数学物理学报  2015, Vol. 35 Issue (6): 1071-1079   PDF (336 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张德悦
路林燕
孙伟
二维手性介质层电磁散射问题的积分方程方法
张德悦1, 路林燕1, 孙伟2    
1 吉林大学数学科学学院 长春 130012;
2 哈尔滨理工大学应用数学系 哈尔滨 150080
摘要: 该文考虑了时谐的电磁平面波入射到外面包裹一层手性介质的良导体障碍物的散射问题.建立了一个二维散射模型并用积分方程方法讨论了解的存在性和唯一性.
关键词: 手性介质     Maxwell方程     积分方程方法    
An Integral Equation Method for Two-Dimensional Scattering by a Chiral Curved Layer
Zhang Deyue1, Lu Linyan1, Sun Wei2    
1 School of Mathematics, Jilin University, Changchun 130012;
2 School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080
Abstract: Consider the time-harmonic electromagnetic plane waves incident on a chiral curved layer covering a perfectly conducting object. A two-dimensional scattering model is established and the existence and the uniqueness of solutions are studied by an integral equation method. We have shown that the integral equation system admits a unique solution.
Key words: Chiral media     Maxwell equations     Integral equation method    
1 引言

特殊材料的旋光性一直是光学和量子动力学的研究热点. 然而, 近几年才刚刚开始在经典的电磁场框架下对其进行分析. 手性材料是最近电磁场理论的研究焦点. 一般来说, 手性介质中的电场和磁场满足Maxwell方程和Drude-Born-Fedorov方程组成的方程组. 手性介质的性质可以用介电常数$\epsilon$, 磁导率$\mu$,手性导纳$\beta$来描述.

最近,一些数学家开始对手性介质中的电磁散射问题进行研究,并取得了一些进展. Ammari$\mbox{、}$ Hamdache和 Nédélec[1],Ammari和 Nédélec[2, 3]提出了Drude-Born-Fedorov模型, 表示定理和Drude-Born-Fedorov方程辐射条件的 数学证明,手性模型的收敛性分析. Ammari和 Nédélec[4], Ammari$\mbox{、}$ Laouadi和 Nédélec[5]研究了薄的手性涂层的效果和 手性模型的低频极限. Ammari和 Nédélec[6],Ammari和 Bao[7], Zhang和Ma[8, 9]研究了手性光栅衍射问题的变分公式并进行了数值分析.

本文考虑了一个无限长的屏状良导体障碍物外覆盖一层手性介质涂层的时谐电磁波散射问题. 文中将散射问题简化为一个二维问题,用积分方程方法 研究了散射问题的适定性,并证明了模型问题只有一个解.

2 散射问题

假设良导体障碍物$\widetilde{D}=\{\texttt{x}=(x,x_3)\in {\Bbb R}^{3}|\ x=(x_1,x_2)\in D\subset {\Bbb R}^2,x_3\in {\Bbb R}\}$是一个平行于$x_3$轴的无限长的屏. 它的表面覆盖了一层 均匀的手性介质涂层$\widetilde{D}^c=\{\texttt{x}=(x,x_3)\in {\Bbb R}^3|\,x=(x_1,x_2)\in D^c\subset {\Bbb R}^2,x_3\in {\Bbb R}\}$. $D$和$D^c$是$\widetilde{D}$和 $\widetilde{D}^c$在$x_1$-$x_2$平面上的界面(见图 1). 令$\Gamma=\partial D$, $\Gamma^c$是$D^c$和$D^e={\Bbb R}^2\setminus\overline{D \cup D^c}$ 的交界面. 假设$D$是单连通的,边界$\Gamma$ 和$\Gamma^c$ 属于$C^{2,\alpha}$, $\alpha\in (0,1)$.

图 1 手性介质层

考虑时谐的Maxwell方程

$$\nabla \times {\bf E}-{\rm i}\omega {\bf B}=0,\quad \nabla \times {\bf H}+{\rm i}\omega {\bf D}=0,$$ 其中${\bf E},{\bf H},{\bf D}$ 和 ${\bf B}$分别表示$R^3$中的电场, 磁场和电场,磁场的位移向量. 在手性介质中, ${\bf E},{\bf H},{\bf D}$ 和 ${\bf B}$满足Drude-Born-Fedorov本构方程

\begin{eqnarray*} {\bf D}=\varepsilon({\bf E}+\beta\nabla\times {\bf E}), \quad {\bf B}=\mu({\bf H}+\beta\nabla\times {\bf H}), \end{eqnarray*} 其中$\varepsilon$是介电常数,$\mu$是磁导率,$\beta$是手性导纳. Maxwell方程可以被写成

\begin{equation} \nabla\times {\bf E}=\gamma^{2}\beta {\bf E} + {\rm i}\omega\mu\frac{{\gamma}^2}{k^2} {\bf H},\qquad \nabla\times {\bf H}=\gamma^{2}\beta {\bf H} - {\rm i}\omega\varepsilon \frac{{\gamma}^2}{k^2} {\bf E}, \end{equation} (2.1)
其中$k=\omega\sqrt{\varepsilon\mu},\ \gamma^{2}=k^{2}(1-k^2\beta^2)^{-1}$. 假设在手性介质层$\widetilde{D}^c$中 $\varepsilon=\varepsilon_c$,$\mu=\mu_c$,$\beta=\beta_c$,$|k\beta|\neq1$,在手性介质层外 $\widetilde{D}^\delta$里 $\varepsilon=\varepsilon_0$,$\mu=\mu_0$,和 $\beta=0$, 其中 $\varepsilon_c$,$\mu_c$,$\beta_c$,$\varepsilon_0$ 和 $\mu_0$是常数.

考虑平面波

\begin{eqnarray*} {\bf E}_{\mathbf{I}}={\bf p} {\rm e}^{{\rm i} {\bf q}\cdot\, \texttt{x}},\qquad {\bf H}_{\mathbf{I}}={\bf s} {\rm e}^{{\rm i} {\bf q}\cdot\,\texttt{x}}, \end{eqnarray*} 其中${\bf s}={\bf q}\times {\bf p}/(\omega\mu_0)$, ${\bf p}\cdot {\bf q}=0 $, ${\bf q}=k_0(\sin\theta,-\cos\theta,0)$, $k_0=\omega\sqrt{\varepsilon_0\mu_0}$.

散射问题就是找到在${\Bbb R}^3\setminus\overline{\widetilde{D}}$中满足的方程组(2.1)的${\bf E}$, ${\bf H}$,并且满足边界条件

\begin{equation} \tilde{n}\times {\bf E}=0,\quad \mbox{在$\partial \widetilde{D}$上} \end{equation} (2.2)
和辐射条件

\begin{eqnarray*} \frac{\texttt{x}}{|\texttt{x}|}\times {\bf H}^s+\sqrt{\frac{\varepsilon_0}{\mu_0}}{\bf E}^s=o\left(\frac{1}{|\texttt{x}|}\right),\quad \frac{\texttt{x}}{|\texttt{x}|}\times{\bf E}^s-\sqrt{\frac{\mu_0}{\varepsilon_0}}{\bf H}^s=o\left(\frac{1}{|\texttt{x}|}\right), \ |\texttt{x}|\rightarrow \infty, \end{eqnarray*} 其中${\bf E}^s={\bf E}-{\bf E}_{\mathbf{I}}$,${\bf H}^s={\bf H}-{\bf H}_{\mathbf{I}}$, 并且 $\tilde{n}$表示$\partial \widetilde{D}$的外法向量.

3 等价问题

在这部分中,我们将把散射问题转化为一个二维问题. 假设电磁场${\bf E}$ 和${\bf H}$仅仅和$x_{1}$ 和 $x_{2}$变量有关.

在$\widetilde{D}^c$中,我们将${\bf E},{\bf H}$分解为两个Beltrami场 ${\bf Q}_{_{L}}$,${\bf Q}_{_{R}}$: ${\bf E}={\bf Q}_{_{L}}+ {\bf Q}_{_{R}}$, ${\bf H}=-{\rm i}\eta^{-1}_c({\bf Q}_{_{L}}-{\bf Q}_{_{R}})$. 用 $u$ 和 $v$ 分别表示 ${\bf Q}_{_{L}}$ 和 ${\bf Q}_{_{R}}$的$x_3$-分量. 我们马上可以得到它们满足的微分方程组

\begin{equation}\Delta u+\gamma_{_L}^2 u=0,\qquad \Delta v+\gamma_{_R}^2 v=0,\quad \mbox{在$ D^c$内} \end{equation} (3.1)
和边界条件

\begin{equation}u+v=0,\quad \gamma_{_L}^{-1}\partial_{\nu} u -\gamma_{_R}^{-1}\partial_{\nu} v =0,\quad \mbox{在$\Gamma$上},\end{equation} (3.2)
用$\Delta=\partial^2/\partial x_1^2+\partial^2/\partial x_2^2$ 表示二维Laplace算子并且

$$ \gamma_{_{L}}=\frac{\omega\sqrt{\varepsilon_c\mu_c}}{1-\omega\sqrt{\varepsilon_c\mu_c}\beta_c},\quad \gamma_{_{R}}=\frac{\omega\sqrt{\varepsilon_c\mu_c}}{1+\omega\sqrt{\varepsilon_c\mu_c}\beta_c},\quad \eta_c=\sqrt{\frac{\mu_c}{\varepsilon_c}}. $$ ${\bf Q}_{_{L}}$, ${\bf Q}_{_{R}}$的$x_1$,$x_2$ -分量可以用$x_3$ -分量表示.

在手性介质外,${\bf E}^s, {\bf H}^s$也有类似的分解

$${\bf E}^s={\bf Q}_{_{L}}^s+ {\bf Q}_{_{R}}^s,~~ {\bf H}^s=-{\rm i}\eta^{-1}_0({\bf Q}_{_{L}}^s-{\bf Q}_{_{R}}^s). $$ 用$a$和$b$分别表示${\bf Q}_{_{L}}^s$和${\bf Q}_{_{R}}^s$的$x_3$ -分量, 我们马上可以得到它们满足的微分方程组

\begin{equation}\Delta a+k_0^2 a=0,\qquad \Delta b+k_0^2 b=0,\quad \hbox{在$D^e$ 内}\end{equation} (3.3)
和辐射条件

\begin{equation}\lim\limits_{r\rightarrow\infty}\sqrt{r}\left(\frac{\partial a}{\partial r}-{\rm i} k_0 a\right)=0,\qquad \lim\limits_{r\rightarrow\infty}\sqrt{r}\left(\frac{\partial b}{\partial r}-{\rm i} k_0 b\right)=0,\end{equation} (3.4)
其中 $r=|x|$,$\eta_0=\sqrt{\mu_0/\varepsilon_0}$.

由边界$\Gamma^c$上${\bf E}$和${\bf H}$切分量的连续性可以导出下面关于$u$,$v$,$a$和$b$ 的传输条件

\begin{equation} \begin{array}{ll} u+v-a-b=f_1, \\[1mm] u-v-\lambda a+ \lambda b=f_2, \\[2mm] \frac{1}{\gamma_{_L}}\partial_{n}u-\frac{1}{\gamma_{_R}}\partial_{n}v -\frac{1}{k_0}\partial_{n}a+\frac{1}{k_0}\partial_{n}b=g_1, \\[4mm] \frac{1}{\gamma_{_L}}\partial_{n}u+\frac{1}{\gamma_{_R}}\partial_{n}v -\frac{\lambda}{k_0}\partial_{n}a-\frac{\lambda}{k_0}\partial_{n}b=g_2, \end{array}\end{equation} (3.5)
其中 $f_1=e_{\rm{I}}$,$f_2={\rm i}\eta_ch_{\rm{I}}$, $g_1={\rm i}\eta_0k_0^{-1}\partial_{n}h_{\rm{I}}$, $g_2=\lambda k_0^{-1}\partial_{n}e_{\rm{I}}$, $\lambda=\eta_c/\eta_0$,$n$是$\Gamma^c$的外法向量 . 这里 $e_{\rm{I}}$和 $h_{\rm{I}}$分别表示${\bf E}_{\rm{I}}$和${\bf H}_{\rm{I}}$的$x_3$分量.

这样,正散射问题等价于

${\bf 问题 1}\quad$ 对于给定的平面波$e_{\rm{I}}$和$h_{\rm{I}}$,找到满足微分方程 (3.1)和(3.3),边界条件(3.2)和(3.5),辐射条件 (3.4)的$u,v \in C^2(D^c) \cap C^1(\overline{D^c})$,$a,b \in C^2(D^e) \cap C^1(\overline{D^e})$.

4 解的存在性和唯一性

${\bf 定理4.1}\quad$ 问题1最多有一个解.

${\bf 证}\quad$ 只需证明齐次问题有唯一解. 令$e_{\rm{I}}=h_{\rm{I}}=0$,且$\overline{D^c} \subset B_R=\{x\in {\Bbb R}^2: |x|<R \}$. 利用Green定理和其次边界条件

\begin{eqnarray}\label{pro1} && \frac{1}{\gamma_{_L}}\int_{D^c}\left(|\nabla u|^2-\gamma_{_L}^2|u|^2\right){\rm d}x +\frac{1}{\gamma_{_R}}\int_{D^c}\left(|\nabla v|^2-\gamma_{_R}^2|v|^2\right){\rm d}x \nonumber \\ & =&\frac{1}{\gamma_{_L}}\int_{\Gamma^c}\partial_{n}u\,\bar{u}{\rm d}s +\frac{1}{\gamma_{_R}}\int_{\Gamma^c}\partial_{n}v\,\bar{v}{\rm d}s \nonumber \\ &=&\frac{\lambda}{k_0}\int_{\Gamma^c}\partial_{n}a\,\bar{a}{\rm d}s +\frac{\lambda}{k_0}\int_{\Gamma^c}\partial_{n}b\,\bar{b}{\rm d}s \nonumber \\ &=&\frac{\lambda}{k_0}\int_{\partial B_R}\frac{\partial a}{\partial r}\,\bar{a}{\rm d}s -\frac{\lambda}{k_0}\int_{B_R\cap D^e}\left(|\nabla a|^2-k_0^2|a|^2\right){\rm d}x \nonumber \end{eqnarray}
\begin{equation} +\frac{\lambda}{k_0}\int_{\partial B_R}\frac{\partial b}{\partial r}\,\bar{b}{\rm d}s -\frac{\lambda}{k_0}\int_{B_R\cap D^e}\left(|\nabla b|^2-k_0^2|b|^2\right){\rm d}x. \end{equation} (4.1)
由辐射条件(3.4)

$$ \int_{\partial B_R}\left(\left|\frac{\partial a}{\partial r}\right|^2+k_0^2|a|^2\right){\rm d}s +2k_0 {\rm Im}\int_{\partial B_R}\frac{\partial \bar{a}}{\partial r}\,a{\rm d}s=o(1),\quad R\rightarrow\infty, $$ $$ \int_{\partial B_R}\left(\left|\frac{\partial b}{\partial r}\right|^2+k_0^2|b|^2\right){\rm d}s +2k_0 {\rm Im}\int_{\partial B_R}\frac{\partial \bar{b}}{\partial r}\,b{\rm d}s=o(1),\quad R\rightarrow\infty. $$ 在(4.1)式左右两边同时取虚部,又因为所有的参数是实数,可以得到

$$\int_{\partial B_R}\left(|a|^2+|b|^2\right){\rm d}s=o(1),~~ R\rightarrow\infty. $$ 由Rellich引理,在$D^e$中,$a=b=0$. 利用齐边界条件,可以得出在$\Gamma^c$上$u=v=0$和 $\partial_{n}u=\partial_{n}v=0$. 根据Green公式(参见文献[10,定理2.1])和Rellich引理,可以得出在$D^c$上$u=v=0$. 定理 4.1 证毕.

下面我们研究解的存在性. 利用单,双层位势的组合来构造解, 然后推导出一个等价的唯一可解的第二类Fredholm积分方程.

由于二维Laplace方程的基本解在无穷远处不衰减,我们考虑用辅助曲线的方法[11]. 令$D_0$是$D$中$C^{2,\alpha}$的简单闭曲线. $\Gamma_0$是其内部的开单连通区域, 见图 2. 假设曲线$\Gamma_0$满足以下只有平凡解的Dirichlet问题

\begin{equation}\label{D.P.} \left\{ \begin{array}{ll} U\in C(\overline{D_0})\cap C^{2}(D_0) ,\\ \Delta U+\gamma_{_{L}}^2 U=0,& \hbox{在$D_0$内,}\\ U=0,&\hbox{在$ \Gamma_0$上.} \end{array} \right. \end{equation} (4.2)
例如: 取$\Gamma_0$为$D_0$内的一个圆,半径$r<c_1/\gamma_{_{L}}$, 其中$c_1$是Bessel函数$J_0(t)$的最小零点.

定义$\Phi_k(x,y)=\frac{{\rm i}}{4}H_0^1(k|x-y|)$,$x\neq y$,$k\neq 0$是波数为$k$的Helmholtz方程的基本解,其中$H_0^1(k|x-y|)$是0阶的第一类Hankel函数.

定义单层位势

$$ \left(S_{\Sigma}(k)\phi\right)(x)=\int_{\Sigma}\Phi_k(x,y)\phi(y){\rm d}s_y,\quad x\in {\Bbb R}^2\backslash \Sigma, $$ 双层位势

$$ \left(K_{\Sigma}(k)\psi\right)(x)=\int_{\Sigma}\frac{\partial \Phi_k(x,y)}{\partial n(y)}\psi(y){\rm d}s_y,\quad x\in {\Bbb R}^2\backslash \Sigma. $$
图 2 辅助曲线

定义边界积分算子 $S_{\Sigma\Lambda}^k$, $K_{\Sigma\Lambda}^k$,$K_{\Sigma\Lambda}^{k,*}:$ $C(\Sigma)\rightarrow C(\Lambda)$,

$$ \left(S_{\Sigma\Lambda}^k\phi\right)(x)=2\int_{\Sigma}\Phi_k(x,y)\phi(y){\rm d} s_y,\quad x\in \Lambda, $$ $$ \left(K_{\Sigma\Lambda}^k\phi\right)(x)=2\int_{\Sigma}\frac{\partial \Phi_k(x,y)}{\partial n(y)}\phi(y){\rm d}s_y,\quad x\in \Lambda, $$ $$ \left(K_{\Sigma\Lambda}^{k,*}\phi\right)(x)=2\frac{\partial}{\partial n(x)}\int_{\Sigma} \Phi_k(x,y)\phi(y){\rm d}s_y,\quad x\in \Lambda $$ 及 $T_{\Sigma\Lambda}^k:$ $C^{1,\alpha}(\Sigma)\rightarrow C(\Lambda)$,

\begin{eqnarray*} \left(T_{\Sigma\Lambda}^k\psi\right)(x)=2\frac{\partial}{\partial n(x)}\int_{\Sigma} \frac{\partial \Phi_k(x,y)}{\partial n(y)}\psi(y){\rm d}s_y,\quad x\in \Lambda, \end{eqnarray*} 这里$\phi$和$\psi$是密度函数,$\Sigma$和$\Lambda$ 是光滑曲线.

我们将寻找以下这种形式的问题1的解

\begin{eqnarray} u(x)&=&\gamma_{_{L}}\left[\frac{\lambda+1}{2}K_{\Gamma^c}(\gamma_{_{L}})\psi_1 + \frac{\lambda-1}{2}K_{\Gamma^c}(\gamma_{_{L}})\psi_2 +S_{\Gamma^c}(\gamma_{_{L}})\phi_1\right] \nonumber \\ && + \gamma_{_{L}}\left[S_{\Gamma}(\gamma_{_{L}})\phi_3 +K_{\Gamma}(\gamma_{_{L}})\psi_3\right] +\gamma_{_{L}}S_{\Gamma_0}(\gamma_{_{L}})\phi_4, \quad x \in D^c,\nonumber \\ v(x)&=&\gamma_{_{R}}\left[\frac{\lambda-1}{2}K_{\Gamma^c}(\gamma_{_{R}})\psi_1 + \frac{\lambda+1}{2}K_{\Gamma^c}(\gamma_{_{R}})\psi_2 +S_{\Gamma^c}(\gamma_{_{R}})\phi_2\right] \\ &&+ \gamma_{_{R}}\left[{\rm i} c_3S_{\Gamma}(\gamma_{_{R}})\psi_3 +K_{\Gamma}(\gamma_{_{R}})\psi_3\right], \qquad \ \qquad\qquad x\in D^c,\nonumber \\ a(x)&=&k_0\left[ K_{\Gamma^c}(k_0)\psi_1+{\rm i} c_1S_{\Gamma^c}(k_0)\psi_1\right], \qquad x \in D^e,\nonumber \\ b(x)&=&k_0\left[ K_{\Gamma^c}(k_0)\psi_2+{\rm i} c_2S_{\Gamma^c}(k_0)\psi_2\right], \qquad x \in D^e,\nonumber \end{eqnarray} (4.3)
其中$\phi_1,\phi_2 \in C^{0,\alpha}(\Gamma^c)$, $\phi_3 \in C^{0,\alpha}(\Gamma)$,$\phi_4 \in C^{0,\alpha}(\Gamma_0)$, $\psi_1,\psi_2 \in C^{1,\alpha}(\Gamma^c)$,$\psi_3 \in C^{1,\alpha}(\Gamma)$是未知密度函数, $\alpha\in (0,1)$,$c_1 \neq 0,c_2 \neq 0,c_3 \neq 0$是实常数.

现在,(4.3)式中有7个未知数,但是(3.2)和(3.5)式中只有6个方程. 因此,我们需要在辅助曲线上 增加人工边界条件

\begin{equation}\label{boundary3} \partial_{n_0} u-{\rm i} c_4 u=0,\quad \hbox{在$ \Gamma_0 $ 上,} \end{equation} (4.4)
其中$c_4\neq 0$,$n_0$ 是 $\Gamma_0$的外法向量.

由单层位势和双层位势的跳跃关系以及边界条件(3.2),(3.5)和(4.4)可以推导出以下微分方程

\begin{equation}\label{BIE} \left(M+A\right)(\phi_1,\phi_2,\phi_3,\phi_4,\psi_1,\psi_2,\psi_3)^T=2(g_1,g_2,0,0,f_1,f_2,0)^T, \end{equation} 其中

$$ M=\left( \begin{array}{ccccccc} 1 & ~ -1 ~ & 0 & ~0 ~ & {\rm i} c_1 & ~ -{\rm i} c_2 ~ & 0 \\[2mm] 1 & 1 & 0 & 0 & {\rm i} c_1\lambda & {\rm i} c_2\lambda & 0 \\[2mm] 0 & 0 & -1 & 0 & 0 & 0 &{\rm i} c_3 \\[2mm] 0 & 0 & 0 & -1 & 0 & 0 & 0 \\[2mm] 0 & 0 & 0 & 0 & \xi_1 &\xi_2 & 0 \\[2mm] 0 & 0 & 0 & 0 & \xi_3 &\xi_4 & 0 \\[2mm] 0 & 0 & 0 & 0 & 0 & 0 & \gamma_{_{L}}+\gamma_{_{R}} \end{array} \right), $$ $$ %{\footnotesize A=\left( \begin{array}{ccccccc} K_{\Gamma^c\Gamma^c}^{\gamma_{_{L},}*}& -K_{\Gamma^c\Gamma^c}^{\gamma_{_{R},}*}& K_{\Gamma\Gamma^c}^{\gamma_{_{L},}*}& K_{\Gamma_0\Gamma^c}^{\gamma_{_{L},}*}& T_1 & ~~T_2~~ & T_3 \\[2mm] K_{\Gamma^c\Gamma^c}^{\gamma_{_{L},}*}& K_{\Gamma^c\Gamma^c}^{\gamma_{_{R},}*}& K_{\Gamma\Gamma^c}^{\gamma_{_{L},}*}& K_{\Gamma_0\Gamma^c}^{\gamma_{_{L},}*}& T_4 & T_5& T_6 \\[2mm] K_{\Gamma^c\Gamma}^{\gamma_{_{L},}*}& -K_{\Gamma^c\Gamma}^{\gamma_{_{R},}*}& K_{\Gamma\Gamma}^{\gamma_{_{L},}*}& K_{\Gamma_0\Gamma}^{\gamma_{_{L},}*}& T_7 & T_8 & T_9 \\[2mm] K_{\Gamma^c\Gamma_0}^{\gamma_{_{L},}*}-{\rm i} c_4 S_{\Gamma^c\Gamma_0}^{\gamma_{_{L}}}& 0 & K_{\Gamma\Gamma_0}^{\gamma_{_{L},}*}-{\rm i} c_4 S_{\Gamma\Gamma_0}^{\gamma_{_{L}}}& ~ K_{\Gamma_0\Gamma_0}^{\gamma_{_{L},}*}-{\rm i} c_4 S_{\Gamma_0\Gamma_0}^{\gamma_{_{L}}}~& T_{10} & T_{11} & T_{12} \\[2mm] \gamma_{_{L}}S_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}} & \gamma_{_{R}}S_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}} & \gamma_{_{L}}S_{\Gamma\Gamma^c}^{\gamma_{_{L}}}& \gamma_{_{L}}S_{\Gamma_0\Gamma^c}^{\gamma_{_{L}}}& K_1 & K_2 & K_3 \\[2mm] \gamma_{_{L}}S_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}} & -\gamma_{_{R}}S_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}}& \gamma_{_{L}}S_{\Gamma\Gamma^c}^{\gamma_{_{L}}}& \gamma_{_{L}}S_{\Gamma_0\Gamma^c}^{\gamma_{_{L}}}& K_4 & K_5 & K_6 \\[2mm] \gamma_{_{L}}S_{\Gamma^c\Gamma}^{\gamma_{_{L}}} & \gamma_{_{R}}S_{\Gamma^c\Gamma}^{\gamma_{_{R}}}& \gamma_{_{L}}S_{\Gamma\Gamma}^{\gamma_{_{L}}}& \gamma_{_{L}}S_{\Gamma_0\Gamma}^{\gamma_{_{L}}}& K_7 & K_8 & K_9 \end{array} \right), $$ 其中

$$ \xi_1=-k_0-\frac{\lambda+1}{2}\gamma_{_{L}}-\frac{\lambda-1}{2}\gamma_{_{R}},\qquad \xi_2=-k_0-\frac{\lambda-1}{2}\gamma_{_{L}}-\frac{\lambda+1}{2}\gamma_{_{R}}, $$ $$ \xi_3=-\lambda k_0-\frac{\lambda+1}{2}\gamma_{_{L}}+\frac{\lambda-1}{2}\gamma_{_{R}},\qquad \xi_4=\lambda k_0-\frac{\lambda-1}{2}\gamma_{_{L}}+\frac{\lambda+1}{2}\gamma_{_{R}} $$ 并且

$$ T_1=\frac{\lambda+1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) -\frac{\lambda-1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) -{\rm i} c_1K_{\Gamma^c\Gamma^c}^{k_0,*}, $$ $$ T_2=\frac{\lambda-1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) -\frac{\lambda+1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) +{\rm i} c_2K_{\Gamma^c\Gamma^c}^{k_0,*}, $$ $$ T_3=\left(T_{\Gamma\Gamma^c}^{\gamma_{_{L}}}-T_{\Gamma\Gamma^c}^{\gamma_{_{R}}}\right) -{\rm i} c_3K_{\Gamma\Gamma^c}^{\gamma_{_{R},}*}, $$ $$ T_4=\frac{\lambda+1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) +\frac{\lambda-1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) -{\rm i} c_1\lambda K_{\Gamma^c\Gamma^c}^{k_0,*}, $$ $$ T_5=\frac{\lambda-1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) +\frac{\lambda+1}{2}\left(T_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}}-T_{\Gamma^c\Gamma^c}^{k_0}\right) -{\rm i} c_2\lambda K_{\Gamma^c\Gamma^c}^{k_0,*}, $$ $$ T_6=\left(T_{\Gamma\Gamma^c}^{\gamma_{_{L}}}+T_{\Gamma\Gamma^c}^{\gamma_{_{R}}}\right) +{\rm i} c_3K_{\Gamma\Gamma^c}^{\gamma_{_{R},}*}, $$ $$ T_7=\frac{\lambda+1}{2}T_{\Gamma^c\Gamma}^{\gamma_{_{L}}}-\frac{\lambda-1}{2}T_{\Gamma^c\Gamma}^{\gamma_{_{R}}}, \quad T_8=\frac{\lambda-1}{2}T_{\Gamma^c\Gamma}^{\gamma_{_{L}}}-\frac{\lambda+1}{2}T_{\Gamma^c\Gamma}^{\gamma_{_{R}}}, $$ $$ T_9=\left(T_{\Gamma\Gamma}^{\gamma_{_{L}}}-T_{\Gamma\Gamma}^{\gamma_{_{R}}}\right) -{\rm i} c_3K_{\Gamma\Gamma}^{\gamma_{_{R},}*},\quad T_{10}=\frac{\lambda+1}{2}\left(T_{\Gamma^c\Gamma_0}^{\gamma_{_{L}}} -{\rm i} c_4K_{\Gamma^c\Gamma_0}^{\gamma_{_{L}}}\right), $$ $$ T_{11}=\frac{\lambda-1}{2}\left(T_{\Gamma^c\Gamma_0}^{\gamma_{_{L}}} -{\rm i} c_4K_{\Gamma^c\Gamma_0}^{\gamma_{_{L}}}\right),\quad T_{12}=T_{\Gamma\Gamma_0}^{\gamma_{_{L}}} -{\rm i} c_4K_{\Gamma\Gamma_0}^{\gamma_{_{L}}}, $$ $$ K_1=\frac{\lambda+1}{2}\gamma_{_{L}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}} +\frac{\lambda-1}{2}\gamma_{_{R}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}} -k_0K_{\Gamma^c\Gamma^c}^{k_0}-{\rm i} c_1 k_0 S_{\Gamma^c\Gamma^c}^{k_0}, $$ $$ K_2=\frac{\lambda-1}{2}\gamma_{_{L}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}} +\frac{\lambda+1}{2}\gamma_{_{R}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}} -k_0 K_{\Gamma^c\Gamma^c}^{k_0}-{\rm i} c_2 k_0 S_{\Gamma^c\Gamma^c}^{k_0}, $$ $$ K_3=\gamma_{_{L}}K_{\Gamma\Gamma^c}^{\gamma_{_{L}}} +\gamma_{_{R}}K_{\Gamma\Gamma^c}^{\gamma_{_{R}}}+{\rm i} c_3\gamma_{_{R}}S_{\Gamma\Gamma^c}^{\gamma_{_{R}}}, $$ $$ K_4=\frac{\lambda+1}{2}\gamma_{_{L}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}} -\frac{\lambda-1}{2}\gamma_{_{R}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}} -\lambda k_0K_{\Gamma^c\Gamma^c}^{k_0}-{\rm i} c_1\lambda k_0 S_{\Gamma^c\Gamma^c}^{k_0}, $$ $$ K_5=\frac{\lambda-1}{2}\gamma_{_{L}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{L}}} -\frac{\lambda+1}{2}\gamma_{_{R}}K_{\Gamma^c\Gamma^c}^{\gamma_{_{R}}} +\lambda k_0K_{\Gamma^c\Gamma^c}^{k_0}+{\rm i} c_2\lambda k_0 S_{\Gamma^c\Gamma^c}^{k_0}, $$ $$ K_6=\gamma_{_{L}}K_{\Gamma\Gamma^c}^{\gamma_{_{L}}} -\gamma_{_{R}}K_{\Gamma\Gamma^c}^{\gamma_{_{R}}}-{\rm i} c_3\gamma_{_{R}}S_{\Gamma\Gamma^c}^{\gamma_{_{R}}}, \quad K_7=\frac{\lambda+1}{2}\gamma_{_{L}}K_{\Gamma^c\Gamma}^{\gamma_{_{L}}} +\frac{\lambda-1}{2}\gamma_{_{R}}K_{\Gamma^c\Gamma}^{\gamma_{_{R}}}, $$ $$ K_8=\frac{\lambda-1}{2}\gamma_{_{L}}K_{\Gamma^c\Gamma}^{\gamma_{_{L}}} +\frac{\lambda+1}{2}\gamma_{_{R}}K_{\Gamma^c\Gamma}^{\gamma_{_{R}}}, \quad K_9=\gamma_{_{L}}K_{\Gamma\Gamma}^{\gamma_{_{L}}} +\gamma_{_{R}}K_{\Gamma\Gamma}^{\gamma_{_{R}}}+{\rm i} c_3\gamma_{_{R}}S_{\Gamma\Gamma}^{\gamma_{_{R}}}. $$

由于所有的参数都是正数,我们可以很容易的得到

$$ \xi_2\xi_3-\xi_1\xi_4=2\lambda\gamma_{_{L}}\gamma_{_{R}} +k_0\gamma_{_{L}}(\lambda^2+1) +k_0\gamma_{_{R}}(\lambda^2+1)+2\lambda k_0^2\neq 0. $$ 因此,矩阵$M$是可逆的. 由文献[12,定理2.30和2.31] 以及$C(\Sigma)$中的紧算子 $T_{\Sigma\Sigma}^{k_1}-T_{\Sigma\Sigma}^{k_2}$ 可知 $A: (C(\Gamma^c))^4\times (C(\Gamma))^2\times C(\Gamma_0) \rightarrow (C(\Gamma^c))^4\times (C(\Gamma))^2\times C(\Gamma_0)$ 是紧的. 因此,由Riesz定理可知,方程组(4.5)有唯一解,如果相应的齐次系统只有平凡解. 因为

$$(\phi_1,\phi_2,\phi_3,\phi_4,\psi_1, \psi_2,\psi_3)^T=M^{-1}[2(g_1,g_2,0,0,f_1,f_2,0)^T-A(\phi_1, \phi_2,\phi_3,\phi_4,\psi_1,\psi_2,\psi_3)^T], $$

又由文献[12,定理2.30和2.31]

$$\phi_1,\phi_2,\psi_1,\psi_2 \in C(\Gamma^c),\phi_3,\psi_3 \in C(\Gamma),\phi_4 \in C(\Gamma_0), $$ 可以得出

$$\phi_1,\phi_2 \in C^{0,\alpha}(\Gamma^c),\phi_3 \in C^{0,\alpha}(\Gamma),\phi_4 \in C^{0,\alpha}(\Gamma_0),\psi_1,\psi_2 \in C^{1,\alpha}(\Gamma^c),\psi_3 \in C^{1,\alpha}(\Gamma). $$ 这说明(4.3)式中的位势满足问题1的正则性条件.

下面我们证明齐次系统$\left(M+A\right)(\phi_1,\phi_2,\phi_3,\phi_4,\psi_1,\psi_2, \psi_3)^T=0$只有一个平凡解. 用$(\phi_1,\phi_2, \phi_3,\phi_4,\psi_1,\psi_2,\psi_3)^T$表示齐次系统的平凡解. 位势(4.3)中的$u$,$v$,$a$ 和$b$满足齐次边界条件(3.5)和(3.2). 由于问题1有唯一解,则在$D^c$中$u=0$,$v=0$,并且在$D^e$中$a=0$,$b=0$. 像(4.3)式定义的那样,将$\tilde{u}$,$\tilde{v}$,$\tilde{a}$和 $\tilde{b}$定义为原区域的补集上的位势. 由单双层位势的跳跃关系可知,在 $\Gamma^c$上, $-\tilde{a}=k_0\psi_1,$ $-\frac{\partial \tilde{a}}{\partial n}=-{\rm i} c_1 k_0\psi_1. $ 利用Green定理和文献[10]中类似的结论可知,在$\Gamma^c$上, $\psi_1=0,$ $ -\tilde{v}=\gamma_{_{R}}\psi_3,~~ \psi_2=0. $ 在$\Gamma$上, $-\frac{\partial \tilde{v}}{\partial \nu}=-{\rm i} c_3 \gamma_{_{R}}\psi_3. $ 类似的方法,在$\Gamma$上, $\psi_3=0. $ 因此,$\tilde{u}$ 和 $\tilde{v}$是单层位势的线性组合, 所以在$\Gamma$上, $\tilde{u}=\tilde{v}=0. $

现在,我们知道位势$\tilde{u}$在$D\setminus \overline{D_0}$内满足Helmholtz 方程并满足边界条件(4.4),且 在$\Gamma$上$\tilde{u}=0$. 由Green定理和边界条件,可知

\begin{eqnarray*} \int_{D\setminus \overline{D_0}}\left(|\nabla \tilde{u}|^2-\gamma_{_L}^2|\tilde{u}|^2\right){\rm d}x =-{\rm i} c_4\int_{\Gamma_0}|\tilde{u}|^2{\rm d}s. \end{eqnarray*}

由于$c_4\neq 0$,对上式取虚部得到,在$\Gamma_0$上$\tilde{u}=0$, $\partial_{n_0} \tilde{u}=0$. 由Green定理,知

$$ \tilde{u}(x)=\int_\Gamma \frac{\partial\tilde{u}}{\partial \nu}(y)\ \Phi_{\gamma_{_{L}}}(x,y){\rm d}s(y),\quad x \in D\setminus \overline{D_0}. $$

这里$\frac{\partial\tilde{u}}{\partial \nu}(x)=\lim\limits_{h\rightarrow 0} \nu(x) \cdot \nabla u(x-h\nu(x))$,$x\in \Gamma$, 令

$$w(x)=S_{\Gamma}(\gamma_{_{L}})\partial_\nu\tilde{u},~~ x\in D. $$

那么,在$\Gamma_0$上$w=0$. $D_0$内的$w$满足Dirichlet问题

$$ \begin{array}{ll} \Delta w+\gamma_{_{L}}^2 w=0,\quad & \hbox{在$ D_0$ 内,}\\ w=0,\qquad & \hbox{在$ \Gamma_0$ 上.} \end{array} $$

由(4.2)式可知在$D_0$内$ w=0$. 这样,在$D$内$ w=0$; 在$D\setminus \overline{D_0}$内,$\tilde{u}=0$. 不难发现,$\tilde{u}$在$D_0$内也满足Dirichlet问题. 因此,在$D_0$内,$\tilde{u}=0$. 由跳跃关系可知,在$\Gamma$上,$\phi_3=0$; 在$\Gamma_0$上,$\phi_4=0$. 并且,在$\Gamma^c$上,$\tilde{u}=\gamma_{_{L}}S_{\Gamma^c}(\gamma_{_{L}})\phi_1=0$, $\tilde{v}=\gamma_{_{R}}S_{\Gamma^c}(\gamma_{_{R}})\phi_2=0$. 由 Rellich引理,在$D^e$内,$\tilde{u}=0$,$\tilde{v}=0$. 跳跃关系可知,$\phi_1=0$和$\phi_2=0$. 由此,我们可以得到积分系统(4.5)解的唯一性结论. 由文献[10,定理3.3,3.4],

$$ \|u\|_{C^{1,\alpha}(D^c)} +\|v\|_{C^{1,\alpha}(D^c)} +\|a\|_{C^{1,\alpha}(D^e)} +\|b\|_{C^{1,\alpha}(D^e)} \nonumber \\$$
\begin{equation} \le {\rm{ }}C\{ {f_1}{_{{C^{1,\alpha }}({\Gamma ^c})}} + {f_2}{_{{C^{1,\alpha }}({\Gamma ^c})}} + {g_1}{_{{C^{0,\alpha }}({\Gamma ^c})}} + {g_2}{_{{C^{0,\alpha }}({\Gamma ^c})}}\} , \end{equation} (4.6)
其中$C$不依赖于边界数据.

由此,我们可以得到下面的定理.

${\bf 定理4.2}\quad$ 问题1只有一个解. 对于实常数$ c_1\neq0$, $c_2\neq0$,$ c_3\neq0$,$ c_4\neq0$, 问题1的解可表示为(4.3)式,其中$(\phi_1,\phi_2,\phi_3, \phi_4,\psi_1,\psi_2,\psi_3)^T$是方程(4.5)的唯一解.

参考文献
[1] Ammari H, Hamdache K, Nédélec J C. Chirality in the Maxwell equations by the dipole approximation. SIAM J Appl Math, 1999, 59:2045-2059
[2] Ammari H, Nédélec J C. Time-harmonic electromagnetic fields in chiral media. Modern Mathematical Methods in Diffraction Theory and its Applications in Engineering, 1997, 42:174-202
[3] Ammari H, Nédélec J C. Small chirality behavior of solutions to electromagnetic scattering problems in chiral media. Math Method Appl Sci, 1998, 21:327-359
[4] Ammari H, Nédélec J C. Time-harmonic electromagnetic fields in thin chiral curved layers. SIAM J Math Anal, 1998, 29:395-423
[5] Ammari H, Laouadi M, Nédélec J C. Low frequency behavior of solutions to electromagnetic scattering problems in chiral media. SIAM J Appl Math, 1998, 58:1022-1042
[6] Ammari H, Nédélec J C. Analysis of the diffraction from chiral gratings. Mathematical Modelling in Optical Science, 2001, 22:179-206
[7] Ammari H, Bao G. Coupling of finite element and boundary element methods for the electromagnetic diffraction problem by a periodic chiral structure. J Comput Math, 2008, 26:261-283
[8] Zhang D, Ma F. Two-dimensional electromagnetic scattering from periodic chiral structures and its finite element approximation. Northeast Math J, 2004, 20:236-252
[9] Zhang D, Ma F. A finite element method with perfectly matched absorbing layers for the wave scattering by a periodic chiral structure. J Comput Math, 2007, 25:458-472
[10] Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. New York:Springer-Verlag, 1998
[11] Krutitskii P A. A new integral equation approach to the Neumann problem in acoustic scattering. Math Meth Appl Sci, 2001, 24:1247-1256
[12] Colton D, Kress R. Integral Equation Methods in Scattering Theory. New York:Wiley, 1984