right)+2\overline{N}_{L}\left(r,\frac{1}{G-1}\right)\\&&+2\overline{N}_{*}\left(r,\frac{1}{F-1}\right)+\overline{N}_{*}\left(r,\frac{1}{G-1}\right) +\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}\left(r,\frac{1}{g}\right)\\&&+\overline{N}_{0}\left(r,\frac{1}{F'}\right)+ \overline{N}_{0}\left(r,\frac{1}{G'}\right)+\overline{N}^{(2}_{E}\Big(r,\frac{1}{F-1}\Big)+S(r,f)+S(r,g).\end{eqnarray} $ (2.8)
由引理 2.4 可得
$\begin{equation}\overline{N}_{L}\Big(r,\frac{1}{F-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{F-1}\Big)\leq(k+1)\overline{N}(r,f)+N_{k+1}\Big(r,\frac{1}{f}\Big)+S(r,f) \ \end{equation}$ (2.9)
$\begin{equation}\overline{N}_{L}\Big(r,\frac{1}{G-1}\Big)+\overline{N}_{*}\Big(r,\frac{1}{G-1}\Big)\leq(k+1)\overline{N}(r,g)+N_{k+1}\Big(r,\frac{1}{g}\Big)+S(r,g).\end{equation}$ (2.10)
结合(2.1)式有
$ \begin{eqnarray}\overline{N}_{L}\Big(r,\frac{1}{G-1}\Big)+\overline{N}^{(2}_{E}\Big(r,\frac{1}{G-1}\Big)+\overline{N}\Big(r,\frac{1}{G-1}\Big)&\leq& N\Big(r,\frac{1}{G-1}\Big)\\& \leq& T(r,G)+O(1)\\&\leq& T\left(r,g^{(k)}\right)+O(\log r) \\&\leq& T(r,g)+k\overline{N}(r,g)+S(r,g).\end{eqnarray}$ (2.11)
因此由(2.6)-(2.11)式得
$\begin{eqnarray}T(r,f)+T(r,g)&\leq&\overline{N}(r,f)+\overline{N}(r,g)+N_{k+1}\left(r,\frac{1}{f}\right)+N_{k+1}\left(r,\frac{1}{g}\right)+\overline{N}\left(r,\frac{1}{F-1}\right)\\&&+\overline{N}\left(r,\frac{1}{G-1}\right)-N_{0}\left(r,\frac{1}{F'}\right)-N_{0}\left(r,\frac{1}{G'}\right)+S(r,f)+S(r,g)\\&\leq& (2k+4)\overline{N}(r,f)+(2k+3)\overline{N}(r,g)+3N_{k+1}\left(r,\frac{1}{f}\right)+2N_{k+1}\left(r,\frac{1}{g}\right)\\&&+\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}\left(r,\frac{1}{g}\right)+T(r,g)+S(r,f)+S(r,g).\end{eqnarray}$ (2.12)
再由(2.12)式得$$\begin{eqnarray*}T(r,f)&\leq&(2k+4)\overline{N}(r,f)+(2k+3)\overline{N}(r,g)+3N_{k+1}\left(r,\frac{1}{f}\right)+2N_{k+1}\left(r,\frac{1}{g}\right)\\& &+\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}\left(r,\frac{1}{g}\right)+S(r,f)+S(r,g).\end{eqnarray*}$$引理 2.5得证.

引理 2.6[5, 12] 设$f(z)$为非常数亚纯函数, $$P(f)=a_{n}f^{n}+\cdots+a_{1}f+a_{0}, $$其中$a_{0}$,$a_{1},\cdots,a_{n}(\not\equiv 0)$是$f$的小函数,则$T(r,P(f))=n T(r,f)+S(r,f)$.

引理 2.7[5] 设$f$为非常数亚纯函数. 则对任意正整数$k$,有$$\begin{eqnarray*} \frac{f^{(k)}}{f}&=&\left(\frac{f'}{f}\right)^{k}+\frac{k(k-1)}{2} \left(\frac{f'}{f}\right)^{k-2}\left(\frac{f'}{f}\right)'\\ &&+ \frac{k(k-1)(k-2)}{6}\left(\frac{f'}{f}\right)^{k-3}\left(\frac{f'}{f}\right)"+P_{k-2}\left(\frac{f'}{f}\right),\end{eqnarray*}$$其中$P_{k-2}\left(\frac{f'}{f}\right)$是关于$\frac{f'}{f}$的常系数微分多项式且次数$\leq k-2$.

引理 2.8[5, 12] 设$f$为非常数亚纯函数,$\alpha_{1}(z)$,$\alpha_{2}(z)$为$f$的小亚纯函数,则 $$ T(r,f)\leq \overline{N}(r,f)+\overline{N}\Big(r,\frac{1}{f-\alpha_{1}}\Big)+\overline{N}\Big(r,\frac{1}{f-\alpha_{2}}\Big)+S(r,f). $$

引理 2.9设$f$和$g$为超越整函数,$a,b$为非零常数,$n,k$为正整数满足$n>k$. 令 $$ F=[f^{n}(af+b)]^{(k)},G=[g^{n}(ag+b)]^{(k)}, $$则$FG\not\equiv P^{2}$,其中$P$是非零多项式.

设$FG\equiv P^{2}$,则

$\begin{equation}[f^{n}(af+b)]^{(k)}[g^{n}(ag+b)]^{(k)}\equiv P^{2}.\end{equation}$ (2.13)
设$z_0\not\in \{z:P(z)=0\}$,由于$f$和$g$为超越整函数且$n>k$,故由(2.13)式可得$f(z_0)\neq 0$,$g(z_0)\neq 0$. 于是我们有
$\begin{equation}\overline{N}\Big(r,\frac{1}{f}\Big)\leq \overline{N}\Big(r,\frac{1}{P}\Big)=O(log r),\overline{N}\Big(r,\frac{1}{g}\Big)\leq\overline{N}\Big(r,\frac{1}{P}\Big)=O(\log r). \end{equation}$ (2.14)
由引理2.7可得
$\begin{equation}[f^{n}(af+b)]^{(k)}=a\left(f^{n+1}\right)^{(k)}+b\left(f^{n}\right)^{(k)}=aDf^{n+1}+bQf^{n}=aDf^{n}\left(f+\frac{b}{a}\cdot\frac{Q}{D}\right),\end{equation}$ (2.15)
其中
$\begin{eqnarray}D&=&(n+1)^k\left(\frac{f'}{f}\right)^k+\frac{k(k-1)}{2}(n+1)^{k-1}\left(\frac{f'}{f}\right)^{k-2}\left(\frac{f'}{f}\right)'\\&&+ \frac{k(k-1)(k-2)}{6}(n+1)^{k-2} \left(\frac{f'}{f}\right)^{k-3} \left(\frac{f'}{f}\right)" +A_{k-2}\left(\frac{f'}{f}\right),\end{eqnarray}$ (2.16)
$\begin{eqnarray}Q&=&n^k\left(\frac{f'}{f}\right)^k+\frac{k(k-1)}{2}n^{k-1}\left(\frac{f'}{f}\right)^{k-2}\left(\frac{f'}{f}\right)'\\&&+ \frac{k(k-1)(k-2)}{6}n^{k-2}\left(\frac{f'}{f}\right)^{k-3}\left(\frac{f'}{f}\right)" +B_{k-2}\left(\frac{f'}{f}\right),\end{eqnarray}$ (2.17)
这里$A_{k-2}\left(\frac{f'}{f}\right),B_{k-2}\left(\frac{f'}{f}\right)$是关于$\frac{f'}{f}$的常系数微分多项式且次数$\leq k-2$. 由(2.14)和(2.16)式可得
$\begin{equation}T(r,D)=m(r,D)+N(r,D)=S(r,f)+O\left(\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}(r,f)\right)=S(r,f).\end{equation}$ (2.18)
类似地,由(2.14)和(2.17)式可得
$\begin{equation}T(r,Q)=S(r,f).\end{equation}$ (2.19)
于是由(2.18)和(2.19)式得
$\begin{equation}T\left(r,\frac{b}{a}\cdot\frac{Q}{D}\right)=S(r,f).\end{equation}$ (2.20)
另一方面,由(2.13)-(2.15)式和(2.18)式得
$\begin{equation}\overline{ N}\Bigg(r,\frac{1}{f+\frac{b}{a}\frac{Q}{R}}\Bigg)=S(r,f).\end{equation}$ (2.21)
故由(2.14),(2.20),(2.21)式和引理 2.8,有 $$T(r,f)\leq \overline{N}(r,f)+\overline{N}\bigg(r,\frac{1}{f}\bigg)+\overline{N}\Bigg(r,\frac{1}{f+\frac{b}{a}\frac{Q}{R}}\Bigg)+S(r,f) \leq S(r,f). $$矛盾. 引理 2.9得证.

3 定理的证明

定理1.1的证明 令$F_{1}=f^{n}(f-1)$,$G_{1}=g^{n}(g-1)$,则由引理 2.6,可得

$\begin{equation}T(r,F_1)=(n+1)T(r,f)+S(r,f),T(r,G_1)=(n+1)T(r,g)+S(r,g).\end{equation}$ (3.1)
同时令
$\begin{equation}F=\frac{F_1^{(k)}}{P},G=\frac{G_1^{(k)}}{P},\end{equation}$ (3.2)
$ \begin{equation}H=\left(\frac{F"}{F'}-\frac{2F'}{F-1}\right)-\left(\frac{G"}{G'}-\frac{2G'}{G-1}\right).\end{equation}$ (3.3)
由于 $$\overline{E}_{l)}\Big(0,\{f^n(f-1)\}^{(k)}-P\Big)=\overline{E}_{l)}\Big(0,\{g^n(g-1)\}^{(k)}-P\Big), $$我们有
$\begin{equation}\overline{E}_{l)}\Big(0,F_1^{(k)}-P\Big)=\overline{E}_{l)}\Big(0,G_1^{(k)}-P\Big).\end{equation}$ (3.4)
假设$H\not\equiv 0$,则由(3.1),(3.4)式和引理 2.5,可得
$\begin{eqnarray}T(r,F_1)&\leq&(2k+4)\overline{N}(r,F_1)+(2k+3)\overline{N}(r,G_1)+3N_{k+1}\left(r,\frac{1}{F_1}\right)+2N_{k+1}\left(r,\frac{1}{G_1}\right)\\&&+\overline{N}\left(r,\frac{1}{F_1}\right)+\overline{N}\left(r,\frac{1}{G_1}\right)+S(r,f)+S(r,g)\end{eqnarray}$ (3.5)
$\begin{eqnarray}T(r,G_1)&\leq&(2k+4)\overline{N}(r,G_1)+(2k+3)\overline{N}(r,F_1)+3N_{k+1}\left(r,\frac{1}{G_1}\right)+2N_{k+1}\left(r,\frac{1}{F_1}\right)\\&&+\overline{N}\left(r,\frac{1}{G_1}\right)+\overline{N}\left(r,\frac{1}{F_1}\right)+S(r,f)+S(r,g).\end{eqnarray}$ (3.6)
故由(3.5)和(3.6)式,可得
$\begin{eqnarray}T(r,F_1)+T(r,G_1)&\leq&(4k+7)\Big[\overline{N}(r,F_1)+\overline{N}(r,G_1)\Big]\\&&+5\bigg[N_{k+1}\left(r,\frac{1}{F_1}\right)+N_{k+1}\left(r,\frac{1}{G_1}\right)\bigg]\\&&+2\bigg[\overline{N}\left(r,\frac{1}{F_1}\right)+\overline{N}\left(r,\frac{1}{G_1}\right)\bigg]+S(r,f)+S(r,g).\end{eqnarray}$ (3.7)
由$F_1$的表达式及$n>9k+20$,可得
$\begin{eqnarray}N_{k+1}\bigg(r,\frac{1}{F_{1}}\bigg)&=&N_{k+1}\bigg(r,\frac{1}{f-1}\bigg)+N_{k+1}\bigg(r,\frac{1}{f^{n}}\bigg)\\&\leq& N\bigg(r,\frac{1}{f-1}\bigg)+(k+1)N\bigg(r,\frac{1}{f}\bigg)\\&\leq&(k+2)T(r,f)+O(1)\end{eqnarray}$ (3.8)
$\begin{equation}\overline{N}\left(r,\frac{1}{F_1}\right)=\overline{N}\left(r,\frac{1}{f}\right)+\overline{N}\left(r,\frac{1}{f-1}\right)\leq 2T(r,f)+O(1),\overline{N}(r,F_1)=\overline{N}(r,f).\end{equation}$ (3.9)
类似地,我们有
$\begin{equation}N_{k+1}\Big(r,\frac{1}{G_{1}}\Big)\leq(k+2)T(r,g)+O(1),~\overline{N}\left(r,\frac{1}{G_1}\right)\leq 2T(r,g)+O(1),~\overline{N}(r,G_1)=\overline{N}(r,g).\end{equation}$ (3.10)
故由(3.1),(3.7)-(3.10)式,可得 $$n\Big[T(r,f)+T(r,g)\Big]\leq (9k+20)\Big[T(r,f)+T(r,g)\Big]+S(r,f)+S(r,g). $$这与$n>9k+20$矛盾. 故有$H\equiv 0$.再结合(3.3)式可得
$\begin{equation}\frac{F"}{F'}-\frac{2F'}{F-1}=\frac{G"}{G'}-\frac{2G'}{G-1}.\end{equation}$ (3.11)
由(3.11)式可得 $$\frac{1}{F-1}=\frac{A}{G-1}+B, $$其中$A(\neq0),B$是两个复常数. 再结合(3.2)式可得
$\begin{equation}\frac{P}{F_1^{(k)}-P}=\frac{AP}{G_1^{(k)}-P}+B.\end{equation}$ (3.12)

下面我们分三种情形证明$F_1^{(k)}G_1^{(k)}\equiv P^2$或$F_1\equiv G_1$.

情形 1. $B\neq 0$且$A=B$. 若$B=-1$,则由(3.12)式得$F_1^{(k)}\cdot G_1^{(k)}\equiv P^2$.若$B\neq-1$,则由(3.12)式得

$\begin{equation}F_1^{(k)}=P\left\{\frac{1+B}{B}-\frac{P}{BG_1^{(k)}}\right\}=\frac{(1+B)P}{B}\cdot\frac{G_1^{(k)}-\frac{P}{1+B}}{G_1^{(k)}}.\end{equation}$ (3.13)
故由(3.13)式有
$ \begin{equation}\overline{N}\left(r,\frac{1}{F_1^{(k)}-(1+B)P/B}\right)=\overline{N}(r,G_1)+O(\log r)\end{equation}$ (3.14)
$\begin{equation}\overline{N}\left(r,\frac{1}{G_1^{(k)}-P/(1+B)}\right)=\overline{N}\Big(r,\frac{1}{F_1^{(k)}}\Big)+O(\log r).\end{equation}$ (3.15)
设$z_0\not\in \{z:P(z)=0\}$为$F_1$的$m(\geq k+2)$重零点,则$z_0$为$\Big(\frac{F_1^{(k)}}{P}\Big)'$的$m-k-1$重零点.类似地,设$z_0\not\in \{z:P(z)=0\}$ 是$F_1^{(k)}-\frac{1+B}{B}P$的$q(\geq 2)$重零点,则 $z_0$是$\Big(\frac{F_1^{(k)}}{P}\Big)'$的$q-1$重零点. 由以上分析及(3.1),(3.14)式和引理 2.1,可得
$\begin{align} & T(r,{{F}_{1}})\le \bar{N}(r,{{F}_{1}})+N\left( r,\frac{1}{{{F}_{1}}} \right)+ \\ & N\left( r,\frac{1}{F_{1}^{(k)}-P(1+B)/B} \right)- \\ & N(r,\frac{1}{(\frac{F_{1}^{(k)}}{P}{)}'})+S(r,f)\le \bar{N}(r,{{F}_{1}})+ \\ & {{N}_{k+1}}\left( r,\frac{1}{{{F}_{1}}} \right)+\bar{N}\left( r,\frac{1}{F_{1}^{(k)}-P(1+B)/B} \right)+ \\ & O(\log r)+S(r,f)\le \bar{N}(r,{{F}_{1}})+{{N}_{k+1}} \\ & (r,\frac{1}{{{F}_{1}}})+\bar{N}(r,{{G}_{1}})+S(r,f). \\ \end{align}$ (3.16)
类似地,我们有 $$T(r,G_1)\leq\overline{N}(r,G_1)+N_{k+1}\Big(r,\frac{1}{G_1}\Big)+\overline{N}\Big(r,\frac{1}{F_1^{(k)}}\Big)+S(r,g). $$由上式和引理 2.2可得
$\begin{equation}T(r,G_1)\leq\overline{N}(r,G_1)+N_{k+1}\Big(r,\frac{1}{G_1}\Big)+N_{k+1}\Big(r,\frac{1}{F_1}\Big)+k\overline{N}(r,F_1)+S(r,g)+S(r,f).\end{equation}$ (3.17)
再结合(3.1),(3.8)-(3.10),(3.16)和(3.17)式可得 $$n\Big[T(r,f)+T(r,g)\Big]\leq (3k+4)\Big[T(r,f)+T(r,g)\Big]+S(r,f)+S(r,g). $$这与$n>9k+20$矛盾.

情形 2. $B\neq 0$且$A\neq B$. 若$B=-1$,则由(3.12)式可得

$\begin{equation}F_1^{(k)}=\frac{-AP^2}{G_1^{(k)}-(A+1)P},G_1^{(k)}=\frac{(A+1)P\left(F_1^{(k)}-\frac{A}{A+1}P\right)}{F_1^{(k)}}.\end{equation}$ (3.18)
因此结合(3.18)式,我们有
$\begin{equation}\overline{N}\left(r,\frac{1}{F_1^{(k)}-\frac{A}{A+1}P}\right)=\overline{N}\left(r,\frac{1}{G_1^{(k)}}\right)+O(\log r)\end{equation}$ (3.19)
$\begin{equation}\overline{N}\left(r,\frac{1}{G_1^{(k)}-(A+1)P}\right)=\overline{N}\left(r,F_1\right)+O(\log r).\end{equation}$ (3.20)
使用类似于情形 1的证明方法,由(3.1),(3.19) (或(3.20))式,引理2.1 和引理2.2可得
$\begin{equation}T(r,F_1)\leq\overline{N}(r,F_1)+N_{k+1}\Big(r,\frac{1}{F_1}\Big)+N_{k+1}\Big(r,\frac{1}{G_1}\Big)+k\overline{N}(r,G_1)+S(r,f)+S(r,g)\end{equation}$ (3.21)
$\begin{equation}T(r,G_1)\leq\overline{N}(r,G_1)+N_{k+1}\Big(r,\frac{1}{G_1}\Big)+\overline{N}(r,F_1)+S(r,g).\end{equation}$ (3.22)
再由(3.1),(3.8)-(3.10),(3.21)和(3.22)式可得 $$n\Big[T(r,f)+T(r,g)\Big]\leq (3k+4)\Big[T(r,f)+T(r,g)\Big]+S(r,f)+S(r,g). $$这与$n>9k+20$矛盾.若$B\neq-1$,由(3.12)式可得
$\begin{equation}F_1^{(k)}-\frac{B+1}{B}P=\frac{-AP^{2}}{B^2\left(G_1^{(k)}-\frac{B-A}{B}P\right)},G_1^{(k)}-\frac{B-A}{B}P=\frac{-AP^{2}}{B^2\left(F_1^{(k)}-\frac{B+1}{B}P\right)}.\end{equation}$ (3.23)
故由(3.23)式,可得(3.14)式和
$\begin{equation}\overline{N}\left(r,\frac{1}{G_1^{(k)}-(B-A)P/B}\right)=\overline{N}(r,F_1)+O(\log r).\end{equation}$ (3.24)
使用类似于情形 1的证明过程,结合(3.1),(3.14) (或(3.24))式,引理2.1和引理2.2,可得到(3.16)式和
$\begin{equation}T(r,G_1)\leq\overline{N}(r,G_1)+N_{k+1}\Big(r,\frac{1}{G_1}\Big)+\overline{N}(r,F_1)+S(r,g).\end{equation}$ (3.25)
再由(3.1),(3.8)-(3.10),(3.16)和(3.25)式得到 $$n\Big[T(r,f)+T(r,g)\Big]\leq (k+3)\Big[T(r,f)+T(r,g)\Big]+S(r,f)+S(r,g). $$这与$n>9k+20$矛盾.

情形 3. $B=0$. 则由(3.12)式可得

$\begin{equation}G_1^{(k)}=AF_1^{(k)}+(1-A)P.\end{equation}$ (3.26)
若$A\neq 1$,则由(3.26)式有
$\begin{equation}G_1=AF_1+(1-A)P_1,\end{equation}$ (3.27)
其中$P_1$是次数为 $\deg P+k$的多项式.故由(3.27)式得到
$\begin{equation}\overline{N}\left(r,\frac{1}{G_1-(1-A)P_1}\right)=\overline{N}\left(r,\frac{1}{F_1}\right).\end{equation}$ (3.28)
另一方面,由(3.1)和(3.27)式可得
$\begin{equation}T(r,f)=T(r,g)+S(r,g).\end{equation}$ (3.29)
故结合(3.1),(3.9),(3.10),(3.28)和(3.29)式可得 $$\begin{eqnarray*}(n+1)T(r,g)&=&T(r,G_1)+S(r,g)\\&\leq&\overline{N}(r,G_1)+\overline{N}\left(r,\frac{1}{G_1}\right)+\overline{N}\left(r,\frac{1}{G_1-(1-A)P_1}\right)+S(r,g)\\&=&\overline{N}(r,G_1)+\overline{N}\left(r,\frac{1}{G_1}\right)+\overline{N}\left(r,\frac{1}{F_1}\right)+S(r,g)\\&\leq& 3T(r,g)+2T(r,f)+S(r,g)\\&\leq& 5T(r,g)+S(r,g).\end{eqnarray*}$$这与$n>9k+20$矛盾.若$A=1$,则由(3.26)式可得
$\begin{equation}G_1=F_1+P_2,\end{equation}$ (3.30)
其中$P_2$是次数为$\deg P_2< k$的多项式.下面我们证明$P_2\equiv 0$. 假设$P_2\not\equiv 0$,则由(3.30)式可得
$\begin{equation}\overline{N}\left(r,\frac{1}{G_1-P_2}\right)=\overline{N}\left(r,\frac{1}{F_1}\right),~~T(r,G_1)=T(r,F_1)+O(\log r).\end{equation}$ (3.31)
再结合(3.1),(3.9),(3.10)和(3.31)式可得$$\begin{eqnarray*}(n+1)T(r,g)&=&T(r,G_1)+S(r,g)\\&\leq&\overline{N}(r,G_1)+\overline{N}\left(r,\frac{1}{G_1}\right)+\overline{N}\left(r,\frac{1}{G_1-P_2}\right)+S(r,g)\\&=&\overline{N}(r,G_1)+\overline{N}\left(r,\frac{1}{G_1}\right)+\overline{N}\left(r,\frac{1}{F_1}\right)+S(r,g)\\&\leq& 5T(r,g)+S(r,g).\end{eqnarray*}$$这与$n>9k+20$矛盾.故$P_2\equiv 0$.再结合(3.30)式得$F_1\equiv G_1$.

由以上讨论,我们得到$F_1^{(k)}G_1^{(k)}\equiv P^2$ 或$F_1\equiv G_1$.结合(3.1)式即有$\{f^{n}(f-1)\}^{(k)}\{g^{n}(g-1)\}^{(k)}\equiv P^2$ 或$f^{n}(f-1)\equiv g^{n}(g-1)$. 再使用与定理E (见文献[7,定理1.1])一样的讨论,可得 $f\equiv g$. 定理 1.1得证.

定理1.2的证明设$F_1,G_1,F,G$和$H$分别如(3.1)-(3.3)式所定义. 设$H\not\equiv 0$,则由(3.1)式和引理2.5,可得

$\begin{eqnarray}T(r,F_1)&\leq&3N_{k+1}\left(r,\frac{1}{F_1}\right)+2N_{k+1}\left(r,\frac{1}{G_1}\right)+\overline{N}\left(r,\frac{1}{F_1}\right)+\overline{N}\left(r,\frac{1}{G_1}\right)\\& &+S(r,f)+S(r,g)\end{eqnarray}$ (3.32)
$\begin{eqnarray}T(r,G_1)&\leq&3N_{k+1}\left(r,\frac{1}{G_1}\right)+2N_{k+1}\left(r,\frac{1}{F_1}\right)+\overline{N}\left(r,\frac{1}{G_1}\right)+\overline{N}\left(r,\frac{1}{F_1}\right)\\& &+S(r,f)+S(r,g).\end{eqnarray}$ (3.33)
故由(3.32)和(3.33)式,可得
$\begin{eqnarray}T(r,F_1)+T(r,G_1)&\leq&5\Big[N_{k+1}\left(r,\frac{1}{F_1}\right)+N_{k+1}\left(r,\frac{1}{G_1}\right)\Big]\\& &+2\Big[\overline{N}\left(r,\frac{1}{F_1}\right)+\overline{N}\left(r,\frac{1}{G_1}\right)\Big]+S(r,f)+S(r,g).\end{eqnarray}$ (3.34)
由定理 1.2的条件可知(3.8),(3.9)和(3.10)式仍然成立.故由(3.1),(3.8)-(3.10)和(3.34)式,可得 $$n\Big[T(r,f)+T(r,g)\Big]\leq (5k+13)\Big[T(r,f)+T(r,g)\Big]+S(r,f)+S(r,g). $$这与$n>5k+13$矛盾. 故$H\equiv 0$. 使用类似于定理1.1中情形 1-3的讨论,可得$F_1^{(k)}G_1^{(k)}\equiv P^2$ 或 $F_1\equiv G_1$.

由于$f$和$g$是超越整函数,结合(3.1)式和引理 2.9,可得$F_1^{(k)}G_1^{(k)}\not\equiv P^2$.故$F_1\equiv G_1$. 再结合(3.1)式即得

$\begin{equation}f^{n}(f-1)=g^{n}(g-1).\end{equation}$ (3.35)
令$h=\frac{f}{g}$,并将$f=gh$代入(3.35)式,可得
$\begin{equation}g\left(h^{n+1}-1\right)=h^{n}-1.\end{equation}$ (3.36)
假设$h$不恒为常数,由(3.36)式可得
$\begin{equation}g=\frac{h^n-1}{h^{n+1}-1}=\frac{h^{n-1}+\cdots+h+1}{h^n+h^{n-1}+\cdots+h+1}.\end{equation}$ (3.37)
由于$g$是超越整函数,结合(3.37)式我们知道$h^n+h^{n-1}+\cdots+h+1$ 无零点. 故$h^{n+1}-1$的零点必是 $h-1$的零点.由第二基本定理可得$$\begin{eqnarray*} (n-1)T(r,h)&\leq& \sum\limits^{n+1}_{i=1}\overline{N}\left(r,\frac{1}{h(z)-w_i}\right)+S(r,h) \\&\leq &\overline{N}\left(r,\frac{1}{h^{n+1}-1}\right)+S(r,h)\\&\leq& \overline{N}\left(r,\frac{1}{h-1}\right)+S(r,h)\\&\leq& T(r,h)+S(r,h),\end{eqnarray*}$$其中$w_{i}(i=1,\cdots,n+1)$是复常数满足$w^{n+1}=1$. 这与$n>5k+13$矛盾.因此$h$恒为常数.若$h\not\equiv 1$,则由(3.36)式可得$g$恒为常数,矛盾.故$h\equiv 1$,即$f\equiv g$. 定理1.2得证.

参考文献
[1] Bhoosnurmath S S, Dyavanal R S. Uniqueness and value-sharing of meromorphic functions. Comput Math Appl, 2007, 53:1191-1205
[2] Clunie J. On a result of Hayman. J London Math Soc, 1967, 42:389-392
[3] Chen J F, Zhang X Y, Lin W C, Chen S J. Uniqueness of entire function that share one value. Comput Math Appl, 2008, 56:3000-3014
[4] Fang M L, Hua X H. Entire functions that share one value. J Nanjing Univ Math, 1996, 13:44-48
[5] Hayman W K. Meromorphic Functions. Oxford:Clarendon Press, 1964
[6] Hayman W K. Picard values of meromorphic functions and their derivatives. Ann of Math, 1959, 70:9-42
[7] Li X M, Yi H X. Uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a polynomial. Comput Math Appl, 2011, 62:539-550
[8] Lin X Q, Lin W C. Uniqueness of entire functions sharing one value. Acta Math Sci, 2011, 31B(3):1062-1076
[9] Lahiri I, Sarkar A. Uniqueness of a meromorphic function and its derivative. J Inequal Pure Appl Math, 2004, 5(1):Art 20
[10] 杨乐. 值分布论及其新研究. 北京:科学出版社, 1982 Yang L. Value Distribution Theory and the New Research. Beijing:Science Press, 1982
[11] Yang L. Normality for family of meromorphic functions. Sci Sinica (Ser A), 1986, 29:22-32
[12] Yi H X, Yang C C. Uniqueness Theory of Meromorphic Functions. New York:Kluwer Academic Publishers, 2003
[13] Yang C C, Hua X H. Uniqueness and value-sharing of meromorphic functions. Ann Acad Sci Fenn Math, 1997, 22:395-406
[14] Zhang Q C. Meromorphic function that shares one small function with its derivative. J Inequal Pure Appl Math, 2005, 6(4):Art 116