Processing math: 72%
  数学物理学报  2015, Vol. 35 Issue (5): 956-969   PDF (344 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
夏锦
王晓峰
曹广福
调和Dirichlet空间Dh1上有界、紧与Fredholm的Toeplitz算子
夏锦, 王晓峰, 曹广福    
广州大学数学与信息科学学院数学与交叉科学广东普通高校重点实验室(广州大学) 广州 510006
摘要: 该文讨论了调和Dirichlet空间Dh1上Toeplitz与Hankel算子的有界性、紧性与Fredholm性质,计算了Toeplitz算子的Fredholm指标.
关键词: 调和Dirichlet空间     Toeplitz算子     Hankel算子     Fredholm指标     紧性    
Bounded, Compact and Fredholm Toeplitz Operators on Harmonic Dirichlet Space Dh1
Xia Jin, Wang Xiaofeng, Cao Guangfu    
School of Mathematics and Information Science and Key Laboratory of Mathematics and Interdisciplinary, Guangzhou University, Guangzhou 510006
Abstract: We discuss the boundedness, compactness and spectra properties of the Toeplitz operators and Hankel operators on the Harmonic Dirichlet space Dh1; compute the Fredholm index of Fredholm Toeplitz operator.
Key words: Harmonic Dirichlet space     Toeplitz operator     Hankel operator     Fredholm index     Compactness    
1 引言

C为复平面,D表示C中单位圆盘,TD的边界. dA(z)=1πdxdyD上正规化Lebesgue测度. 对1p<,定义

Lp,1={f|D(|fz|p+|f¯z|p)dA(z)<}.

易知Lp,1=Lp,1C为Banach空间,其上范数为

fLp,1=(D(|fz|p+|f¯z|p)dA(z))1/p.

调和Dirichlet空间Dph (1p<)是由Lp,1中 全体调和函数所成的闭子空间. D上有界调和函数全体所成空间记为 h. 令Ph是从Lp,1Dph上投影, 则Ph可以按如下方式表示为积分算子

Ph(f)(w)=f,Kh(z,w)1=fz,Khwz+fˉz,Khwˉz=D(fz¯Khwz+fˉz¯Khwˉz)dA(z),

其中Khw(z)=Kh(z,w)Dph的再生核. 直接计算得

Kh(z,w)=ln(1z¯w)ln(1¯zw).

φLp,1(D,dA),对z,¯z的多项式f(z,¯z), Dph上以φ为符号的Toeplitz算子,小Hankel算子与Hankel算子分别稠密定义为

Thφf=Ph(φf);Γhφf=Ph(φUf);Hhφf=(IPh)(φf),

其中(Uf)(z)=f(¯z)Dph上的酉算子.

Hilbert函数空间上Toeplitz算子与Hankel算子的有界性,紧性, Fredholm指标已有许多算子论专家进行了深入广泛地研究,特别对Hardy空间H2, Bergman空间L2a与Dirichlet空间D2情形得到了丰富而深刻的结果. 对1<p<,Hp,LpaDp上Toeplitz算子与 Hankel算子也有了很多有趣的结果,参见文献[1, 2]. Guo与Zheng在文献[3]中讨论了调和Bergman空间L2h上Toeplitz算子的性质, 得到了一些与解析Bergman空间不同的有趣结论. 但对p=1的极端情形却很少有相关成果, 参见文献[4, 5]. 本文讨论调和Dirichlet空间D1h上Toeplitz算子, 小Hankel算子与Hankel算子的相关性质.

易知Dph (1<p<)上的调和Dirichlet投影是有界的. 于是,Dph (1<p<)上符号在

L,1={φ|φ,φz,φ¯zL}

中的Toeplitz算子,小Hankel算子与Hankel算子是有界的. 然而众所周知,调和Bergman空间 L1h上的Bergman投影是无界的,同样由L1,1D1h的调和Dirichlet投 影也 是无界的. 所以需要对D1h上的Toeplitz算子,小Hankel算子与Hankel算子有 界性进行更加深入地讨论.

Zhu第一个在文献[6]中研究了L1a上的Bergman投影,找出了一大类可以诱导L1a上 的有界Toeplitz算子的有界函数,他的结果为研究Dirichlet空间D1上Toeplitz 的有界性给出很多好的思路.

Bergman空间L2a与Dirichlet空间D2上Toeplitz算子的Fredholm性质已被广泛研究, 并得到了很多有意思的结果,参见文献[7, 8, 9]. Taskinen与 Virtanen讨论了Bergman空间L1a上Toeplitz算子的Fredholm性质, 计算了Fredholm指标,参见文献[5]. 对调和Dirichlet空间D1h 上Toeplitz算子的Fredholm性质至今没有任何相关结果,是全新的领域. 后文将对

C1(¯D)={φ|φ,φz,φ¯zC(¯D)}

中某些函数诱导的Toeplitz算子建立Fredholm理论,这里的C1(¯D)是以

φ=max{φ,φz,φ¯z}

为范数的Banach空间.

Dirichlet空间D2上Toeplitz算子,小Hankel算子与Hankel算子的紧性相关结果参见 文献[9, 13]. 下文将讨论调和Dirichlet空间D1h上这些算子的紧性, 给出它们为紧算子的充分条件. 后面证明中将会用到文献[6]中关于对数有界均值震荡(BMOlog)函数的一些估计.

2 Toeplitz算子,小Hankel算子与Hankel算子的有界性与紧性

首先回顾一下文献[14]中得到的Bergman度量下有界均值震荡(BMO)的一些结论.

ρ(z,w)=|zw1¯zw|,其中z,wD, 则Bergman度量β(z,w)定义为

β(z,w)=12log1+ρ(z,w)1ρ(z,w),z,wD.

Bergman度量是MDdotobius不变的,即对任意ϕAut(D)z,wD

β(ϕ(z),ϕ(w))=β(z,w).

对任意zDr>0,记

D(z,r)={wD|β(z,w)<r}

是以z为心,r为半径的Bergman圆盘. 众所周知D(z,r)也是欧式圆盘,其圆心和半径分别为

C=1s21s2|z|2z,R=1|z|21s2|z|2s,

这里的s=tanhr(0,1). 若φL1满足对任意zD

MOr(φ)(z)=(^|φ|2r(z)|ˆφr(z)|2)1/2<M<,

其中ˆφr(z)=1|D(z,r)|D(z,r)φ(w)dA(w), 则这些函数组成空间被称为有界均值震荡函数空间,记为BMO. 事实上,MOr(φ)r无关,对任意r>0,

φBMO:=supzDMOr(φ)(z) 等价于 supzDMO(φ)(z)=(~|φ|2(z)|˜φ(z)|2)1/2,

其中˜φ是Berezin变换.

消失均值震荡空间 VMO是BMO的闭子空间,由所有满足条件

lim|z|1MOr(φ)(z)=0

的函数构成,注意这里的极限过程与r无关.

下文将使用对数加权有界均值震荡空间BMOlog和 消失均值震荡空间VMOlog,它们的范数定义为

φBMOlog=supzDlog11|z|2MOr(f)(z).

BMOlog与VMOlog在调和Bergman投影下的像 空间分别为对数加权调和Bloch空间LBh与对数加权小调和Bloch空间LBh0.

D上的调和函数f属于调和Bloch空间Bh当且仅当

supzD(1|z|2)(|fz(z)|+|f¯z(z)|)<;

f 属于小调和Bloch空间Bh0当且仅当

|z|1 时, (1|z|2)(fz(z)+f¯z(z))0.

若在上面两式乘上因子log(1|z|2),则可得到LBhLBh0的定义.

下面考虑Toeplitz算子,小Hankel算子与Hankel算子的有界性.

定理 2.1φL2+ϵ,1BMOlog, 其中ϵ为任意正数, Toeplitz算子Thφ与Hankel算子Hhφ在调和 Dirichlet空间D1h上有界,即存在常数C,C1使得

ThφL(D1h,D1h)C(φL2+ε,1+φBMO),

HhφL(D1h,L1,1)C1(φL2+ε,1+φBMO),

由定义知对任意fD1h,

ThφfL1,1=D|Dφfz1(1ˉzw)2dA(z)+Dφzf1(1ˉzw)2dA(z)|dA(w)+D|Dφfˉz1(1zˉw)2dA(z)+Dφˉzf1(1zˉw)2dA(z)|dA(w)D|Dφfz1(1ˉzw)2dA(z)|dA(w)+D|Dφzf1(1ˉzw)2dA(z)|dA(w)+D|Dφfˉz1(1zˉw)2dA(z)|dA(w)+D|Dφˉzf1(1zˉw)2dA(z)|dA(w).

L2+ϵ,1L连续,故

D|Dφfz1(1ˉzw)2dA(z)|dA(w)C(φ+φBMOlog)fzL1C(φL2+ε,1+φBMOlog)fL1,1,

上面的第一个不等式来自文献[5,定理6]. 同理有

D|Dφfˉz1(1ˉzw)2dA(z)|dA(w)C(φL2+ε,1+φBMOlog)fL1,1.

L1,1L2为连续,于是 φzfL2(2+ϵ)4+ϵ. 因此

D|Dφzf1(1¯zw)2dA(z)|dA(w)C(D|Dφzf1(1¯zw)2dA(z)|2(2+ϵ)4+ϵdA(w))4+ϵ2(2+ϵ)CφzfL2(2+ϵ)4+ϵCφL2+ϵ,1fL2CφL2+ϵ,1fL1,1,

D|Dφ¯zf1(1z¯w)2dA(z)|dA(w)CφL2+ϵ,1fL1,1.

所以

ThφfL1,1C(φL2+ϵ,1+φBMOlog)fL1,1.

Hhφ的有界性可由不等式

φfL1,1=D(|φzf+φfz|+|φ¯zf+φf¯z|)dA(z)D(|φzf|+|φfz|+|φ¯zf|+|φf¯z|)dA(z)C1(φL2+ϵ,1+φBMOlog)fL1,1

HhφfL1,1ThφfL1,1+φfL1,1

推得.

引理 2.1 算子Uf(z)=f(¯z)D1h上的酉算子,其中fD1h.

定理 2.2φL2+ϵ,1BMOlog,其中ϵ为任意正数,小Hankel算子Γhφ=ThφUD1h上有界.

应用定理2.1与引理2.1可得.

定理 2.3φL2+ϵ,1(¯D)VMOlog,其中ϵ为任意正数,则ThφD1h上为紧算子当且仅当 φ|T=0.

φ|T=0, 对任意D1h中满足fkL1,1=1且在D1hfk弱收敛到0的序列{fk}

TφfkL1,1=D|Ph(φfk)(w)w|dA(w)+D|Ph(φfk)(w)¯w|dA(w)=D|D(φfk)z¯2Kw(z)z¯wdA(z)|dA(w)+D|D(φfk)¯z¯2Kw(z)z¯wdA(z)|dA(w)=D|D(φfk)z1(1¯zw)2dA(z)|dA(w)+D|D(φfk)¯z1(1z¯w)2dA(z)|dA(w)=D|Dφzfk1(1¯zw)2dA(z)+Dφfkz1(1¯zw)2dA(z)|dA(w)+D|Dφ¯zfk1(1z¯w)2dA(z)+Dφfk¯z1(1z¯w)2dA(z)|dA(w)D|Dφzfk1(1¯zw)2dA(z)|dA(w)+D|Dφfkz1(1¯zw)2dA(z)|dA(w)+D|Dφ¯zfk1(1z¯w)2dA(z)|dA(w)+D|Dφfk¯z1(1z¯w)2dA(z)|dA(w).

L1,1L2ϵ2是紧的,故有fkL2ϵ20. 于是

D|Dφzfk1(1¯zw)2dA(z)|dA(w)CφzfkL8+2ϵϵ28+ϵCφzL2+ϵfkL2ϵ2=CφL2+ϵ,1fkL2ϵ20

D|Dφ¯zfk1(1z¯w)2dA(z)|dA(w)CφL2+ϵ,1fkL2ϵ20.

注意到

Dφfkz1(1¯zw)2dA(z)=Pb(φfkz)(w)=(DdotTφf)(w),

其中Pb是解析Bergman投影,DdotTφ为Bergman空间L1a上以 φ为符号的Toeplitz算子. 因L2+ϵ,1(¯D)C(¯D)连续, φ|T=0φL2+ϵ,1(¯D)VMOlog, 故DdotTφ为紧算子,参见文献[5]. 很明显fkzL1a中弱收敛到0,因此有

D|Dφfkz1(1¯zw)2dA(z)|dA(w)=D|DdotTφfkz|dA(w)=DdotTφfkzL10.

同理知

D|Dφfk¯z1(1z¯w)2dA(z)|dA(w)0.

于是,ThφfkL1,10. 这说明 Thφ为紧算子.

反过来,设ThφD1h上紧. 下证 φ|T=0. 若{fk}L1a中满足 fkL1=1fkL1a中弱收敛到0的序列,则Fk(z)=fk(z)dz满足 FkL1,1=1,FkD1h弱收敛到0且FkL2ϵ20. 由D1h上Toeplitz算子的定义知

DdotTφfkL1=D|Dφfk(1¯zw)2dA(z)|dA(w)=D|Dφfk(1¯zw)2dA(z)+DφzFk(1¯zw)2dA(z)+Dφ¯zFk(1z¯w)2dA(z)DφzFk(1¯zw)2dA(z)Dφ¯zFk(1z¯w)2dA(z)|dA(w)ThφFkL1,1+D|DφzFk(1¯zw)2dA(z)|dA(w)+D|Dφ¯zFk(1z¯w)2dA(z)|dA(w).

Thφ的紧性得

ThφFkL1,10.

FkD1h弱收敛到0,故FkL2ϵ20. 因此

D|DφzFk(1¯zw)2dA(z)|dA(w)CφL2+ϵ,1FkL2ϵ20

D|Dφ¯zFk(1z¯w)2dA(z)|dA(w)CφL2+ϵ,1FkL2ϵ20.

于是, DdotTφfkL10,即 DdotTφ是紧算子. 故φ|T=0,参见文献[5].

定理 2.4φL2+ϵ,1(¯D)VMOlog,其中ϵ为任意正数,则Hhφ:D1hL1,1是紧算子.

由定义知对任意D1h中满足fkL1,1=1且在D1hfk弱收敛到0的序列{fk}

HφfkL1,1=D(|φwfk+φfkwDφzfk(1w¯z)2dA(z)Dφfkz1(1w¯z)2dA(z)|+|φ¯wfk+φfk¯wDφ¯zfk(1z¯w)2dA(z)Dφfk¯z1(1z¯w)2dA(z)|)dA(w)D(|φwfk|+|Dφzfk(1w¯z)2dA(z)|+|φfkwDφfkz1(1w¯z)2dA(z)|+|φ¯wfk|+|Dφ¯zfk(1z¯w)2dA(z)|+|φfk¯wDφfk¯z1(1z¯w)2dA(z)|)dA(w).

fkL2ϵ20,故有

D|φwfk|dA(w)φwfkL8+2ϵϵ28+ϵφwL2+ϵfkL2ϵ2=φL2+ϵ,1fkL2ϵ20

D|φ¯wfk|dA(w)CφL2+ϵ,1fkL2ϵ20;

还有

D|Dφzfk(1w¯z)2dA(z)|dA(w)CφwfkL8+2ϵϵ28+ϵCφwL2+ϵfkL2ϵ2=CφL2+ϵ,1fkL2ϵ20

D|Dφ¯zfk(1z¯w)2dA(z)|dA(w)CφL2+ϵ,1fkL2ϵ20.

注意到

D|φfkwDφfkz1(1¯zw)2dA(z)|dA(w)=DdotHφfkzL1,

其中DdotHφL1aL1的Hankel算子. 因对任意φL2+ϵ,1(¯D)VMOlog, DdotHφ是紧算子,且fkzL1a中弱收敛到0, 故

D|φfkwDφfkz1(1¯zw)2dA(z)|dA(w)=D|DdotHφfkz|dA(w)0.

同理可得

D|φfk¯wDφfk¯z1(1z¯w)2dA(z)|dA(w)0.

因此HhφfkL1,10. 这说明Hhφ为紧算子.

下面得到的调和Dirichlet空间上小Hankel算子的紧性充分条件与解析Dirichlet空间情形有很大区别.

定理 2.5φL2+ϵ,1(¯D)VMOlog, 其中ϵ为任意正数,则ΓhφD1h 上紧算子当且仅当φ|T=0.

应用定理2.3与引理2.1.

命题 2.1φL2+ϵ,1BMOlogψL2+ϵ,1VMOlog,其中ϵ为任意正数, ThφThψThφψ为紧算子.

由定义知对任意D1h中满足fkL1,1=1且在 D1hfk弱收敛到0的序列{fk}

(ThφThψThφψ)fkL1,1=D(|Dφz(Thψfk)(1¯zw)2dA(z)Dφz(ψfk)(1¯zw)2dA(z)+D(Hhψfk)zφ(1¯zw)2dA(z)|+|Dφ¯z(Thψfk)(1z¯w)2dA(z)Dφz(ψfk)(1z¯w)2dA(z)+D(Hhψfk)¯zφ(1z¯w)2dA(z)|)dA(w)D|Dφz(Thψfk)(1¯zw)2dA(z)|dA(w)+D|Dφ¯z(Thψfk)(1z¯w)2dA(z)|dA(w)+D|Dφz(ψfk)(1¯zw)2dA(z)|dA(w)+D|Dφ¯z(ψfk)(1z¯w)2dA(z)|dA(w)+D|D(Hhψfk)zφ(1¯zw)2dA(z)|dA(w)+D|D(Hhψfk)¯zφ(1z¯w)2dA(z)|dA(w).

ThψD1h上有界,故fkL2ϵ20ThψfkL2ϵ20,于是有

D|Dφz(Thψfk)(1¯zw)2dA(z)|dA(w)CφL2+ϵ,1ThψfkL2ϵ20

D|Dφ¯z(Thψfk)(1z¯w)2dA(z)|dA(w)CφL2+ϵ,1ThψfkL2ϵ20;

还有

D|Dφz(ψfk)(1¯zw)2dA(z)|dA(w)CφL2+ϵψLfkL2ϵ2CφL2+ϵψL2+ϵfkL2ϵ20

D|Dφ¯z(ψfk)(1z¯w)2dA(z)|dA(w)CφL2+ϵψL2+ϵfkL2ϵ20.

注意到Hhψ为紧且在D1hfk弱收敛到0, 故知HhψfkL1,10,所以

D|D(Hhψfk)zφ(1¯zw)2dA(z)|dA(w)CφL(Hhψfk)zL1,1CφL2+ϵ,1HhψfkL1,10.

D|D(Hψfk)¯zφ(1z¯w)2dA(z)|dA(w)CφL2+ϵ,1HhψfkL1,10.

于是(ThφThψThφψ)fkL1,10, 即ThφThψThφψ为紧算子.

D1h的对偶空间Bh,1定义为

Bh,1={f|fh, fz,f¯zB}C,

其中h表示D上调和函数所成空间. 很明显fBh,1的范数为

fBh,1=fzB+¯f¯zB.

命题 2.2φL,1BMOlog, 则(Thφ)Th¯φBh,1上紧算子.

证 由定义知对Bh,1中满足gkBh,1=1gkBh,1中弱*收敛到0的序列gk

((Thφ)Th¯φ)gkBh,1=supwD(1|w|2)(|2(TφT¯φ)gk,Kw(z)12w|+|2(TφT¯φ)gk,Kw(z)12¯w|)supwD(1|w|2)|gkz,φzz2(1z¯w)2|+supwD(1|w|2)|¯φzgk,z(1z¯w)3|+supwD(1|w|2)|gk¯z,φ¯z¯z2(1¯zw)2|+supwD(1|w|2)|¯φ¯zgk,¯z(1¯zw)3|.

z2(1|w|2)(1z¯w)2,z2(1|w|2)(1¯zw)2L2且满足z2(1|w|2)(1z¯w)2L21z2(1|w|2)(1¯zw)3L21,故

supwD(1|w|2)|gkz,φzz2(1z¯w)2|0,supwD(1|w|2)|gk¯z,φ¯zz2(1z¯w)2|0.

注意到gkBh,1中弱*收敛到0且gkBh,1=1,于是存在充分小的δ>0,对任意1δ<r<1,在D¯Dr中有|gkz(z)|C(log(1|z|2)),|gk¯z(z)|C(log(1|z|2)),且在¯Dr={z| |z|1δ}一致地有gkz,gk¯z0. 因此,对任意ϵ>0,存在K,当k>K,对任意1δ<r<1,其中充分小δ>0,有

supz¯Dr(1|w|2)|gk¯w(w)|+supz¯Dr(1|w|2)|gk¯w(w)|<ϵ2;supzD¯Dr(1|w|2)|gk¯w(w)|+supzD¯Dr(1|w|2)|gk¯w(w)|CsupzD¯Dr(1|w|2)(log(1|w|2))<ϵ2.

于是

gkBhsupz¯Dr(1|w|2)(|gk¯w(w)|+|gk¯w(w)|)+supzD¯Dr(1|w|2)(|gk¯w(w)|+|gk¯w(w)|)0.

又注意到¯φzL(1|w|2)z(1z¯w)3L1,故

supwD(1|w|2)(|¯φzgk,z(1z¯w)3|+|¯φ¯zgk,¯z(1¯zw)3|)CgkBh(¯φzL+¯φ¯zL)(1|w|2)z(1z¯w)2L10.

因此,

(TφT¯φ)gkBh,10,

TφT¯φ是紧算子.

3 Fredholm性质与指标

Banach空间X上有界算子A为Fredholm算子当且仅当A的核与余核是有限维; Fredholm指标定义如下

Ind A=dim ker Adim coker A.

下面定理中得到了D1h上Toeplitz算子Thφ为Fredholm算子的充要条件.

定理 3.1φL2+ϵ,1(¯D)VMOlog, 则Tφ是Fredholm算子当且仅当对任意zT,φ(z)0.

不失一般性,设0φ(T), 则DdotTφ不是L1a(D)上Fredholm算子, 故对{fk}L1a 满足fkL1=1,且在L1afk弱收敛到0有 DdotTφfkL10,或 对{gk}B,其中B为解析Bloch空间, 满足gkBh=1,gkB中弱收敛到0有 DdotTφgkB0.

Fk=fkdz,则{Fk}D1h, FkL1,1=1,且FkD1h中弱收敛到0. 注意到

ThuFkL1,1=D|Ph(φFk)(w)w|dA(w)+D|Ph(φFk)(w)¯w|dA(w)=D|D(φFk)z1(1¯zw)2dA(z)|dA(w)+D|D(φFk)¯z1(1z¯w)2dA(z)|dA(w)=D|DφzFk1(1¯zw)2dA(z)+Dφfk1(1¯zw)2dA(z)|dA(w)+D|Dφ¯zFk1(1z¯w)2dA(z)|dA(w)D|DφzFk1(1¯zw)2dA(z)|dA(w)+D|Dφfk1(1¯zw)2dA(z)|dA(w)+D|Dφ¯zFk1(1z¯w)2dA(z)|dA(w).

\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0,故

\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}F_{k} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0

\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.

又因

\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi f_{k}\frac{1}{(1-\overline{z}w)^{2}} {\rm d}A(z)\bigg|{\rm d}A(w)=\int_{{\Bbb D}}|P^b(\varphi f_{k})(w)|{\rm d}A(w) =\int_{{\Bbb D}}|(\mathbb{D}dot{T}_{u}f_{k})(w)|{\rm d}A(w)\rightarrow 0,

其中P^bL^1L^1_a上的投影,\mathbb{D}dot{T}_{u}L^1_a上的Toeplitz算子, 则\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0. 这说明 T_{\varphi}不是Fredholm算子.

G_{k}=\int g_{k}{\rm d}z,则有\{G_{k}\}\subset {\cal B}^{h,1} . 很明显f\in {\cal B}^1满足\|f\|_{{\cal B}^{h,1}}=\|f'\|_{{\cal B}}. 故有\|G_{k}\|_{{\cal B}^{h,1}}=1,且G_{k}{\cal B}^{h,1} 中弱*收敛到0. 注意

\|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^{h,1}} =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle (T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 w} \bigg|+ \bigg|\frac{\partial^2 \langle(T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 w}\bigg| +\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 w}\bigg| +\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ \leq \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg| \bigg\langle g_k,\frac{\partial \varphi}{\partial z} \frac{z^2} {(1-z\overline{w})^2}\bigg\rangle\bigg|+\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg|\frac{d \langle g_k,\varphi \frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|.

g_k\rightarrow 0{\cal B}中弱*收敛到0, \frac{\partial \varphi}{\partial z}\in L^{2+\epsilon}, \frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a且满足 \|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1,故

\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle g_k,\frac{\partial \varphi}{\partial z} \frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg| \rightarrow 0.

又因

\|(\mathbb{D}dot{T}_{\varphi})^* g_k\|_{{\cal B}}= \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle g_k,\varphi \frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0,

所以

\|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^1}\rightarrow 0.

这说明 T^h_{\varphi}不是Fredholm算子.

反过来,若T^h_{\varphi}不是Fredholm算子,则 存在序列\{f_{k}\}\subset {\cal D}^{1}_h 满足\|f_{k}\|_{L^{1,1}}=1,且f_{k}{\cal D}^{1}_h中弱收敛到0,使得 \|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0,或存在 \{g_{k}\}\subset {\cal B}^{h,1}满足\|g_{k}\|_{{\cal B}^{h,1}}=1,且g_{k} {\cal B}^{h,1}中弱*收敛到0,使得 \|(T^{h}_{\varphi})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0. 注意到\|\frac{\partial f_{k}}{\partial z}\|_{L^{1}}+\|\frac{\partial f_{k}}{\partial \overline{z}}\|_{L^{1}}=1,选取恰当子列得\frac{\partial f_{k}}{\partial z}L^{1}_a({\Bbb D})中弱收敛到0,但\|\frac{\partial f_{k}}{\partial z}\|_{L^1}\geq \delta>0. 又注意到\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}+\|\overline{\frac{\partial g_{k}}{\partial \overline{z}}}\|_{{\cal B}}=1,选取恰当子列得\frac{\partial g_{k}}{\partial z}{\cal B}中弱*收敛到0,但\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}\geq \delta>0.

\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0,因

\|T^h_{\varphi} f_{k}\|_{L^{1,1}} =\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)}{\partial w} \bigg|{\rm d}A(w)+\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)} {\partial \overline{w}}\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})} {\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ + \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial \overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+ \int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial z} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+ \int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial \overline{z}} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)

\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial\varphi}{\partial z}f_{k}\frac{1} {(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi \|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0,

\bigg\| \mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg\|_{L^{1}}=\int_{{\Bbb D}} \bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z) \bigg|{\rm d}A(w)\rightarrow 0.

这说明 \mathbb{D}dot{T}_{\varphi}不是Fredholm算子,故 0\in \varphi|_{\mathbb{T}}.

\|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0,因

\|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}} =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k,K^h_w(z)\rangle_1} {\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k, K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle g_k,T_{\varphi} K^h_w(z)\rangle_1} {\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle g_k,T_{\varphi} K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial z}, \frac{\partial \varphi}{\partial z} K^h_w(z)\rangle}{\partial^2 w}+\frac{d \langle \frac{\partial g_k}{\partial z}, \varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\\ +\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial \overline{z}}, \frac{\partial \varphi}{\partial \overline{z}} K^h_w(z)\rangle}{\partial^2 \overline{w}}+ \frac{d \langle \frac{\partial g_k}{\partial \overline{z}},\varphi\frac{1}{(1-\overline{z}w)^2} \rangle}{d \overline{w}}\bigg|.

再因\frac{\partial g_k}{\partial \overline{z}} {\cal B}中弱*收敛到0, \frac{\partial \varphi}{\partial z}\in L^{2+\epsilon}, \frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a\|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1,得

\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle \frac{\partial g_k}{\partial \overline{z}}, \frac{\partial \varphi}{\partial z} \frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg| \rightarrow 0,

所以

\bigg\|\mathbb{D}dot{T}^{*}_{\varphi}\frac{\partial g_k}{\partial \overline{z}}\bigg\|_{{\cal B}} =\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle \frac{\partial g_k}{\partial \overline{z}}, \varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0.

这说明 \mathbb{D}dot{T}^{*}_{\varphi}不是Fredholm算子,于是 0\in \varphi|_{\mathbb{T}}.

引理3.1 m为正整数,则

\mathbb{D}im (\ker T^h_{z^m})=\mathbb{D}im (\ker (T^h_{z^m})^*)=1.

首先证明(T^h_{z^m})^*z^m=0. 对l>0,有

\langle (T^h_{z^m})^*z^m,z^l\rangle_1=\langle z^m,z^m z^l\rangle_1=0,\mbox{ }\mbox{且}\mbox{ } \langle (T^h_{z^m})^*z^m,\overline{z}^l\rangle_1=\langle z^m,z^m \overline{z}^l\rangle_1=0,

(T^h_{z^m})^*z^m=0.

于是,记

h=\sum\limits_{k=1,k\neq m}^{\infty}a_k z^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k\in \mbox{ker} (T^h_{z^m})^*.

对任意f\in {\cal D}^1,有

\langle z^m f,h\rangle_1= \langle f,(T^h_{z^m})^* h\rangle_1=0.

注意到

\langle z^m f,h\rangle_1=\bigg\langle z^{m-1}(m f+z f'), \frac{\partial h}{\partial z}\bigg\rangle,

h=\sum\limits_{k=1}^{m-1}a_kz^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k.

因对k< ml>0,

\langle (T^h_{z^m})^* z^k,z^l\rangle_1=\langle z^k,z^m z^l\rangle_1=0 \mbox{ } \mbox{ 且} \mbox{ } \langle (T^h_{z^m})^* z^k,\overline{z}^l\rangle_1=\langle z^k,z^m\overline{z}^l\rangle_1=\langle k z^{k-1},m z^{m-1}\overline{z}^l\rangle.

(T^h_{z^m})^* z^k=\frac{k}{m-k}\overline{z}^{m-k}.

又因对k>0l>0,

\langle (T^h_{z^m})^* \overline{z}^k,z^l\rangle_1=0, \mbox{ } \mbox{ 且} \mbox{ } \langle (T^h_{z^m})^* \overline{z}^k,\overline{z}^l\rangle_1=\langle \overline{z}^k,z^m \overline{z}^l\rangle_1=\langle k\overline{z}^{k-1},z^m l\overline{z}^{l-1}\rangle.

所以

(T^h_{z^m})^* \overline{z}^k=\frac{k}{m+k}\overline{z}^{m+k}.

于是

(T^h_{z^m})^* h=\sum\limits_{k=1}^{m-1}a_k\frac{k}{m-k}\overline{z}^{m-k}+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \frac{k}{m+k}\overline{z}^{m+k}=0.

这说明h=0\mbox{dim}(\mbox{ker}(T^h_{z^m})^*)=1. 同理可得\mbox{dim}(\mbox{ker}T^h_{z^m})=1.

应用上述结论可得对m\geq 0有Ind T^h_{z^m}=0,其中Ind T^h_{z^m}表示T^h_{z^m} 的Fredholm指标,同理对m> 0,有Ind T^h_{\overline{z}^m}=0.

为证明下面结论,这里引入无零点连续函数u(z)的绕数,其定义为

\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\frac{[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}}{2\pi},

这里的[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}表示当自变量在 {\Bbb T}=\partial{\Bbb D}中取遍一周时,辐角arg u(t)的全增量.

定理 3.2u\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log}, 对任意z\in \mathbb{T}满足u(z)\neq 0,则

\mbox{Ind} T^h_{u}=0.

易知存在函数v\in C^{2}(\overline{{\Bbb D}}){\Bbb T}上无零点且满足

\mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{v}\mbox{ }\mbox{ } \mbox{和}\mbox{ }\mbox{ }\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{ }v|_{{\Bbb T}}=:k\geq 0.

s\in [0,1],定义

F_{s}(t)=t^{k}\exp (s\log g(t)) \mbox{ }\mbox{ }\mbox{ }(t\in {\Bbb T}),

其中g(t)=t^{-k}v(t). 因v\in C^{2}({\Bbb T}),wind v|_{{\Bbb T}}=k, 且F_{s}C^{2}({\Bbb T})中的同伦映射,在 {\Bbb T}上无零点,故可以延拓F_{s}:{\Bbb T}\rightarrow {\Bbb C}C^{1}(\overline{{\Bbb D}})中映射. 于是对任意s\in [0,1],T^h_{F_{s}}为Fredholm算子, 又由 Fredholm指标的连续性得

\mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{F_{0}}=\mbox{Ind}\mbox{ }T^h_{F_{1}}=\mbox{Ind}\mbox{ }T^h_{v}=\mbox{Ind}\mbox{ }T^h_{u}.

k\geq 0,不难得到

0=\mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{u}.

k<0,同样讨论可知

\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{ }\overline{z}^{|k|}|_{{\Bbb T}}=:k<0.

于是,

\mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{\overline{z}^{|k|}}=0.

参考文献
[1] Böttcher A, Silbermann B. Analysis of Toeplitz Operators. Springer Monographs in Mathematics. Berlin:Springer-Verlag, 2006
[2] Wang X F, Xia J, Cao G F. Some properties of Toeplitz operators on Dirichlet space Dp(Chinese). Acta Mathematica Scientia, 2012, 32(2):395-403
[3] Guo K, Zheng D. Toeplitz algebra and Hankel algebra on the harmonic Bergman space. J Math Anal Appl, 2002, 276:213-230
[4] Papadimitrakis M, Virtanen J A. Hankel and Toeplitz transforms on H1:continiuity, compactness and Fredholm properties. Integr Equat Oper Th, 2008, 61(4):573-591
[5] Taskinen J, Virtanen J A. spectral theory of Toeplitz and Hankel operators on the Bergman space A1. New York J of Mathematics, 2008, 34:305-323
[6] Zhu K H. Multipliers of BMO in Bergman metrics with applications to Toeplitz operators. J Funct Anal, 1989, 87(1):31-50
[7] Coburn L A. Singular integral operators and Toeplitz operators on odd spheres. Indiana Univ Math J, 1973/74, 23:433-439
[8] Mcdonald G, Sundberg C. Fredholm properties of a class of Toeplitz operators on the ball. Indiana Univ Math J, 1977, 26(3):567-576
[9] Cao G F. Fredholm properties of Toeplitz operators on Dirichlet spaces. Pacific J Math, 1999, 2:209-223
[10] Douglas R G. Banach Algebraic Techniques in Operators Theory. Vol 128. New York:Springer-Verlag, 1971
[11] Upmeier H. Toeplitz Operators and Index Theory in Several Complex Variable. Basel:Birkhäuser, 1996
[12] Cao G F. Toeplitz operators and algebras on Dirichlet spaces. Chin Ann of Math, 2002, 23B(3):385-396
[13] Zhao L K. Hankel operators on the Dirichlet space. J Math Anal Appl, 2009, 352:767-772
[14] Zhu K H. Operator Theory on the Function Spaces. New York:Marcel Dekker, 1990
调和Dirichlet空间Dh1上有界、紧与Fredholm的Toeplitz算子
夏锦, 王晓峰, 曹广福