Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
  数学物理学报  2015, Vol. 35 Issue (6): 1146-1157   PDF (385 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
梁芸芸
朱泽奇
赵敏
赵才地
无穷格点上长波-短波共振方程组核截面的分形维数估计
梁芸芸1, 朱泽奇2, 赵敏3, 赵才地1    
1 温州大学数学与信息科学学院 浙江温州 325035;
2 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室 武汉 430071;
3 温州大学生命与环境科学学院 浙江温州 325035
摘要: 该文证明了无穷格点上长波-短波共振方程组核截面的分形维数估计.
关键词: 格点长波-短波共振方程组     核截面     分形维数    
Finite Fractal Dimension of Kernel Sections for Long-Wave-Short-Wave Resonance Equations on Infinite Lattices
Liang Yunyun1, Zhu Zeqi2, Zhao Min3, Zhao Caidi1    
1 Department of Mathematics and Information Science, Wenzhou University, Zhejiang Wenzhou 325035;
2 State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071;
3 Department of Life and Environmental Science, Wenzhou University, Zhejiang Wenzhou 325035
Abstract: This paper proves an upper bound of fractal dimension of the kernel sections for the long-wave-short-wave resonance equations on infinite lattices.
Key words: Lattice long-wave-short-wave resonance equations     Kernel sections     Fractal dimension    
1 引言

本文讨论下面非自治格点长波-短波共振方程组的初值问题

i˙um(Au)mumvm+iαum=fm(t), mZ,t>τ, (1.1)
˙vm+βvm+γ(B(|u|2))m=gm(t), mZ,t>τ, (1.2)
um(τ)=um,τ,vm(τ)=vm,τ, mZ,τR, (1.3)
其中 um(t)C(复数集),vm(t)R(实数集), Z为整数集, i为虚数单位,α,β,γ为正的常数, AB 均为线性算子,分别定义为
(Au)m=2umum+1um1,u=(um)mZ, (1.4)
(Bu)m=um+1um,u=(um)mZ. (1.5)

格点系统是某些变量离散化的时空系统,包括耦合的常微分方程组、耦合映射 格点和细胞自动机[12, 13]. 在某些情况下,格点系统表现为偏微分方程的空间变量离散化近似. 格点系统在许多领域有广泛的应用,涉及电子工程[11]、图象处理与模式识别[14, 15, 16]、激光理论[20]、材料科学[22]、化学反应理论[19, 32]、生物学[31]等.

目前已有很多文献研究了格点系统. 例如,文献 [9, 26, 27, 28, 29] 研究了 随机格点系统,文献 [1, 2, 25, 40, 43, 44, 45, 46, 47, 49, 50]研究了格点系统指数吸引子,拉回指数吸引子 和一致指数吸引子,文献 [8, 17, 23, 24]研究了格点方程组的行波解问题. 同时,数学物理学家 们把格点动力系统的理论应用到许多数学物理模型中. 例如,文献 [7] 研究了格点 反应扩散方程组,文献 [30] 研究了三分子可逆 Gray-Scott 方程组,文献 [33]研究了离散的非线性 Schrödinger 方程组,文献 [36, 42] 研究了离散的耦合非线性 Schrödinger型方程组,文献 [51]研究了格点KGS方程组,文献 [52]研究了格点长波-短波共振方程组.

方程组 (1.1)-(1.2) 可以看作是下面非自治 长波-短波共振方程组在 R 上的一个离散近似

iut+uxxuv+iαu=f(x,t), (1.6)
vt+βv+γ(|u|2)x=g(x,t), (1.7)
其中复值函数u(x,t) 表示高频电场的包络,实值函数 v(x,t) 表示短波的振幅, 外力项函数 g(x,t)f(x,t) 均表示依赖于时间的外力项. 长波-短波共振方程组来源于考虑重力和毛细模式的表面波及内部波(参见文献[4]). 在激光物理中,长波-短波共振方程组描述高频电子激光的碰撞效果及稠密低频离子 的混动行为(参见文献[35, 37]).

由于它的重要性,长波-短波共振方程组已经被广泛地研究,参见文献 [3, 5, 6, 21, 35, 52].特别地,文献 [52] 研究了格点长波-短波共振方程组(1.1)-(1.2),作者首先证明了方程组的解算子生成的过程存在紧致核截面,然后给出核截面的 Kolmogorov ε-entropy熵的上界估计,最后,证明了核截面的上半连续性.

本文的主要目的是估计文献 [52] 中所得的核截面的分形维数. 正如文献[48] 所指出,有限分形维数的重要性体现为: 对某个度量空间E,若 A是它的紧子集,且dimf(A)<m/2,其中m是某个自然数,则存在Lipschitz内射 φ:ARm,并且 A 的逆映射是Hölder连续的.这个性质表明 A 可以被放入到映 Rm中的某个紧集到 A的连续映射的图中.

不变集的分形维数已被广泛地研究[10, 18, 34, 39]. 值得强调的是, 文献[18]证明了吸引子存在有限分形维数的一个准则,该准则是 Ladyzhenskaya的关于不变集的有限维数定理(见文献[34])的一个推广. 后来,文献 [48] 利用 文献[18] 中的思想方法来证明Hilbert空间中不变子集存在有限分形维数的准则.

在这篇文章中,我们将用文献 [48] 中法则去估计文献 [52] 中所得的核截面的分形维数. 本文的主要任务是证明方程组(1.1)-(1.2)所生成的过程: (1)在核截面 K(τ)上有Lipschitz性质; (2)在吸收集 B0中有压榨性质. 这里想指出的是,格点长波-短波共振方程组含有非线性项(B(|u|2))m,这给我们 在证明 Lipschitz 性质和压榨性质时带来了困难,因此需要做细致的计算和分析来处理这一项.

2 解的存在唯一性与有界性

先介绍相关空间和算子. 记

2={u=(um)mZ,umC:mZ|um|2<+}, (2.1)
l2={v=(vm)mZ,vmR:mZv2m<+}. (2.2)
为了简洁起见,用 X 表示 2l2,并在 X 中定义内积与范数 (u,v)=mZumˉvm,u2=(u,u),u=(um)mZ,v=(vm)mZX, 其中 ˉvmvm 的共轭. 同时,定义从 XX 的线性算子 B 如下 (Bu)m=um1um,mZ,u=(um)mZX. 可验证 BB 互为伴随算子,且
(Bu,v)=(u,Bv),(Au,v)=(Bu,Bv),u,vX. (2.3)
通过简单的计算有 Bu2=mZ|um+1um|2

为把格点方程组(1.1)-(1.3)写成向量形式,记 \ell^{2} = (\ell^{2},(\cdot,\cdot),\|\cdot\|),\, l^{2}=(l^{2},(\cdot,\cdot),\|\cdot\|), \ell^{2}l^{2}均为Hilbert空间. 记 E=\ell^{2}\times l^{2} ,并在其中定义内积: 对于任意的\psi^{(j)}=(u^{(j)},v^{(j)})^{T}\in E,j=1,2,

\begin{equation} (\psi^{(1)},\psi^{(2)})_{E} = (u^{(1)},u^{(2)})+(v^{(1)},v^{(2)}) = \sum\limits_{m\in{\bf {\Bbb Z}}}(u_{m}^{(1)}\overline{u}_{m}^{(2)} + v_{m}^{(1)}v_{m}^{(2)}\big), \label{2.4} \end{equation} (2.4)
\|\psi\|_{E}^{2} = (\psi,\psi)_{E},\,\forall \psi\in E, 其中\overline{u}_m^{(2)} 表示 u^{(2)}_m 的共轭.显然,E为Hilbert空间. 记 u=(u_{m})_{m \in {\bf {\Bbb Z}}}, v=(v_{m})_{m \in {\bf {\Bbb Z}}},B|u|^{2}=(B(|u|^{2}))_{m \in {\bf {\Bbb Z}}}, f(t)=(f_{m}(t))_{m\in{\bf{\Bbb Z}}}, g(t)=(g_{m}(t))_{m \in {\bf {\Bbb Z}}}, u_{\tau}=(u_{m,\tau})_{m\in {\bf {\Bbb Z}}}, v_{\tau}=(v_{m,\tau})_{m \in {\bf {\Bbb Z}}}, 则方程组(1.1)-(1.3)可以写成如下形式
\begin{equation} {\rm i}\dot{u}-Au-uv+{\rm i}\alpha u=f(t),t>\tau,\label{2.5} \end{equation} (2.5)
\begin{equation} \dot{v}+\beta v+\gamma B|u|^2=g(t),t>\tau,\label{2.6}\\ \end{equation} (2.6)
\begin{equation} u(\tau)=u_{\tau},v(\tau)=v_{\tau}, \tau\in{\bf {\Bbb R}},\label{2.7} \end{equation} (2.7)
其中算子AB分别由(1.4)式和(1.5)式所定义. 进一步,我们把 (2.5)-(2.7)式写成E中关于时间t的抽象的一阶常微分方程的初值问题
\begin{equation} \dot{\psi}+\Theta \psi=F(\psi,t),t> \tau,\label{2.8} \end{equation} (2.8)
\begin{equation} \psi(\tau)=\psi_{\tau}=(u_{\tau},v_{\tau})^{T} ,\tau\in {\bf {\Bbb R}},\label{2.9} \end{equation} (2.9)
其中\psi=(u,v)^T,F(\psi,t) =(-{\rm i}uv-{\rm i}f(t),g(t)-\gamma B|u|^2)^T,且
\begin{eqnarray}\label{2.10} \begin{array}{cc} \Theta = \left(\begin{array}{cc} \alpha I+{\rm i} A &~ 0 \\ 0 &~\beta I \\ \end{array}\right). \end{array} \end{eqnarray} (2.10)

为讨论初值问题 (2.5)-(2.7) 解的适定性, 我们需要假设外力项函数满足的一定的性质. 记 {\mathcal C}_{b}({\mathbb R},X) 为从 {\mathbb R}X 的连续有界函数全体,则\forall f(t)\in {\mathcal C}_{b}({\mathbb R},X),有 \sup\limits_{t\in {\bf {\Bbb R}}}\sum\limits_{m\in {\bf {\Bbb Z}}}|f_{m}(t)|^{2} < +\infty.

\begin{eqnarray}\label{2.11} {\mathcal H}&=&\Big\{f(t)=( f_{m}(t))_{m \in {\bf {\Bbb Z}}}\in {\mathcal C}_{b}({\bf {\Bbb R}},X):\mbox{对每个}\,\tau\in {\bf {\Bbb R}},\,\forall \,\varepsilon> 0,\,\exists M(\varepsilon,\tau)\in {\bf {\Bbb N}},\nonumber\\ &&\quad \mbox{使得}\sum\limits_{|m|\geqslant M(\varepsilon,\tau)}|f_{m}(s)|^{2}\leqslant\varepsilon,\,\forall s\leqslant\tau\Big\}. \end{eqnarray} (2.11)

本文,我们需要以下假设.

假设 (H) 设常数 \alpha,\beta,\gammaf(t),g(t) 满足

\begin{eqnarray}\label{sss} \min\{\alpha,\beta\}>2\sqrt{\frac{(8\gamma^{2}+1)} {\min\{\frac{\alpha}{2},\frac{\beta}{2}\}}\Big(\frac{|||f|||^{2}}{\alpha} +\frac{2|||g|||^{2}}{\beta}+\frac{8\gamma^{4}|||f|||^{4}}{\alpha^{4}\beta}\Big)}. \end{eqnarray} (2.12)

下面我们给出方程组(2.8)-(2.9)已有的一些结果.

引理 2.1[52]f(t)=(f_{m}(t))_{m \in {\bf {\Bbb Z}}}\in {\mathcal C}_{b}({\bf {\Bbb R}},\ell^{2}),g(t)=(g_{m}(t))_{m \in {\bf {\Bbb Z}}}\in {\mathcal C}_{b}({\bf {\Bbb R}},l^{2}). 则对任意的初值 \psi_{\tau}=(u_{\tau},v_{\tau})^{T}\in E ,方程组(2.8)--(2.9) 有唯一解 \psi(t)=(u(t),v(t))^{T}\in E\psi(t)\in {\mathcal C}([\tau,+\infty),E)\cap {\mathcal C}^{1}((\tau,+\infty),E). 另外,解映射

\begin{eqnarray}\label{2.14} U(t,\tau):\psi_{\tau} = (u_{\tau},v_{\tau})^{T}\in E \mapsto \psi(t) = (u(t),v(t))^{T}\in E,\forall t\geqslant\tau, \end{eqnarray} (2.13)
E 上 生成了一个连续的过程 \{U(t,\tau)\}_{t\geqslant\tau}.

引理 2.2[52] 设引理2.1的条件成立. 则方程组 (2.8)-(2.9)相应于初值 \psi_{t-s}=(u_{t-s}, v_{t-s})^{T}\in E 的解\psi(t)=(u(t),v(t))^{T}=U(t,t-s){\psi_{t-s}}\in E 满足 \|\psi(t)\|^{2}_{E} \leqslant C_{0}{\mathrm e}^{-\theta s}+\frac{r^{2}_{0}}{2\theta},\forall s>0, 其中C_{0},\theta=\min\{\frac{\alpha}{2},\frac{\beta}{2}\}r_{0} 均为不依赖于 ts 的常数. 也就是说,过程\{U(t,\tau)\}_{t\geqslant\tau}E上存在 一致有界吸收集{\mathcal B}_0\subset E,即对任意有界集{\mathcal B}\subset E, 存在时间s({\mathcal B})>0,使得 U(t,t-s){\mathcal B}\subseteq {\mathcal B}_0,\,\forall s\geqslant s({\mathcal B}), 其中{\mathcal B}_0={\mathcal B}(0,R_{0})\subset EE中以0为中心, R_{0}:= \frac{r_{0}}{\sqrt{\theta}}为半径的闭球.

由引理2.2知存在时间t_{0}:= t_{0}({\mathcal B}_0),使得

\begin{eqnarray}\label{2.15} U(t,t-s){\mathcal B}_0\subseteq {\mathcal B}_0, \,\forall s\geqslant t_{0}. \end{eqnarray} (2.14)

引理 2.3[52]f(t)=(f_{m}(t))_{m \in {\bf {\Bbb Z}}}\in {\mathcal H}(X=\ell^{2}), g(t)=(g_{m}(t))_{m \in {\bf {\Bbb Z}}}\in {\mathcal H}(X=l^{2}),则 U(t ,t-s)\psi_{t-s}=\psi(t)=(\psi_{m}(t))_{m \in {\bf {\Bbb Z}}}\in E 为初值问题(2.8)--(2.9)的解,其中\psi_{t-s}\in {\mathcal B}_0. 则对任意的\varepsilon>0,存在时间T(\varepsilon,{\mathcal B}_0)>0, M(\varepsilon,s,{\mathcal B}_0)\in {\bf {\Bbb Z_{+}}}使得

\begin{eqnarray}\label{2.16} \sum\limits_{|m|>M(\varepsilon,s,{\mathcal B}_0)}|(U(t,t-s)\psi_{t-s})_{m}|^{2}_{E} = \sum\limits_{|m|>M(\varepsilon,s,{\mathcal B}_0)}|\psi_{m}(t)|^{2}_{E }\leqslant\varepsilon^{2}, s\geqslant T(\varepsilon,{\mathcal B}_0), \end{eqnarray} (2.15)
其中|\psi_{m}|^{2}_{E}=|u_m|^2 +v_m^2.

引理 2.4[52] 设引理2.3的条件成立. 则 \left\{U(t,\tau)\right\}_{t\geqslant \tau} 存在一族紧致核截面 \{{\mathcal K}(\tau)\}_{\tau\in {\Bbb R}}\subset E,满足

(1) 紧致性: 对每个 \tau\in {\Bbb R},{\mathcal K}(\tau)E 中紧集,且 {\mathcal K}(\tau) =\bigcap\limits_{T>0} \overline{\bigcup\limits_{s>T}U(\tau,\tau-s){\mathcal B}_{0}} \subset {\mathcal B}_{0};

(2) 不变性: U(t,\tau){\mathcal K}(\tau)={\mathcal K}(t), \,\forall t\geqslant \tau,\,\tau\in {\mathbb R};

(3) 拉回吸引性: 对 E 中的任何有界集 {\mathcal B},都有 \lim\limits_{s\rightarrow +\infty } {\mathrm dist}_{E}(U(\tau,\tau-s){\mathcal B},{\mathcal K}(\tau))=0, 其中 {\rm dist}_{E}(Y_1,Y_2)=\sup\limits_{x\in Y_1}\inf\limits_{y\in Y_2}\|x-y\|_{E}.

3 核截面的分形维数

本部分估计引理2.4所得核截面的分形维数.

定义 3.1 对任意的 \tau\in {\mathbb R}, 核截面{\mathcal K}(\tau)的分形维数定义为

\begin{eqnarray}\label{3.1} {\rm dim}_F {\mathcal K}(\tau)=\limsup\limits_{\varepsilon \rightarrow 0}\frac{\ln {\mathcal N} ({\mathcal K}(\tau),\varepsilon)}{\ln (1/ \varepsilon)}, \end{eqnarray} (3.1)
其中{\mathcal N} ({\mathcal K}(\tau),\varepsilon) 表示E中直径不超过2\varepsilon的 覆盖{\mathcal K}(\tau)所需球的最少个数.

关于向量空间中不变集的分形维数的一般定义(参见文献[18, 34, 39]).

\begin{eqnarray}\label{3.2} E^{(N)} = \{\psi=(\psi_{m})_{m \in {\bf {\mathbb Z}}}\in E\,\big |\,\psi_{m}=(0,0)^T\,\,{\mbox{当}} \,\,|m|>N\mbox{时}\}, \end{eqnarray} (3.2)
E^{(N)}E中的3(2N+1)维子空间. 定义映射P_{N}: E\mapsto E^{(N)}\subset E 如下 \begin{eqnarray*} \quad (P_{N}\psi)_{m}=\left\{ \begin{array}{ll} \psi_{m},|m|\leqslant N; \\ 0,\quad |m|> N, \end{array} \right. \quad \psi=(\psi_m)_{m\in {\Bbb Z}}\in E. \end{eqnarray*}

下面的引理在估计核截面的分形维数时起关键作用.

引理3.1 若假设(H) 成立且 引理2.4的条件成立. 则对任意的 \tau\in {\mathbb R},存在不依赖于\tau\in {\mathbb R} 的正数T^{*},L(T^{*}),N^{*}\eta\in (0,1/2),使得

(I) 对任意的\psi^{(1)}_{\tau},\psi^{(2)}_{\tau}\in {\mathcal K}(\tau),有

\begin{eqnarray}\label{3.3} ||U(T^{*}+\tau,\tau)\psi^{(1)}_{\tau}-U(T^{*}+\tau,\tau)\psi^{(2)}_{\tau}||_{E} \leqslant L(T^{*})||\psi^{(1)}_{\tau}-\psi^{(2)}_{\tau}||_{E}, \end{eqnarray} (3.3)
也即U(T^{*}+\tau,\tau){\mathcal K}(\tau)上的 Lipschitz 映射.

(II) 存在投影算子 P_{2N^{*}}: E\mapsto E^{(2N^{*})} 使得对每个 \tau\in {\mathbb R}, \psi^{(1)}_{\tau},\psi^{(2)}_{\tau}\in{\mathcal K}(\tau)\subseteq {\mathcal B}_{0},有

\begin{eqnarray}\label{3.4} \|(I-P_{2N^*})\big[U(T^{*}+\tau,\tau) \psi^{(1)}_{\tau}-U(T^{*}+\tau,\tau)\psi^{(2)}_{\tau}\big]\|_{E} \leqslant \eta\|\psi^{(1)}_{\tau}-\psi^{(2)}_{\tau}\|_{E}, \end{eqnarray} (3.4)
其中 I 是投影算子.

由文献 [52,引理3.1]知, 存在E中以2为直径覆盖{\mathcal K}(\tau) 的一致有界闭子集. 对任意的\tau\in {\mathbb R},记 \psi^{(1)}(t)=(u^{(1)}(t),v^{(1)}(t))^T=U(t,\tau)\psi^{(1)}_{\tau}, \psi^{(2)}(t)=(u^{(2)}(t),v^{(2)}(t))^T=U(t,\tau)\psi^{(2)}_{\tau},\forall t\geqslant\tau 为初值问题(2.8)-(2.9)的两个解, 其中\psi^{(1)}_{\tau}, \psi^{(2)}_{\tau}\in{\mathcal K}(\tau)\subseteq {\mathcal B}_{0}. 对t-\tau\geqslant t_{0},\psi^{(1)}(t), \psi^{(2)}(t) \in {\mathcal K}(t)\subset {\mathcal B}_{0}. 文后记 \begin{eqnarray*} &\psi_{d}(t)=\psi^{(1)}(t)-\psi^{(2)}(t),\quad u_{d}(t)=u^{(1)}(t)-u^{(2)}(t),\quad & v_{d}(t)=v^{(1)}(t)-v^{(2)}(t). \end{eqnarray*} 由(2.8)-(2.9)式得

\begin{equation} \dot{\psi}_{d}+\Theta \psi_{d}=F(\psi^{(1)},t)-F(\psi^{(2)},t), ~ t>\tau,\label{3.6} \end{equation} (3.5)
\psi_{d}(\tau)=\psi^{(1)}_{\tau}-\psi^{(2)}_{\tau}. \psi_{d}与(3.5)式在 E 上作内积,然后取实部得
\begin{eqnarray}\label{3.7} \frac{1}{2}\frac{\mathrm{d}}{{\mathrm{d}}t}\|\psi_{d}(t)\|^{2}_{E} + \textbf{Re}\big(\Theta \psi_{d}(t),\psi_{d}(t)\big)_{E} =\textbf{Re}\big(F(\psi^{(1)},t)-F(\psi^{(2)},t),\psi_{d}(t)\big)_{E}, \forall t>\tau. \end{eqnarray} (3.6)
由于 \Theta: E\mapsto E 为有界线性算子(见(2.3)和(2.10)式), 而F: E\times {\bf {\Bbb R}}\mapsto E 为满足局部 Lipschitz 条件的连续算子(参见文献[52,引理2.2]), 并且{\mathcal B}_0E中的有界集,因此有
\begin{equation} \textbf{Re}\big(\Theta \psi_{d},\psi_{d}\big)_{E} = \alpha (u_{d},u_{d})+\beta (v_{d},v_{d}),\label{SS} \end{equation} (3.7)
\begin{eqnarray} &&\textbf{Re}\big(F(\psi^{1},t)-F(\psi^{2},t),\psi_{d}\big)_{E} \nonumber\\ &\leqslant& |\big(F(\psi^{1},t)-F(\psi^{2},t),\psi_{d}\big)_{E}| \leqslant ||F(\psi^{1},t)-F(\psi^{2},t)||_{E}||\psi_{d}||_{E}\nonumber\\ &\leqslant& \sqrt{\frac{2(16\gamma^{2}+2)}{\theta}}||\psi_{d}||^{2}_{E} %\nonumber\\ \leqslant 2\sqrt{\frac{8\gamma^{2}+1}{\theta}}\sqrt{\frac{1}{\alpha}|||f|||^{2} +\frac{2|||g|||^{2}}{\beta} +\frac{8\gamma^{4}|||f|||^{4}}{\alpha^{4}\beta}}||\psi_{d}||^{2}_{E}.\label{3.8} \end{eqnarray} (3.8)
由(3.6),(3.7) 和 (3.8)式得
\begin{eqnarray}\label{3.9} \frac{\mathrm{d}}{{\mathrm{d}}t}\|\psi_{d}(t)\|^{2}_{E} \leqslant 2(K_{2}-K_{1})\|\psi_{d}(t)\|^{2}_{E}, \forall t-\tau >t_{0} , \end{eqnarray} (3.9)
其中K_{1}=\min\{\alpha,\beta\},K_{2} =2\sqrt{\frac{8\gamma^{2}+1}{\theta}(\frac{1}{\alpha}|||f|||^{2} +\frac{2|||g|||^{2}}{\beta}+\frac{8\gamma^{4}|||f|||^{4}}{\alpha^{4}\beta})}, 因此,
\begin{eqnarray}\label{3.10} \|\psi^{(1)}(T^*+\tau)-\psi^{(2)}(T^*+\tau)\| _{E} &=& \|\psi_{d}(T^*+\tau)\|_{E} \nonumber\\ &\leqslant& {\mathrm e}^{(K_{2}-K_{1})T^*}\|\psi^{(1)}(\tau)-\psi^{(2)}(\tau)\|_{E}, \end{eqnarray} (3.10)
其中T^*>0 (将在文后(3.32)式中给出)是不依赖于\tau的常数. 由(3.10)式知U(T^*+\tau,\tau){\mathcal K}(\tau)中的 Lipschitz 映射, 且Lipschitz常数为L(T^*)={\mathrm e}^{(K_{2}-K_{1})T^*}.

(II) 定义一个光滑函数 \chi(x)\in {\mathcal C}^{1}({\bf {\Bbb R}}_+,[0, 1]),满足 \begin{eqnarray*} \quad \chi(x)=\left\{ \begin{array}{ll} 0,0\leqslant x\leqslant 1; \\ 1,x\geqslant 2, \end{array} \right.\,{\mbox{且}} |\chi'(x)|\leqslant \chi_0 \,(\mbox{正常数}), \forall\,x\in {\bf {\Bbb R}}_+. \end{eqnarray*} p_d=(p_{dm})_{m\in {\Bbb Z}},q_d=(q_{dm})_{m\in {\Bbb Z}}, z_{d}=(z_{dm})_{m\in {\Bbb Z}}, p_{dm}=\chi(\frac{|m|}{M})u_{dm}, q_{dm}=\chi(\frac{|m|}{M})v_{dm}, z_{dm}=(p_{dm},q_{dm}), 其中M为某个正数. 由于(u^{(1)},v^{(1)})(u^{(2)},v^{(2)})满足 (2.5)式,因此

\begin{eqnarray}\label{3.11} {\rm i}\dot{u}_{d}-Au_{d}+{\rm i}\alpha u_{d}=u^{(1)}v^{(1)}-u^{(2)}v^{(2)}. \end{eqnarray} (3.11)
p_{d}\ell^{2}上与(3.11)式作内积,然后取虚部,得
\begin{eqnarray} && \frac{1}{2}\frac{\mathrm{d}}{{\mathrm{d}}t} \sum\limits_{m\in{\bf{\Bbb Z}}}\chi(\frac{|m|}{M})|u_{dm}|^{2} -\textbf{Im}(Au_d,p_d) + \alpha\sum\limits_{m\in{\bf{\Bbb Z}}}\chi(\frac{|m|}{M})|u_{dm}|^{2} \nonumber\\ &=&\textbf{Im}(u^{(1)}v^{(1)}-u^{(2)}v^{(2)},p_{d}).\quad \label{3.12} \end{eqnarray} (3.12)
通过计算,我们有
\begin{eqnarray}\label{3.13} -\textbf{Im}(Au_d,p_d) & = & -\textbf{Im}(Bu_d,Bp_d) \nonumber\\ &=& -\textbf{Im}\sum\limits_{m\in{\bf{\Bbb Z}}}(u_{dm+1}-u_{dm}) \Big(\chi(\frac{|m+1|}{M}){\bar u_{dm+1}} -\chi(\frac{|m|}{M}){\bar u_{dm}}\Big)\nonumber\\ &=& \textbf{Im}\sum\limits_{m\in{\bf{\Bbb Z}}} \Big(\chi(\frac{|m+1|}{M}){\bar u_{dm+1}}u_{dm} +\chi(\frac{|m|}{M}){\bar u_{dm}}u_{dm+1}\Big)\nonumber\\ &=& \textbf{Im}\sum\limits_{m\in{\bf{\Bbb Z}}} \Big(\chi(\frac{|m+1|}{M}){\bar u_{dm+1}}u_{dm} -\chi(\frac{|m|}{M}){\bar u_{dm+1}}u_{dm}\Big)\nonumber\\ &\geqslant& -\sum\limits_{m\in{\bf{\Bbb Z}}} |\chi'(\frac{{\tilde m}}{M})|\frac{1}{M}|u_{dm+1}||u_{dm}| \nonumber\\ &\geqslant& -\frac{\chi_{0}}{M}\|\psi_{d}\|^2_{E}, \forall t >\tau, \end{eqnarray} (3.13)
其中\tilde{m} 为介于 |m+1||m| 中的某个常数. 由引理2.3知,存在 t_1=t_{1}(\alpha,\beta,{\mathcal B}_0)>0, M_1=M_{1}(\alpha,\beta,t-\tau,{\mathcal B}_0)\in {\Bbb N}使得
\begin{eqnarray} && \textbf{Im}\sum_{m\in {\Bbb Z}}\big(u^{(1)}_{m}v^{(1)}_{m}-u^{(2)}_{m}v^{(2)}_{m}\big) \chi(\frac{|m|}{M})( \bar {u} ^{(1)}_{m}-\bar{u}^{(2)}_{m})\nonumber\\ &\leqslant& \sum_{m\in {\Bbb Z}}\chi(\frac{|m|}{M}) |u^{(1)}_{m}v^{(1)}_{m}-u^{(2)}_{m}v^{(2)}_{m}| \,|u^{(1)}_{m}-u^{(2)}_{m}|\nonumber\\ &=& \sum_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|u^{(1)}_{m}(v^{(1)}_{m}-v^{(2)}_{m}) + v^{(2)}_{m}(u^{(1)}_{m}-u^{(2)}_{m})| \,|u^{(1)}_{m}-u^{(2)}_{m}|\nonumber\\ &\leqslant& \frac{\alpha}{4}\sum_{m\in {\Bbb Z}} \chi(\frac{|m|}{M})|u^{(1)}_{m}-u^{(2)}_{m}|^{2} + \frac{\sqrt{\alpha\beta}}{2}\sum_{m\in {\Bbb Z}} \chi(\frac{|m|}{M}) |u^{(1)}_{m}-u^{(2)}_{m}||v^{(1)}_{m}-v^{(2)}_{m}|\nonumber\\ &\leqslant& \frac{\alpha}{2}\sum_{m\in {\Bbb Z}} \chi(\frac{|m|}{M})|u _{dm}|^{2} + \frac{\beta}{4}\sum_{m\in {\Bbb Z}} \chi(\frac{|m|}{M})|v_{dm}|^{2},\forall t-\tau> t_{1},\label{3.14} \forall M>M_{1}, \end{eqnarray} (3.14)
故对任意的t-\tau> t_{1},M> M_{1},有
\begin{eqnarray} \textbf{Im}(u^{(1)} v^{(1)}-u^{(2)}v^{(2)},p_{d}) \leqslant \frac{\alpha}{2}\sum_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|u _{dm}|^{2} + \frac{\beta}{4}\sum_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|v_{dm}|^{2}.\label{3.15} \end{eqnarray} (3.15)
由(3.12)-(3.15) 式知,
\begin{eqnarray}\label{3.16} &&\frac{1}{2}\frac{\mathrm{d}}{{\mathrm{d}}t} \sum\limits_{m\in{\bf{\Bbb Z}}}\chi(\frac{|m|}{M})|u_{dm}|^{2} + \frac{\alpha}{2}\sum\limits_{m\in{\bf{\Bbb Z}}} \chi(\frac{|m|}{M})|u_{dm}|^{2}\nonumber\\ & \leqslant& \frac{\beta}{4}\sum\limits_{m\in{\bf{\Bbb Z}}} \chi(\frac{|m|}{M})v_{dm}^{2} + \frac{\chi_{0}}{M}\|\psi_{d}\|^{2}_{E},\forall t-\tau> t_{1}, M>M_{1}. \end{eqnarray} (3.16)
类似(3.11)式,v_d 满足
\begin{eqnarray}\label{3.17} \dot{v}_{d}+\beta v_{d} +\gamma B(|u^{(1)}|^{2}-|u^{(2)}|^{2})=0. \end{eqnarray} (3.17)
q_{d}l^{2}上与(3.17)式作内积,得
\begin{eqnarray}\label{3.18} \frac{1}{2}\frac{\mathrm{d}}{{\mathrm{d}}t} \sum\limits_{m\in{\bf {\Bbb Z}}} \chi(\frac{|m|}{M})v_{dm}^{2} + \beta\sum\limits_{m\in{\bf {\Bbb Z}}} \chi(\frac{|m|}{M})v_{dm}^{2} +\gamma\big(B(|u^{(1)}|^{2}-|u^{(2)}|^{2}),q_{d}\big)=0. \end{eqnarray} (3.18)
下面估计\gamma\big(B(|u^{(1)}|^{2}-|u^{(2)}|^{2}),q_{d}\big). 首先,
\begin{eqnarray}\label{3.21} \big|\gamma\big(B(|u^{(1)}|^{2}-|u^{(2)}|^{2}),q_{d}\big)\big| & =& \bigg|\gamma\sum\limits_{m\in{\bf {\Bbb Z}}} \chi(\frac{|m|}{M}) \big(B(|u^{(1)}|^{2}-|u^{(2)}|^{2})\big)_{m}v_{dm}\bigg|\nonumber\\ &=& \bigg|\gamma\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M}) \Big[(|u^{(1)}_{m+1}|^2-|u^{(2)}_{m+1}|^2) -(|u^{(1)}_{m}|^2-|u^{(2)}_{m}|^2)\Big]v_{dm}\bigg|\nonumber\\ &\leqslant& I_1+I_2, \end{eqnarray} (3.19)
其中 I_1=\gamma\bigg|\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})(|u^{(1)}_{m}|^2 -|u^{(2)}_{m}|^2)v_{dm}\bigg|, I_2=\gamma\bigg|\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})(|u^{(1)}_{m+1}|^2 -|u^{(2)}_{m+1}|^2)v_{dm}\bigg|. 由引理2.3和柯西不等式知,存在t_2=t_{2}(\alpha,\beta,\gamma,{\mathcal B}_0)>0, M_2=M_{2}(\alpha,\beta,\gamma,t-\tau,{\mathcal B}_0)\in {\Bbb N},使得
\begin{eqnarray}\label{3.22} I_1 &\leqslant& \frac{\beta}{4}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})v^2_{dm} +\frac{\gamma^2}{\beta}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})\Big[(|u^{(1)}_{m}|^2-|u^{(2)} _{m}|^2)\Big]^2 \nonumber\\ &\leqslant& \frac{\beta}{4}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})v^2_{dm} +\frac{\gamma^2}{\beta}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M}) |u^{(1)}_{m}-u^{(2)}_{m}|^2(|u^{(1)}_{m}|^2+|u^{(2)}_{m}|^2) \nonumber\\ &\leqslant& \frac{\beta}{4}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})v^2_{dm} +\frac{\alpha}{4}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})|u_{dm}|^2, t-\tau> t_{2},M>M_{2}. \end{eqnarray} (3.20)
其次,由柯西不等式得
\begin{eqnarray}\label{3.23} I_2 &\leqslant& \frac{\beta}{4}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})v^2_{dm} +\frac{\gamma^2}{\beta}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})\Big[(|u^{(1)}_{m+1}|^2 -|u^{(2)}_{m+1}|^2)\Big]^2 \nonumber\\ &\leqslant& \frac{\beta}{4}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})v^2_{dm} + \frac{2\gamma^2 \|\psi_{d}\|_E^2}{\beta} \sum\limits_{m\in{\bf {\Bbb Z}}} \chi(\frac{|m|}{M}) (|u^{(1)}_{m+1}|^2+|u^{(2)}_{m+1}|^2). \end{eqnarray} (3.21)
再由文献[52,(3.15)式]知,
\begin{eqnarray}\label{3.24} \sum\limits_{m\in {\bf {\Bbb Z}}}\chi(\frac{|m|}{M})|u^{(j)}_{m+1}(t)|^2 &\leqslant& \frac{1}{\alpha}\int_{\tau}^t \Big(\sum\limits_{|m|\geqslant M}|f_{m+1}(\sigma)|^2 \Big){\mathrm e}^{-\alpha(t-\sigma)}{\mathrm d}\sigma \nonumber\\ && +R^2_0{\mathrm e}^{-\alpha(t-\tau)} +\frac {2\chi_0R^2_0}{\alpha M}, \quad j=1,2, \forall\,t-\tau\geqslant t_{0}, \end{eqnarray} (3.22)
其中t_0由(2.14)式确定. 由(3.16),(3.18)式和(3.19)-(3.22) 式得
\begin{eqnarray}\label{3.25} && \frac{\mathrm{d}}{{\mathrm{d}}t} \sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})|\psi_{dm}|^2_{E} +\vartheta\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})|\psi_{dm}|^2_{E} \leqslant I_3\|\psi_{d}\|^{2}_{E}, \end{eqnarray} (3.23)
其中\displaystyle\vartheta=\min\{\alpha/2,\beta/2\}, t-\tau>\max\{t_0,t_1,t_2\},M>\max\{M_1,M_2\},
\begin{eqnarray}\label{3.26} I_3 &=&\frac{8\gamma^2}{\beta}\bigg[\frac{1}{\alpha}\int_{\tau}^t \Big(\sum\limits_{|m|\geqslant M}|f_{m+1}(\sigma)|^2 \Big){\mathrm e}^{-\alpha(t-\sigma)}{\mathrm d}\sigma +R^2_0{\mathrm e}^{-\alpha(t-\tau)} +\frac {2\chi_0R^2_0}{\alpha M}\bigg] +\frac {2\chi_0}{M} \nonumber\\ &\leqslant& \frac{8\gamma^2}{\alpha^2\beta}\sup\limits_{t\in {\Bbb R}} \sum\limits_{|m|\geqslant M}|f_{m+1}(t)|^2 +\Big(\frac{8\gamma^2}{\beta}\frac {2\chi_0R^2_0}{\alpha M} +\frac {2\chi_0}{M}\Big) +\frac{8\gamma^2}{\beta}R^2_0{\mathrm e}^{-\alpha(t-\tau)}. \end{eqnarray} (3.24)
对(3.23)式从\taut应用格朗沃尔不等式,有
\begin{eqnarray} \sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})|\psi_{dm}(t)|^{2}_{E} \leqslant {\mathrm e}^{-\vartheta(t-\tau)}\sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})|\psi_{dm}(\tau)|^{2}_{E} + \int_{\tau}^{ t}I_3\|\psi_{d}(y)\|^{2}_{E} {\mathrm e}^{-\vartheta(t-y)}{\mathrm{d}}y,\quad\label{3.27} \end{eqnarray} (3.25)
由(3.10)式得,
\begin{eqnarray}\label{3.28} \int_{\tau}^{ t}I_3\|\psi_{d}(y)\|^{2}_{E} {\mathrm e}^{-\vartheta(t-y)}{\mathrm{d}}y &\leqslant& \|\psi_{d}(\tau)\|^{2}_{E}\int_{\tau}^{ t} I_3{\mathrm e}^{-\vartheta(t-y) +2(K_{2}-K_{1})(y-\tau)}{\mathrm{d}}y. \end{eqnarray} (3.26)
注意到
\begin{eqnarray} && \int_{\tau}^{ t} \Big (\frac{2\gamma^2}{\beta}\frac {2\chi_0R^2_0}{\alpha M} +\frac {2\chi_0}{M}\Big){\mathrm e}^{-\vartheta(t-y) +2(K_{2}-K_{1})(y-\tau)}{\mathrm{d}}y \nonumber\\ &\leqslant& \frac 1M\Big(\frac{8\gamma^2}{\beta}\frac {2\chi_0R^2_0}{\alpha } +2\chi_0\Big)\frac{\chi_{0}{\mathrm e}^{2(K_{2}-K_{1})(t-\tau)}}{ (\vartheta+2K_{2}-2K_{1})},\label{3.29} \end{eqnarray} (3.27)
\begin{eqnarray} && \frac{8\gamma^2}{\beta} \int_{\tau}^{ t} R^2_0{\mathrm e}^{-\alpha(y-\tau)}{\mathrm e}^{-\vartheta(t-y) +2(K_{2}-K_{1})(y-\tau)}{\mathrm{d}}y \nonumber\\ &\leqslant& \frac{8\gamma^2R^2_0}{\beta[{2(K_{2}-K_{1})+\vartheta-\alpha}]} {\mathrm e}^{(2K_{2}-2K_{1}-\alpha)(t-\tau)},\label{3.30} \end{eqnarray} (3.28)
\begin{eqnarray} && \int_{\tau}^{ t}\frac{8\gamma^2}{\alpha^2\beta}\sup\limits_{y\in {\Bbb R}} \sum\limits_{|m|\geqslant M}|f_{m+1}(y)|^2{\mathrm e}^{-\vartheta(t-y) +2(K_{2}-K_{1})(y-\tau)}{\mathrm{d}}y\nonumber\\ &\leqslant& \frac{8\gamma^{2}|||f|||^2}{\alpha^{2}\beta(\vartheta+2K_{2}-2K_{1})} {\mathrm e}^{(2K_{2}-2K_{1})(t-\tau)}.\label{3.31} \end{eqnarray} (3.29)
对任意的M> \max\{M_1,M_2\}, t-\tau> \max\{t_0,t_1,t_2\},由(3.24)--(3.29) 式得
\begin{eqnarray} \sum\limits_{m\in{\bf {\Bbb Z}}}\chi(\frac{|m|}{M})|\psi_{dm}(t)|^{2}_{E} &\leqslant& \bigg[{\mathrm e}^{-\vartheta(t-\tau)} +\frac{8\gamma^2R^2_0}{[2(K_{2}-K_{1})+ \vartheta-\alpha]\beta}{\mathrm e}^{(2K_{2}-2K_{1}-\alpha)(t-\tau)}\nonumber\\ && +\frac{8\gamma^2}{\alpha^2\beta(\vartheta+2K_{2}-2K_{1})} {\mathrm e}^{(2K_{2}-2K_{1})(t-\tau)}\bigg] \|\psi_{d}(\tau)\|^{2}_{E}\nonumber\\ && +\frac{1}{M}\Big(2\chi_{0}+\frac{16\chi_{0}\gamma^2R^2_0} {\alpha\beta}\Big)\frac{\chi_{0}{\mathrm e}^{2(K_{2}+K_{1})(t-\tau)}} {\vartheta+2K_{2}-2K_{1}}\|\psi_{d}(\tau)\|^{2}_{E}. \quad\label{3.32} \end{eqnarray} (3.30)
由(2.12)式知K_{1}>K_{2}. 取定T^*\geqslant \max\{t_0,t_1,t_2\}, 使得
\begin{equation} {\mathrm e}^{-\vartheta T^*} < \frac {1}{16},\quad \frac{8\gamma^2R^2_0}{\beta[2(K_{2}-K_{1})+ \vartheta-\alpha]}{\mathrm e}^{(2K_{2}-2K_{1}-\alpha)T^*} < \frac {1}{16},\label{S1} \end{equation} (3.31)
\begin{equation} \frac{8\gamma^2}{\alpha^2\beta(\vartheta+2K_{2}-2K_{1})}{\mathrm e}^{(2K_{2}-2K_{1})T^*} < \frac {1}{16}.\label{S2} \end{equation} (3.32)
对上述确定的T^*,取N^*\geqslant \max\{M_1,M_2\},使得
\begin{eqnarray}\label{3.33} \frac{1}{M}\Big(2\chi_{0}+\frac{16\chi_{0}\gamma^2R^2_0} {\alpha\beta}\Big)\frac{\chi_{0}{\mathrm e}^{2(K_{2}-K_{1})T^*}} {\vartheta+2K_{2}-2K_{1}} < \frac {1}{16},\forall\,M\geqslant N^*. \end{eqnarray} (3.33)
因此,由(3.30)式得
\begin{eqnarray}\label{3.34} \sum\limits_{|m|>2N^*}|\psi_{dm}(T^{*}+\tau)|^{2}_{E} \leqslant \sum\limits_{m\in{\bf{\Bbb Z}}} \chi(\frac{|m|}{N^*})|\psi_{dm}(T^{*}+\tau )|^{2}_{E} \leqslant \eta^{2}\|\psi_{d}(\tau)\|^{2}_{E}, \end{eqnarray} (3.34)
其中
\begin{eqnarray} \eta^2 &=&{\mathrm e}^{-\vartheta T^*} +\frac{8\gamma^2R^2_0}{\beta[2(K_{2}-K_{1}) + \vartheta-\alpha]}{\mathrm e}^{(2K_{2}-2K_{1}-\alpha)T^*} \nonumber\\ &&+ \frac{8\gamma^2}{\alpha^2\beta(\vartheta+2K_{2}-2K_{1})} {\mathrm e}^{(2K_{2}-2K_{1})T^*} \nonumber\\ && +\frac{1}{M}\Big(2\chi_{0}+\frac{16\chi_{0}\gamma^2R^2_0} {\alpha\beta}\Big)\frac{\chi_{0}{\mathrm e}^{2(K_{2}-K_{1})T^*}} {\vartheta+2K_{2}-2K_{1}} < \frac{1}{4}. \end{eqnarray} (3.35)
由(3.34)式得
\begin{eqnarray}\label{3.35} \|(I-P_{2N^*}) \big[U(T^{*}+\tau,\tau)\psi^{(1)}_{\tau} -U(T^{*}+\tau,\tau)\psi^{(2)}_{\tau}\big]\|_{E} \leqslant \eta\|\psi^{(1)}_{\tau}-\psi^{(2)}_{\tau}\|_{E}. \end{eqnarray} (3.36)
引理3.1证明完毕.

定理 3.1 若假设(H) 成立且 引理2.4的条件成立, \{{\cal K}(\tau)\}_{\tau\in {\Bbb R}}为过程\{U(t,\tau)\}_{t\geqslant \tau} 的核截面. 则对任意的\tau\in {\Bbb R},核截面{\mathcal K}(\tau)的分形维数满足

\begin{eqnarray}\label{3.36} \dim_F{\mathcal K}(\tau) \leqslant 3(4N^*+1) \cdot \ln\Big(1+\frac{8(1+{\mathrm e}^{(K_1+K_2)T^*})}{\frac{1}{2}-\eta}\Big) \cdot \Big (\ln\frac{2}{\frac{3}{2}+\eta}\Big)^{-1}, \end{eqnarray} (3.37)
其中T^*,N^*,\eta,K_1K_2 为不依赖于\tau的常数.

由文献[48,引理3.1和定理2.1]可得该定理的结果. 证明完毕.

参考文献
[1] Ahmed Abdallah Y. Exponential attractors for first-order lattice dynamical systems. J Math Anal Appl, 2008, 339:217-224
[2] Ahmed Abdallah Y. Uniform exponential attractors for second order non-autonomous lattice dynamical systems. Comm pure Appl Anal, 2009, 8:803-813
[3] Angulo J, Montenegro J F B. Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves. Nonlinearity, 2000, 13:1595-1611
[4] Benney D J. A general theory for interactions between short and long waves. Stud Appl Math, 1977, 56:81-94
[5] Bekiranov D, Ogawa T, Ponce G. On the well-posedness of Benney's interaction equation of short and long waves. Adv Differential Equations, 1996, 1:919-937
[6] Bekiranov D, Ogawa T, Ponce G. Interaction equations for short and long dispersive waves. J Funct Anal, 1998, 158:357-388
[7] Beyn W J, Pilyugin S Yu. Attractors of reaction diffusion systems on infinite lattices. J Dyna Differential Equations, 2003, 15:485-515
[8] Bates P W, Chen X, Chmaj A. Traveling waves of bistable dynamics on a lattice. SIAM J Math Anal, 2003, 35:520-546
[9] Bates P W, Lisei H, Lu K. Attractors for stochastic lattice dynamical systems. Stoch Dyna, 2006, 6:1-21
[10] Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, RI:Amer Math Soc, 2002
[11] Carrol T L, Pecora L M. Synchronization in chaotic systems. Phys Rev Lett, 1990, 64:821-824.
[12] Chate H, Courbage M. Lattice systems. Physica D, 1997, 103:1-612
[13] Chow S N. Lattice dynamical systems//Lecture Notes in Math 1822. Berlin:Springer, 2003:102 pages
[14] Chua L O, Yang Y. Cellular neural networks:theory. IEEE Trans Circuits Systems, 1988, 35:1257-1272
[15] Chua L O, Roska T. The CNN paradigm. IEEE Trans Circuits Systems, 1993, 40:147-156
[16] Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Comp Dyna, 1996, 4:109-178
[17] Chow S N, Paret J M, Shen W. Traveling waves in lattice dynamical systems. J Differential Equations, 1998, 149:248-291
[18] Chueshov I, Lasiecka I. Attractors for second-order evolution equations with a nonlinear damping. J Dyna Differential Equations, 2004, 16:477-520
[19] Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67:237-244
[20] Fabiny L, Colet P, Roy R. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys Rev A, 1993, 47:4287-4296
[21] Guo B L, Chen L. Orbital stability of solitary waves of the long wave-short wave resonance equations. Math Meth Appl Sci, 1998, 21:883-894
[22] Hillert M. A solid-solution model for inhomogeneous systems. Acta Metall, 1961, 9:525-535
[23] Hsu C, Lin S. Existence and multiplicity of traveling waves in a lattice dynamical system. J Differential Equations, 2000, 164:431-450
[24] Hsu C, Yang S. Existence of monotonic traveling waves in lattice dynamical systems. Inter J Bifur Chaos, 2005, 15:2375-2394
[25] Han X. Exponential attractors for lattice dynamical systems in weighted spaces. Disc Cont Dyna Syst A, 2011, 31:445-467
[26] Han X. Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise. J Math Anal Appl, 2011, 376:481-493
[27] Han X. Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differential Equations, 2011, 250:1235-1266
[28] Han X. Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces. Stoch Dyna, 2012, 12:1150024, 20 pages
[29] Han X. Asymptotic behaviors for second order stochastic lattice dynamical systems on Zk in weighted spaces. J Math Anal Appl, 2013, 397:242-254
[30] Jia X. Zhao C, Yang X. Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices. Appl Math Comp, 2012, 218:9781-9789
[31] Keener J P. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J Appl Math, 1987, 47:556-572
[32] Kapval R. Discrete models for chemically reacting systems. J Math Chem, 1991, 6:113-163
[33] Karachalios N I, Yannacopoulos A N. Global existence and compact attractors for the discrete nonlinear Schrödinger equation. J Differential Equations, 2005, 217:88-123
[34] Ladyzhenskaya O. Attractors for Semigroups and Evolution Equations. Cambridge:Cambridge University Press, 1991
[35] Li Y S. Long time behavior for the weakly damped driven long-wave-short-wave resonance equations. J Differential Equations, 2006, 223:261-289
[36] 梁芸芸, 李楚进, 赵才地. 格点量子Zakharov 方程组紧致核截面的存在性与熵的估计. 数学物理学报, 2014, 34A:1203-1218
[37] Nicholson D R, Goldman M V. Damped nonlinear Schrödinger equation. Phys Fluids, 1976, 19:1621-1625
[38] Tsutsumi M, Hatano S. Well posedness of the Cauchy problem for the long-wave-short-wave resonance equations. Nonl Analysis, 1994, 22:155-171
[39] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin:Springer, 1997
[40] Wang B. Dynamics of systems on infinite lattices. J Differential Equations, 2006, 221:224-245
[41] Yang X, Zhao C, Cao J. Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations. Appl Math Comp, 2013, 219:8508-8524
[42] 杨新波, 赵才地, 贾晓琳. 自治耦合格点非线性 Schrödinger 方程组的一致吸引子及熵的 估计. 数学物理学报, 2013, 33A:636-645
[43] Zhou S. Attractors for lattice systems corresponding to evolution equations. Nonlinearity, 2002, 15:1079-1095
[44] Zhou S. Attractors for second order lattice dynamical systems. J Differential Equations, 2002, 179:605-624
[45] Zhou S. Attractors for first order dissipative lattice dynamical systems. Physica D, 2003, 178:51-61
[46] Zhou S. Attractors and approximations for lattice dynamical systems. J Differential Equations, 2004, 200:342-368
[47] Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differential Equations, 2006, 224:172-204
[48] Zhou S, Zhao C, Wang Y. Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems. Disc Cont Dyna Syst A, 2008, 21:1259-1277
[49] Zhou S, Han X. Pullback exponential attractors for non-autonomous lattice systems. J Dyna Differential Equations, 2012, 24:601-631
[50] Zhou S, Han X. Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces. Nonl Analysis, 2013, 78:141-155
[51] Zhao C, Zhou S. Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equation on infinite lattice. J Math Anal Appl, 2007, 332:32-56
[52] Zhao C, Zhou S. Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices. Nonl Analysis, 2008, 68:652-670
无穷格点上长波-短波共振方程组核截面的分形维数估计
梁芸芸, 朱泽奇, 赵敏, 赵才地