数学物理学报  2015, Vol. 35 Issue (5): 956-969   PDF (344 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
夏锦
王晓峰
曹广福
调和Dirichlet空间Dh1上有界、紧与Fredholm的Toeplitz算子
夏锦, 王晓峰, 曹广福    
广州大学数学与信息科学学院数学与交叉科学广东普通高校重点实验室(广州大学) 广州 510006
摘要: 该文讨论了调和Dirichlet空间Dh1上Toeplitz与Hankel算子的有界性、紧性与Fredholm性质,计算了Toeplitz算子的Fredholm指标.
关键词: 调和Dirichlet空间     Toeplitz算子     Hankel算子     Fredholm指标     紧性    
Bounded, Compact and Fredholm Toeplitz Operators on Harmonic Dirichlet Space Dh1
Xia Jin, Wang Xiaofeng, Cao Guangfu    
School of Mathematics and Information Science and Key Laboratory of Mathematics and Interdisciplinary, Guangzhou University, Guangzhou 510006
Abstract: We discuss the boundedness, compactness and spectra properties of the Toeplitz operators and Hankel operators on the Harmonic Dirichlet space Dh1; compute the Fredholm index of Fredholm Toeplitz operator.
Key words: Harmonic Dirichlet space     Toeplitz operator     Hankel operator     Fredholm index     Compactness    
1 引言

令$\mathbb{C}$为复平面,$\mathbb{D}$表示$\mathbb{C}$中单位圆盘,$\mathbb{T}$为$\mathbb{D}$的边界. ${\rm d}A(z)=\frac{1}{\pi}{\rm d}x{\rm d}y$为$\mathbb{D}$上正规化Lebesgue测度. 对$1\leq p<\infty$,定义

$$ L^{p,1}= \bigg\{f\bigg| \int_{{\Bbb D}}\bigg(\bigg|\frac{\partial f}{\partial z}\bigg|^p+ \bigg|\frac{\partial f}{\partial \overline{z}}\bigg|^p\bigg){\rm d}A(z)<\infty\bigg\}. $$

易知${\cal L}^{p,1}=\frac{L^{p,1}}{{\Bbb C}}$为Banach空间,其上范数为

$$ \|f\|_{L^{p,1}}=\bigg(\int_{{\Bbb D}}\bigg(\bigg|\frac{\partial f}{\partial z}\bigg|^p+ \bigg|\frac{\partial f}{\partial \overline{z}}\bigg|^p\bigg){\rm d}A(z)\bigg)^{1/p}. $$

调和Dirichlet空间${\cal D}^p_h\ (1\leq p<\infty)$是由${\cal L}^{p,1}$中 全体调和函数所成的闭子空间. $\mathbb{D}$上有界调和函数全体所成空间记为 $h^{\infty}$. 令$P_h$是从${\cal L}^{p,1}$到${\cal D}^p_h$上投影, 则$P_h$可以按如下方式表示为积分算子

$\begin{array}{l} {P_h}(f)(w) = {\langle f,{K^h}(z,w)\rangle _1} = \langle \frac{{\partial f}}{{\partial z}},\frac{{\partial K_w^h}}{{\partial z}}\rangle + \langle \frac{{\partial f}}{{\partial \bar z}},\frac{{\partial K_w^h}}{{\partial \bar z}}\rangle \\ = \int_D ( \frac{{\partial f}}{{\partial z}}\overline {\frac{{\partial K_w^h}}{{\partial z}}} + \frac{{\partial f}}{{\partial \bar z}}\overline {\frac{{\partial K_w^h}}{{\partial \bar z}}} ){\rm{d}}A(z), \end{array}$

其中$K^h_w(z)=K^h(z,w)$是${\cal D}^p_h$的再生核. 直接计算得

$$ K^h(z,w)=-\ln(1-z\overline{w})-\ln(1-\overline{z}w). $$

若$\varphi\in L^{p,1}(\mathbb{D},{\rm d}A)$,对$z,\overline{z}$的多项式$f(z,\overline{z})$, ${\cal D}_h^p$上以$\varphi$为符号的Toeplitz算子,小Hankel算子与Hankel算子分别稠密定义为

$$ T^h_{\varphi}f=P_h(\varphi f);\quad\Gamma^h_{\varphi}f=P_h(\varphi U f); \quad H^h_{\varphi}f=(I-P_h)(\varphi f), $$

其中$(Uf)(z)=f(\overline{z})$是${\cal D}_h^p$上的酉算子.

Hilbert函数空间上Toeplitz算子与Hankel算子的有界性,紧性, Fredholm指标已有许多算子论专家进行了深入广泛地研究,特别对Hardy空间$H^2$, Bergman空间$L^2_a$与Dirichlet空间${\cal D}^2$情形得到了丰富而深刻的结果. 对$1< p<\infty$,$H^p$,$L^p_a$与${\cal D}^p$上Toeplitz算子与 Hankel算子也有了很多有趣的结果,参见文献[1, 2]. Guo与Zheng在文献[3]中讨论了调和Bergman空间$L^2_h$上Toeplitz算子的性质, 得到了一些与解析Bergman空间不同的有趣结论. 但对$p=1$的极端情形却很少有相关成果, 参见文献[4, 5]. 本文讨论调和Dirichlet空间${\cal D}^1_h$上Toeplitz算子, 小Hankel算子与Hankel算子的相关性质.

易知${\cal D}^{p}_h\ (1< p<\infty)$上的调和Dirichlet投影是有界的. 于是,${\cal D}^p_h\ (1< p<\infty)$上符号在

$$ L^{\infty,1}=\bigg\{\varphi\bigg| \varphi,\frac{\partial \varphi}{\partial z},\frac{\partial \varphi} {\partial \overline{z}}\in L^{\infty}\bigg\} $$

中的Toeplitz算子,小Hankel算子与Hankel算子是有界的. 然而众所周知,调和Bergman空间 $L_h^1$上的Bergman投影是无界的,同样由$L^{1,1}$到${\cal D}^1_h$的调和Dirichlet投 影也 是无界的. 所以需要对${\cal D}^1_h$上的Toeplitz算子,小Hankel算子与Hankel算子有 界性进行更加深入地讨论.

Zhu第一个在文献[6]中研究了$L^1_a$上的Bergman投影,找出了一大类可以诱导$L^1_a$上 的有界Toeplitz算子的有界函数,他的结果为研究Dirichlet空间${\cal D}^1$上Toeplitz 的有界性给出很多好的思路.

Bergman空间$L^2_a$与Dirichlet空间${\cal D}^2$上Toeplitz算子的Fredholm性质已被广泛研究, 并得到了很多有意思的结果,参见文献[7, 8, 9]. Taskinen与 Virtanen讨论了Bergman空间$L^1_a$上Toeplitz算子的Fredholm性质, 计算了Fredholm指标,参见文献[5]. 对调和Dirichlet空间${\cal D}^1_h$ 上Toeplitz算子的Fredholm性质至今没有任何相关结果,是全新的领域. 后文将对

$$ C^1(\overline{\mathbb{D}})=\bigg\{\varphi\bigg|\varphi,\frac{\partial \varphi}{\partial z},\frac{\partial \varphi} {\partial \overline{z}}\in C(\overline{\mathbb{D}})\bigg\} $$

中某些函数诱导的Toeplitz算子建立Fredholm理论,这里的$C^1(\overline{\mathbb{D}})$是以

$$\|\varphi\|_*=\max\bigg\{\|\varphi\|_{\infty}, \bigg\|\frac{\partial \varphi}{\partial z}\bigg\|_{\infty}, \bigg\|\frac{\partial \varphi}{\partial \overline{z}} \bigg\|_{\infty}\bigg\} $$

为范数的Banach空间.

Dirichlet空间${\cal D}^2$上Toeplitz算子,小Hankel算子与Hankel算子的紧性相关结果参见 文献[9, 13]. 下文将讨论调和Dirichlet空间${\cal D}^1_h$上这些算子的紧性, 给出它们为紧算子的充分条件. 后面证明中将会用到文献[6]中关于对数有界均值震荡(BMO$_{\partial \log }$)函数的一些估计.

2 Toeplitz算子,小Hankel算子与Hankel算子的有界性与紧性

首先回顾一下文献[14]中得到的Bergman度量下有界均值震荡(BMO)的一些结论.

令$\rho(z,w)=|\frac{z-w}{1-\overline{z}w}|$,其中$z,w\in \mathbb{D}$, 则Bergman度量$\beta(z,w)$定义为

$\beta (z,w) = \frac{1}{2}\log \frac{{1 + \rho (z,w)}}{{1-\rho (z,w)}},\quad z,w \in \mathbb{D}.$

Bergman度量是M$\mathbb{D}dot{\mbox{o}}$bius不变的,即对任意$\phi\in $Aut$(\mathbb{D})$与$z,w\in \mathbb{D}$有

$\beta (\phi (z),\phi (w)) = \beta (z,w).$

对任意$z\in \mathbb{D}$与$r>0$,记

$D(z,r) = \{ w \in \mathbb{D}|\quad \beta (z,w) < r\} $

是以$z$为心,$r$为半径的Bergman圆盘. 众所周知$D(z,r)$也是欧式圆盘,其圆心和半径分别为

$ C=\frac{1-s^2}{1-s^2|z|^2}z,\quad R=\frac{1-|z|^2}{1-s^2|z|^2}s, $

这里的$s=\mbox{tanh}r\in (0,1)$. 若$\varphi\in L^1$满足对任意$z\in \mathbb{D}$有

${\rm{M}}{{\rm{O}}_r}(\varphi )(z) = {\left( {\widehat {|\varphi |_r^2}(z)-|{{\hat \varphi }_r}(z){|^2}} \right)^{1/2}} < M < \infty ,$

其中$\widehat{\varphi}_r(z)=\frac{1}{|D(z,r)|}\int_{D(z,r)}\varphi(w){\rm d}A(w)$, 则这些函数组成空间被称为有界均值震荡函数空间,记为BMO$_{\partial }$. 事实上,$\mbox{MO}_r(\varphi)$与$r$无关,对任意$r>0$,

$ \|\varphi\|_{{\rm BMO}_{\partial }}:=\sup\limits_{z\in\mathbb{D}}\mbox{MO}_r(\varphi)(z) \mbox{ }\mbox{等价于}\mbox{ } \sup _{z\in\mathbb{D}}\mbox{MO}(\varphi)(z)=({\widetilde{|\varphi|^2}(z)- |\widetilde{\varphi}(z)|^2})^{1/2}, $

其中$\widetilde{\varphi}$是Berezin变换.

消失均值震荡空间 VMO$_{\partial}$是BMO$_{\partial }$的闭子空间,由所有满足条件

$ \lim_{|z|\rightarrow 1^-}\mbox{MO}_r(\varphi)(z)=0 $

的函数构成,注意这里的极限过程与$r$无关.

下文将使用对数加权有界均值震荡空间BMO$_{\partial \log }$和 消失均值震荡空间VMO$_{\partial \log }$,它们的范数定义为

$$ \|\varphi\|_{{\rm BMO}_{\partial \log}}=\sup _{z\in \mathbb{D}} \log \frac{1}{1-|z|^2}\mbox{MO}_r(f)(z). $$

BMO$_{\partial \log }$与VMO$_{\partial \log }$在调和Bergman投影下的像 空间分别为对数加权调和Bloch空间${\cal LB}^h$与对数加权小调和Bloch空间${\cal LB}^h_0$.

$\mathbb{D}$上的调和函数$f$属于调和Bloch空间${\cal B}^h$当且仅当

$$ \sup _{z\in\mathbb{D}}(1-|z|^2)\bigg(\bigg|\frac{\partial f}{\partial z}(z)\bigg|+\bigg|\frac{\partial f }{\partial \overline{z}}(z)\bigg|\bigg)<\infty; $$

$f$ 属于小调和Bloch空间$ {\cal B}^h_0$当且仅当

$$ |z|\rightarrow 1^-\mbox{ 时,}\ (1-|z|^2)\bigg(\frac{\partial f}{\partial z}(z)+\frac{\partial f} {\partial \overline{z}}(z)\bigg)\rightarrow 0. $$

若在上面两式乘上因子$-\log (1-|z|^2)$,则可得到${\cal LB}^h$与${\cal LB}_0^h$的定义.

下面考虑Toeplitz算子,小Hankel算子与Hankel算子的有界性.

定理 2.1 若$\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log }$, 其中$\epsilon$为任意正数, Toeplitz算子$T^h_{\varphi}$与Hankel算子$H^h_{\varphi}$在调和 Dirichlet空间${\cal D}^1_h$上有界,即存在常数$C,C_1$使得

${\left\| {T_\varphi ^h} \right\|_{L(D_h^1,D_h^1)}} \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_\partial }}}),$

${\left\| {H_\varphi ^h} \right\|_{L(D_h^1,{L^{1,1}})}} \le {C_1}({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_\partial }}}),$

由定义知对任意$f\in {\cal D}^1_h$,

$\begin{array}{l} {\left\| {T_\varphi ^hf} \right\|_{{L^{1,1}}}} = \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z) + \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial z}}} f\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\ + \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial \bar z}}\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z) + \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial \bar z}}} f\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\ \le \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) + \int_{\mathbb{D}} | \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial z}}} f\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\ + \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial \bar z}}\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) + \int_{\mathbb{D}} | \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial \bar z}}} f\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w). \end{array}$

因$L^{2+\epsilon,1}\hookrightarrow L^{\infty}$连续,故

$\begin{array}{l} \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) \le C({\left\| \varphi \right\|_\infty } + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| {\frac{{\partial f}}{{\partial z}}} \right\|_{{L^1}}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| f \right\|_{{L^{1,1}}}}, \end{array}$

上面的第一个不等式来自文献[5,定理6]. 同理有

$\int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial {\rm{ }}f}}{{\partial \bar z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| f \right\|_{{L^{1,1}}}}.$

因$L^{1,1}\hookrightarrow L^{2}$为连续,于是 $\frac{\partial\varphi}{\partial z}f\in L^{\frac{2(2+\epsilon)}{4+\epsilon}}$. 因此

$ \int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial z} f \frac{1}{(1-\overline{z}w)^2} {\rm d}A(z)\bigg| {\rm d}A(w)\\ \leq C\bigg(\int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial z} f \frac{1}{(1-\overline{z}w)^2} {\rm d}A(z)\bigg|^{\frac{2(2+\epsilon)}{4+\epsilon}} {\rm d}A(w)\bigg)^{\frac{4+\epsilon}{2(2+\epsilon)}}\\ \leq C\bigg\|\frac{\partial\varphi}{\partial z}f\bigg\|_{L^{\frac{2(2+\epsilon)}{4+\epsilon}}}\leq C \|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2}}\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{1,1}}, $

$$ \int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial \overline{z}} f \frac{1}{(1-z\overline{w})^2} {\rm d}A(z)\bigg| {\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{1,1}}. $$

所以

$$\|T^h_{\varphi}f\|_{L^{1,1}}\leq C(\|\varphi\|_{L^{2+\epsilon,1}}+\|\varphi\|_{{\rm BMO}_{\partial \log}})\|f\|_{L^{1,1}}. $$

$H^h_{\varphi}$的有界性可由不等式

$ \|\varphi f\|_{L^{1,1}} =\int_{\mathbb{D}}\bigg(\bigg|\frac{\partial \varphi}{\partial z} f+\varphi \frac{\partial f}{\partial z}\bigg|+ \bigg|\frac{\partial \varphi}{\partial \overline{z}} f+\varphi\frac{\partial f}{\partial \overline{z}}\bigg|\bigg){\rm d}A(z)\\ \leq \int_{\mathbb{D}}\bigg(\bigg|\frac{\partial \varphi}{\partial z} f\bigg|+\bigg|\varphi \frac{\partial f}{\partial z}\bigg|+\bigg|\frac{\partial \varphi}{\partial \overline{z}} f\bigg|+ \bigg |\varphi\frac{\partial f}{\partial \overline{z}}\bigg|\bigg){\rm d}A(z)\\ \leq C_1(\|\varphi\|_{L^{2+\epsilon,1}}+\|\varphi\|_{{\rm BMO}_{\partial \log }})\|f\|_{L^{1,1}} $

$$ \|H^h_{\varphi}f\|_{L^{1,1}}\leq \|T^h_{\varphi}f\|_{L^{1,1}}+\|\varphi f\|_{L^{1,1}} $$

推得.

引理 2.1 算子$Uf(z)=f(\overline{z})$是${\cal D}^1_h$上的酉算子,其中$f\in {\cal D}^1_h$.

定理 2.2 若$\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log }$,其中$\epsilon$为任意正数,小Hankel算子$\Gamma^h_{\varphi}=T^h_{\varphi}U$在${\cal D}^1_h$上有界.

应用定理2.1与引理2.1可得.

定理 2.3 若$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$,其中$\epsilon$为任意正数,则$T^h_{\varphi}$在${\cal D}^{1}_h$上为紧算子当且仅当 $\varphi|_{\mathbb{T}}=0$.

若$\varphi|_{\mathbb{T}}= 0$, 对任意${\cal D}^{1}_h$中满足$\|f_{k}\|_{L^{1,1}}=1$且在${\cal D}^{1}_h$ 中$f_{k}$弱收敛到$ 0$的序列$\{f_{k}\}$有

$ \|T_{\varphi}f_{k}\|_{L^{1,1}}\\ =\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi f_{k})(w)}{\partial w}\bigg|{\rm d}A(w) +\int_{{\Bbb D}} \bigg|\frac{\partial P_h(\varphi f_{k})(w)}{\partial \overline{w}}\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}} \bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})} {\partial z}\overline{\frac{\partial^{2} K_{w}(z)}{\partial z \partial \overline{w}}}{\rm d}A(z)\bigg|{\rm d}A(w)+\int_{{\Bbb D}} \bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial \overline{z}} \overline{\frac{\partial^{2} K_{w}(z)}{\partial z \partial \overline{w}}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})} {\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial \overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+ \int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}\frac{1} {(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)+ \int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}} \frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \\ \leq \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w). $

因$L^{1,1}\hookrightarrow L^{2-\frac{\epsilon}{2}}$是紧的,故有$\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$. 于是

$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}f_{k}\frac{1} {(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ \leq C\bigg\|\frac{\partial \varphi}{\partial z}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2} {8+\epsilon}}} \leq C \bigg\|\frac{\partial \varphi}{\partial z}\bigg\|_{L^{2+\epsilon}} \|f_k\|_{L^{2-\frac{\epsilon}{2}}} =C\|\varphi\|_{L^{2+\epsilon,1}} \|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0 $

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0. $$

注意到

$$ \int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z) = P^b\Big(\varphi \frac{\partial f_{k}}{\partial z}\Big)(w)=(\mathbb{D}dot{T}_{\varphi}f')(w), $$

其中$P^b$是解析Bergman投影,$\mathbb{D}dot{T}_{\varphi}$为Bergman空间$L_{a}^{1}$上以 $\varphi$为符号的Toeplitz算子. 因$L^{2+\epsilon,1}(\overline{\mathbb{D}})\hookrightarrow C(\overline{\mathbb{D}})$连续, $\varphi|_{\mathbb{T}}= 0$且$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log}$, 故$\mathbb{D}dot{T}_{\varphi}$为紧算子,参见文献[5]. 很明显$\frac{\partial f_{k}}{\partial z}$ 在$L_{a}^{1}$中弱收敛到0,因此有

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial z} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) =\int_{{\Bbb D}}\bigg|\mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg|{\rm d}A(w) =\bigg\|\mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg\|_{L^1} \rightarrow 0. $$

同理知

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial \overline{z}} \frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \rightarrow 0. $$

于是,$\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$. 这说明 $T^h_{\varphi}$为紧算子.

反过来,设$T^h_{\varphi}$在${\cal D}^{1}_h$上紧. 下证 $\varphi|_{\mathbb{T}}= 0$. 若$\{f_{k}\}$为$L^{1}_{a} $中满足 $\|f_{k}\|_{L^1}=1$且$f_{k} $在$L^{1}_{a} $中弱收敛到0的序列,则$F_{k}(z)=\int f_{k}(z){\rm d}z$满足 $\|F_{k}\|_{L^{1,1}}=1$,$F_{k} $在${\cal D}^{1}_h$弱收敛到0且$\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$. 由${\cal D}^{1}_h$上Toeplitz算子的定义知

$ \|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1} =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\varphi f_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z) \bigg|{\rm d}A(w) \\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\varphi f_{k}} {(1-\overline{z}w)^{2}}{\rm d}A(z)+ \int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{F_{k}} {(1-\overline{z}w)^{2}}{\rm d}A(z)+\int_{{\Bbb D}}\frac{\partial \varphi} {\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\\ -\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{F_{k}} {(1-\overline{z}w)^{2}}{\rm d}A(z)-\int_{{\Bbb D}}\frac{\partial \varphi} {\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \\ \leq \|T^h_{\varphi}F_k\|_{L^{1,1}}+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}} \frac{\partial \varphi}{\partial z}\frac{F_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z) \bigg|{\rm d}A(w)\\ +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w). $

由$T^h_{\varphi}$的紧性得

$$ \|T^h_{\varphi}F_k\|_{L^{1,1}}\rightarrow 0. $$

因$F_{k} $在${\cal D}^{1}_h$弱收敛到0,故$\|F_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$. 因此

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} \frac{F_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0 $$

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}} \frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0. $$

于是, $\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}\rightarrow 0$,即 $\mathbb{D}dot{T}_{\varphi}$是紧算子. 故$\varphi|_{\mathbb{T}}=0$,参见文献[5].

定理 2.4 若$\varphi \in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$,其中$\epsilon$为任意正数,则$H^h_{\varphi}:{\cal D}_h^{1}\rightarrow L^{1,1}$是紧算子.

由定义知对任意${\cal D}^{1}_h$中满足$\|f_{k}\|_{L^{1,1}}=1$且在${\cal D}^{1}_h$中$f_{k}$弱收敛到$ 0$的序列$\{f_{k}\}$有

$ \|H_{\varphi}f_{k}\|_{L^{1,1}} \\ =\int_{{\Bbb D}}\bigg(\bigg|\frac{\partial \varphi}{\partial w}f_{k}+\varphi \frac{\partial f_{k} }{\partial w} -\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{f_{k}} {(1-w\overline{z})^{2}}{\rm d}A(z) -\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z} \frac{1}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|\\ +\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}+\varphi \frac{\partial f_{k} }{\partial \overline{w}} -\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}\frac{f_{k}} {(1-z\overline{w})^{2}}{\rm d}A(z) -\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}} \frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w)\\ \leq \int_{{\Bbb D}}\bigg(\bigg|\frac{\partial \varphi}{\partial w}f_{k}\bigg|+ \bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} \frac{f_{k}}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg| +\bigg|\varphi \frac{\partial f_{k} } {\partial w}-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z} \frac{1}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|\\ +\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}\bigg| +\bigg|\int_{{\Bbb D}} \frac{\partial \varphi}{\partial \overline{z}} \frac{f_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|+ \bigg|\varphi \frac{\partial f_{k} } {\partial \overline{w}}-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}} \frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w). $

因$\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$,故有

$$ \int_{{\Bbb D}}\bigg|\frac{\partial \varphi}{\partial w}f_{k}\bigg|{\rm d}A(w) \leq \bigg\|\frac{\partial \varphi}{\partial w}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2} {8+\epsilon}}}\leq \bigg\|\frac{\partial \varphi}{\partial w}\bigg\|_{L^{2+\epsilon}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}=\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0 $$

$$ \int_{{\Bbb D}}\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}\bigg|{\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0; $$

还有

$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} \frac{f_{k}}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ \leq C\bigg \|\frac{\partial \varphi}{\partial w}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2} {8+\epsilon}}} \leq C\bigg \|\frac{\partial \varphi}{\partial w}\bigg\|_{L^{2+\epsilon}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}= C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0 $

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}} \frac{f_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0. $$

注意到

$$\int_{{\Bbb D}}\bigg |\varphi \frac{\partial f_{k} }{\partial w}- \int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}\frac{1} {(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg| {\rm d}A(w)=\bigg\|\mathbb{D}dot{H}_{\varphi} \frac{\partial f_{k} }{\partial z}\bigg\|_{L^1}, $$

其中$\mathbb{D}dot{H}_{\varphi}$ 是$L^1_a\rightarrow L^1$的Hankel算子. 因对任意$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$, $\mathbb{D}dot{H}_{\varphi}$是紧算子,且$\frac{\partial f_{k}}{\partial z}$在$L_{a}^{1}$中弱收敛到0, 故

$$\int_{{\Bbb D}} \bigg|\varphi \frac{\partial f_{k} }{\partial w}-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg| {\rm d}A(w) =\int_{{\Bbb D}}\bigg|\mathbb{D}dot{H}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg|{\rm d}A(w)\rightarrow 0. $$

同理可得

$$ \int_{{\Bbb D}} \bigg|\varphi \frac{\partial f_{k} }{\partial \overline{w}} -\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}} \frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\rightarrow 0. $$

因此$\|H^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$. 这说明$H^h_{\varphi}$为紧算子.

下面得到的调和Dirichlet空间上小Hankel算子的紧性充分条件与解析Dirichlet空间情形有很大区别.

定理 2.5 若$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log}$, 其中$\epsilon$为任意正数,则$\Gamma^h_{\varphi}$是${\cal D}^{1}_h$ 上紧算子当且仅当$\varphi|_{\mathbb{T}}=0$.

应用定理2.3与引理2.1.

命题 2.1 若$\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log}$且 $\psi\in L^{2+\epsilon,1}\cap \mbox{VMO}_{\partial \log}$,其中$\epsilon$为任意正数, $T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi}$为紧算子.

由定义知对任意${\cal D}^{1}_h$中满足$\|f_{k}\|_{L^{1,1}}=1$且在 ${\cal D}^{1}_h$中$f_{k}$弱收敛到$ 0$的序列$\{f_{k}\}$有

$ \|(T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi})f_{k}\|_{L^{1,1}}\\ =\int_{{\Bbb D}}\bigg(\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z) -\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z) +\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}{\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z) \bigg|\\ +\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}} \frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z) -\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(\psi f_{k})} {(1-z\overline{w})^{2}}{\rm d}A(z) \\ +\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}{\partial \overline{z}} \frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w)\\ \leq \int_{{\Bbb D}} \bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} \frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ + \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} \frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}} \frac{(\psi f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ + \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})} {\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) +\int_{{\Bbb D}} \bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})} {\partial \overline{z}}\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w). $

因$T^h_{\psi}$在$ {\cal D}_h^{1} $上有界,故$\|f_{k}\|_{L^{2-\frac{\epsilon}{2}} }\rightarrow 0$且$\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$,于是有

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} \frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0 $$

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0; $$

还有

$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} \frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ \leq C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{\infty}} \|f_{k}\|_{L^{2-\frac{\epsilon}{2}}} \leq C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{2+\epsilon}} \|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0 $

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}} \frac{(\psi f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{2+\epsilon}} \|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0. $$

注意到$H^h_{\psi}$为紧且在${\cal D}^{1}_h$中$f_{k}$弱收敛到$ 0$, 故知$\|H^h_{\psi}f_{k}\|_{L^{1,1}}\rightarrow 0$,所以

$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})} {\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ \leq C\|\varphi\|_{L^{\infty}}\bigg\|\frac{\partial(-H^h_{\psi}f_{k})} {\partial z}\bigg\|_{L^{1,1}} \leq C \|\varphi\|_{L^{2+\epsilon,1}}\|H^h_{\psi }f_{k}\|_{L^{1,1}}\rightarrow 0. $

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H_{\psi}f_{k})} {\partial \overline{z}}\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \leq C \|\varphi\|_{L^{2+\epsilon,1}}\|H^h_{\psi }f_{k}\|_{L^{1,1}}\rightarrow 0. $$

于是$\|(T^h_{\varphi}T^h_{\psi}-T^h_{\varphi \psi})f_{k}\|_{L^{1,1}}\rightarrow 0$, 即$T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi}$为紧算子.

${\cal D}^1_h$的对偶空间${\cal B}^{h,1}$定义为

$$ {\cal B}^{h,1} =\frac{\{f|f\in h,\mbox{ }\frac{\partial f}{\partial z},\frac{\partial f} {\partial \overline{z}}\in {\cal B}\}}{ \mathbb{C} }, $$

其中$h$表示$\mathbb{D}$上调和函数所成空间. 很明显$f\in {\cal B}^{h,1}$的范数为

$$ \|f\|_{{\cal B}^{h,1}}=\bigg\|\frac{\partial f}{\partial z}\bigg\|_{{\cal B}}+ \bigg\|\overline{\frac{\partial f}{\partial \overline{z}}}\bigg\|_{{\cal B}}. $$

命题 2.2 若$\varphi\in L^{\infty,1}\cap {\rm BMO}_{\partial \log}$, 则$(T^h_{\varphi})^{*}-T^h_{\overline{\varphi}}$为${\cal B}^{h,1}$上紧算子.

证 由定义知对${\cal B}^{h,1}$中满足$\|g_{k}\|_{{\cal B}^{h,1}}=1$且$g_{k}$在 ${\cal B}^{h,1}$中弱*收敛到0的序列$g_{k}$有

$ \|((T^h_{\varphi})^{*}-T^h_{\overline{\varphi}})g_{k}\|_{{\cal B}^{h,1}}\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg| \frac{\partial^2 \langle (T^{*}_{\varphi} -T_{\overline{\varphi}})g_{k},K_{w}(z)\rangle_{1}}{\partial ^2 w}\bigg|+ \bigg| \frac{\partial^2 \langle (T^{*}_{\varphi}-T_{\overline{\varphi}}) g_{k},K_{w}(z)\rangle_{1}}{\partial^2 \overline{w}}\bigg|\bigg)\\ \leq \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial z}, \frac{\partial \varphi}{\partial z}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg| +\sup_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial \overline{\varphi}}{\partial z}g_k, \frac{z}{(1-z\overline{w})^3}\bigg\rangle\bigg|\\ +\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial \overline{z}}, \frac{\partial \varphi}{\partial \overline{z}}\frac{\overline{z}^2}{(1-\overline{z}w)^2} \bigg\rangle\bigg|+\sup_{w\in\mathbb{D}}(1-|w|^2) \bigg|\bigg\langle \frac{\partial \overline{\varphi}} {\partial \overline{z}}g_k,\frac{\overline{z}}{(1-\overline{z}w)^3}\bigg\rangle\bigg|. $

因$\frac{z^2(1-|w|^2)}{(1-z\overline{w})^2},\frac{z^2(1-|w|^2)} {(1-\overline{z}w)^2}\in L^2$且满足$\|\frac{z^2(1-|w|^2)}{(1-z\overline{w})^2}\|_{L^2}\leq 1$与$\|\frac{z^2(1-|w|^2)}{(1-\overline{z}w)^3}\|_{L^2}\leq 1$,故

$$ \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial z},\frac{\partial \varphi} {\partial z}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|\rightarrow 0,\quad \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial \overline{z}}, \frac{\partial \varphi}{\partial \overline{z}}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|\rightarrow 0. $$

注意到$g_{k}$在${\cal B}^{h,1}$中弱*收敛到0且$\|g_{k}\|_{{\cal B}^{h,1}}=1$,于是存在充分小的$\delta>0$,对任意$1-\delta < r < 1$,在$\mathbb{D}-\overline{\mathbb{D}_r}$中有$|\frac{\partial g_k}{\partial z}(z)|\leq C(-\log(1-|z|^2)),|\frac{\partial g_k}{\partial \overline{z}}(z)|\leq C(-\log(1-|z|^2))$,且在$\overline{\mathbb{D}_r}=\{z|\mbox{ }|z|\leq 1-\delta\}$一致地有$\frac{\partial g_k}{\partial z},\frac{\partial g_k}{\partial \overline{z}}\rightarrow 0$. 因此,对任意$\epsilon>0$,存在$K$,当$k>K$,对任意$1-\delta < r < 1$,其中充分小$\delta>0$,有

$ \sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2) \bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2) \bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|<\frac{\epsilon}{2};\\ \sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2) \bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2) \bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\\ \leq C \sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)(-\log(1-|w|^2))<\frac{\epsilon}{2}. $

于是

$ \|g_k\|_{{\cal B}^h} \leq \sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2) \bigg(\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\bigg)\\ +\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)\bigg(\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg| +\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\bigg)\rightarrow 0. $

又注意到$\frac{\partial \overline{\varphi}}{\partial z}\in L^{\infty}$且 $\frac{(1-|w|^2)z}{(1-z\overline{w})^3}\in L^1$,故

$ \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg(\bigg|\bigg\langle \frac{\partial \overline{\varphi}}{\partial z}g_k, \frac{z}{(1-z\overline{w})^3}\bigg\rangle\bigg|+\bigg|\bigg\langle \frac{\partial \overline{\varphi}} {\partial \overline{z}}g_k,\frac{\overline{z}}{(1-\overline{z}w)^3}\bigg\rangle\bigg|\bigg)\\ \leq C\|g_k\|_{{\cal B}^h}\bigg(\bigg\|\frac{\partial \overline{\varphi}}{\partial z}\bigg\|_{L^{\infty}} +\bigg\|\frac{\partial \overline{\varphi}}{\partial \overline{z}}\bigg\|_{L^{\infty}}\bigg) \bigg\| \frac{(1-|w|^2)z}{(1-z\overline{w})^2}\bigg\|_{L^1}\rightarrow 0. $

因此,

$$ \|(T^{*}_{\varphi}-T_{\overline{\varphi}})g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0, $$

即 $T_{\varphi}^{*}-T_{\overline{\varphi}}$是紧算子.

3 Fredholm性质与指标

Banach空间$X$上有界算子$A$为Fredholm算子当且仅当$A$的核与余核是有限维; Fredholm指标定义如下

$$ \mbox{Ind}\mbox{ }A=\mbox{dim}\mbox{ }\mbox{ker}\mbox{ }A-\mbox{dim}\mbox{ }\mbox{coker}\mbox{ }A. $$

下面定理中得到了${\cal D}^1_h$上Toeplitz算子$T^h_{\varphi}$为Fredholm算子的充要条件.

定理 3.1 设$\varphi \in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$, 则$T_{\varphi}$是Fredholm算子当且仅当对任意$z\in \mathbb{T}$,$\varphi(z)\neq 0$.

不失一般性,设$0\in \varphi(\mathbb{T})$, 则$\mathbb{D}dot{T}_{\varphi}$不是$L^{1}_{a}({\Bbb D})$上Fredholm算子, 故对$\{f_{k}\}\subset L^{1}_{a} $ 满足$\|f_{k}\|_{L^1}=1$,且在$L^{1}_{a} $中$f_{k}$弱收敛到0有 $\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}\rightarrow 0$,或 对$\{g_{k}\}\subset {\cal B}$,其中${\cal B}$为解析Bloch空间, 满足$\|g_{k}\|_{{\cal B}_h}=1$,$g_{k} $在${\cal B}$中弱$*$收敛到0有 $\|\mathbb{D}dot{T}^{*}_{\varphi}g_{k}\|_{{\cal B}}\rightarrow 0$.

记$F_{k}=\int f_{k}{\rm d}z$,则$\{F_{k}\}\subset {\cal D}^{1}_h $, $\|F_{k}\|_{L^{1,1}}=1$,且$F_{k}$在${\cal D}^{1}_h $中弱收敛到0. 注意到

$ \|T^h_{u} F_{k}\|_{L^{1,1}}\\ =\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi F_{k})(w)}{\partial w} \bigg|{\rm d}A(w)+\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi F_{k})(w)} {\partial \overline{w}}\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi F_{k})} {\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi F_{k})} {\partial \overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi} {\partial z}F_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z) +\int_{{\Bbb D}}\varphi f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ \leq \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi} {\partial z}F_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi f_{k}\frac{1} {(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ + \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w). $

因$\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$,故

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}F_{k} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0 $$

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0. $$

又因

$$\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi f_{k}\frac{1}{(1-\overline{z}w)^{2}} {\rm d}A(z)\bigg|{\rm d}A(w)=\int_{{\Bbb D}}|P^b(\varphi f_{k})(w)|{\rm d}A(w) =\int_{{\Bbb D}}|(\mathbb{D}dot{T}_{u}f_{k})(w)|{\rm d}A(w)\rightarrow 0, $$

其中$P^b$为 $L^1$到$L^1_a$上的投影,$\mathbb{D}dot{T}_{u}$是$L^1_a$上的Toeplitz算子, 则$\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$. 这说明$ T_{\varphi}$不是Fredholm算子.

记$G_{k}=\int g_{k}{\rm d}z$,则有$\{G_{k}\}\subset {\cal B}^{h,1} $. 很明显$f\in {\cal B}^1$满足$\|f\|_{{\cal B}^{h,1}}=\|f'\|_{{\cal B}}$. 故有$\|G_{k}\|_{{\cal B}^{h,1}}=1$,且$G_{k}$在${\cal B}^{h,1} $中弱*收敛到0. 注意

$ \|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^{h,1}} =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle (T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 w} \bigg|+ \bigg|\frac{\partial^2 \langle(T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 w}\bigg| +\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 w}\bigg| +\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ \leq \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg| \bigg\langle g_k,\frac{\partial \varphi}{\partial z} \frac{z^2} {(1-z\overline{w})^2}\bigg\rangle\bigg|+\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg|\frac{d \langle g_k,\varphi \frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|. $

因$g_k\rightarrow 0$在${\cal B}$中弱*收敛到0, $\frac{\partial \varphi}{\partial z}\in L^{2+\epsilon}$, $\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a$且满足 $\|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1$,故

$$ \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle g_k,\frac{\partial \varphi}{\partial z} \frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg| \rightarrow 0. $$

又因

$$ \|(\mathbb{D}dot{T}_{\varphi})^* g_k\|_{{\cal B}}= \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle g_k,\varphi \frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0, $$

所以

$$ \|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^1}\rightarrow 0. $$

这说明$ T^h_{\varphi}$不是Fredholm算子.

反过来,若$T^h_{\varphi}$不是Fredholm算子,则 存在序列$\{f_{k}\}\subset {\cal D}^{1}_h$ 满足$\|f_{k}\|_{L^{1,1}}=1$,且$f_{k}$在${\cal D}^{1}_h$中弱收敛到0,使得 $\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$,或存在 $\{g_{k}\}\subset {\cal B}^{h,1}$满足$\|g_{k}\|_{{\cal B}^{h,1}}=1$,且$g_{k}$在$ {\cal B}^{h,1}$中弱*收敛到0,使得 $\|(T^{h}_{\varphi})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0$. 注意到$\|\frac{\partial f_{k}}{\partial z}\|_{L^{1}}+\|\frac{\partial f_{k}}{\partial \overline{z}}\|_{L^{1}}=1$,选取恰当子列得$\frac{\partial f_{k}}{\partial z}$在$L^{1}_a({\Bbb D})$中弱收敛到0,但$\|\frac{\partial f_{k}}{\partial z}\|_{L^1}\geq \delta>0$. 又注意到$\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}+\|\overline{\frac{\partial g_{k}}{\partial \overline{z}}}\|_{{\cal B}}=1$,选取恰当子列得$\frac{\partial g_{k}}{\partial z}$在${\cal B}$中弱*收敛到0,但$\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}\geq \delta>0$.

若$\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$,因

$ \|T^h_{\varphi} f_{k}\|_{L^{1,1}} =\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)}{\partial w} \bigg|{\rm d}A(w)+\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)} {\partial \overline{w}}\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})} {\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ + \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial \overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ =\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z} f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+ \int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial z} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\ +\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+ \int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial \overline{z}} \frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) $

$$ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial\varphi}{\partial z}f_{k}\frac{1} {(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi \|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0, $$

$$\bigg\| \mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg\|_{L^{1}}=\int_{{\Bbb D}} \bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z) \bigg|{\rm d}A(w)\rightarrow 0. $$

这说明$ \mathbb{D}dot{T}_{\varphi}$不是Fredholm算子,故 $0\in \varphi|_{\mathbb{T}}$.

若$\|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0$,因

$ \|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}} =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k,K^h_w(z)\rangle_1} {\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k, K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2) \bigg(\bigg|\frac{\partial^2 \langle g_k,T_{\varphi} K^h_w(z)\rangle_1} {\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle g_k,T_{\varphi} K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\ =\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial z}, \frac{\partial \varphi}{\partial z} K^h_w(z)\rangle}{\partial^2 w}+\frac{d \langle \frac{\partial g_k}{\partial z}, \varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\\ +\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial \overline{z}}, \frac{\partial \varphi}{\partial \overline{z}} K^h_w(z)\rangle}{\partial^2 \overline{w}}+ \frac{d \langle \frac{\partial g_k}{\partial \overline{z}},\varphi\frac{1}{(1-\overline{z}w)^2} \rangle}{d \overline{w}}\bigg|. $

再因$\frac{\partial g_k}{\partial \overline{z}} $在${\cal B}$中弱*收敛到0, $\frac{\partial \varphi}{\partial z}\in L^{2+\epsilon}$, $\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a$且 $\|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1$,得

$$ \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle \frac{\partial g_k}{\partial \overline{z}}, \frac{\partial \varphi}{\partial z} \frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg| \rightarrow 0, $$

所以

$$\bigg\|\mathbb{D}dot{T}^{*}_{\varphi}\frac{\partial g_k}{\partial \overline{z}}\bigg\|_{{\cal B}} =\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle \frac{\partial g_k}{\partial \overline{z}}, \varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0. $$

这说明$ \mathbb{D}dot{T}^{*}_{\varphi}$不是Fredholm算子,于是 $0\in \varphi|_{\mathbb{T}}$.

引理3.1 若$m$为正整数,则

$$\mathbb{D}im (\ker T^h_{z^m})=\mathbb{D}im (\ker (T^h_{z^m})^*)=1. $$

首先证明$(T^h_{z^m})^*z^m=0$. 对$l>0$,有

$$ \langle (T^h_{z^m})^*z^m,z^l\rangle_1=\langle z^m,z^m z^l\rangle_1=0,\mbox{ }\mbox{且}\mbox{ } \langle (T^h_{z^m})^*z^m,\overline{z}^l\rangle_1=\langle z^m,z^m \overline{z}^l\rangle_1=0, $$

$$(T^h_{z^m})^*z^m=0. $$

于是,记

$$h=\sum\limits_{k=1,k\neq m}^{\infty}a_k z^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k\in \mbox{ker} (T^h_{z^m})^*. $$

对任意$f\in {\cal D}^1$,有

$$ \langle z^m f,h\rangle_1= \langle f,(T^h_{z^m})^* h\rangle_1=0. $$

注意到

$$\langle z^m f,h\rangle_1=\bigg\langle z^{m-1}(m f+z f'), \frac{\partial h}{\partial z}\bigg\rangle, $$

$$h=\sum\limits_{k=1}^{m-1}a_kz^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k. $$

因对$k< m$与$l>0$,

$$ \langle (T^h_{z^m})^* z^k,z^l\rangle_1=\langle z^k,z^m z^l\rangle_1=0 \mbox{ } \mbox{ 且} \mbox{ } \langle (T^h_{z^m})^* z^k,\overline{z}^l\rangle_1=\langle z^k,z^m\overline{z}^l\rangle_1=\langle k z^{k-1},m z^{m-1}\overline{z}^l\rangle. $$

$$ (T^h_{z^m})^* z^k=\frac{k}{m-k}\overline{z}^{m-k}. $$

又因对$k>0$与$l>0$,

$$ \langle (T^h_{z^m})^* \overline{z}^k,z^l\rangle_1=0, \mbox{ } \mbox{ 且} \mbox{ } \langle (T^h_{z^m})^* \overline{z}^k,\overline{z}^l\rangle_1=\langle \overline{z}^k,z^m \overline{z}^l\rangle_1=\langle k\overline{z}^{k-1},z^m l\overline{z}^{l-1}\rangle. $$

所以

$$ (T^h_{z^m})^* \overline{z}^k=\frac{k}{m+k}\overline{z}^{m+k}. $$

于是

$$ (T^h_{z^m})^* h=\sum\limits_{k=1}^{m-1}a_k\frac{k}{m-k}\overline{z}^{m-k}+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \frac{k}{m+k}\overline{z}^{m+k}=0. $$

这说明$h=0$且$\mbox{dim}(\mbox{ker}(T^h_{z^m})^*)=1$. 同理可得$\mbox{dim}(\mbox{ker}T^h_{z^m})=1$.

应用上述结论可得对$m\geq 0$有Ind $T^h_{z^m}=0$,其中Ind $T^h_{z^m}$表示$T^h_{z^m}$ 的Fredholm指标,同理对$m> 0$,有Ind $T^h_{\overline{z}^m}=0$.

为证明下面结论,这里引入无零点连续函数$u(z)$的绕数,其定义为

$$ \mbox{wind}\mbox{ }u|_{{\Bbb T}}=\frac{[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}}{2\pi}, $$

这里的$[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}$表示当自变量在 ${\Bbb T}=\partial{\Bbb D}$中取遍一周时,辐角arg $u(t)$的全增量.

定理 3.2 设$u\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log}$, 对任意$z\in \mathbb{T}$满足$u(z)\neq 0$,则

$$ \mbox{Ind} T^h_{u}=0. $$

易知存在函数$v\in C^{2}(\overline{{\Bbb D}})$ 在${\Bbb T}$上无零点且满足

$$ \mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{v}\mbox{ }\mbox{ } \mbox{和}\mbox{ }\mbox{ }\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{ }v|_{{\Bbb T}}=:k\geq 0. $$

对$s\in [0,1]$,定义

$$ F_{s}(t)=t^{k}\exp (s\log g(t)) \mbox{ }\mbox{ }\mbox{ }(t\in {\Bbb T}), $$

其中$g(t)=t^{-k}v(t)$. 因$v\in C^{2}({\Bbb T})$,wind $v|_{{\Bbb T}}=k$, 且$F_{s}$是$C^{2}({\Bbb T})$中的同伦映射,在 ${\Bbb T}$上无零点,故可以延拓$F_{s}:{\Bbb T}\rightarrow {\Bbb C}$为 $C^{1}(\overline{{\Bbb D}})$中映射. 于是对任意$s\in [0,1]$,$T^h_{F_{s}}$为Fredholm算子, 又由 Fredholm指标的连续性得

$$ \mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{F_{0}}=\mbox{Ind}\mbox{ }T^h_{F_{1}}=\mbox{Ind}\mbox{ }T^h_{v}=\mbox{Ind}\mbox{ }T^h_{u}. $$

当$k\geq 0$,不难得到

$$ 0=\mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{u}. $$

当$k<0$,同样讨论可知

$$ \mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{ }\overline{z}^{|k|}|_{{\Bbb T}}=:k<0. $$

于是,

$$ \mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{\overline{z}^{|k|}}=0. $$

参考文献
[1] Böttcher A, Silbermann B. Analysis of Toeplitz Operators. Springer Monographs in Mathematics. Berlin:Springer-Verlag, 2006
[2] Wang X F, Xia J, Cao G F. Some properties of Toeplitz operators on Dirichlet space Dp(Chinese). Acta Mathematica Scientia, 2012, 32(2):395-403
[3] Guo K, Zheng D. Toeplitz algebra and Hankel algebra on the harmonic Bergman space. J Math Anal Appl, 2002, 276:213-230
[4] Papadimitrakis M, Virtanen J A. Hankel and Toeplitz transforms on H1:continiuity, compactness and Fredholm properties. Integr Equat Oper Th, 2008, 61(4):573-591
[5] Taskinen J, Virtanen J A. spectral theory of Toeplitz and Hankel operators on the Bergman space A1. New York J of Mathematics, 2008, 34:305-323
[6] Zhu K H. Multipliers of BMO in Bergman metrics with applications to Toeplitz operators. J Funct Anal, 1989, 87(1):31-50
[7] Coburn L A. Singular integral operators and Toeplitz operators on odd spheres. Indiana Univ Math J, 1973/74, 23:433-439
[8] Mcdonald G, Sundberg C. Fredholm properties of a class of Toeplitz operators on the ball. Indiana Univ Math J, 1977, 26(3):567-576
[9] Cao G F. Fredholm properties of Toeplitz operators on Dirichlet spaces. Pacific J Math, 1999, 2:209-223
[10] Douglas R G. Banach Algebraic Techniques in Operators Theory. Vol 128. New York:Springer-Verlag, 1971
[11] Upmeier H. Toeplitz Operators and Index Theory in Several Complex Variable. Basel:Birkhäuser, 1996
[12] Cao G F. Toeplitz operators and algebras on Dirichlet spaces. Chin Ann of Math, 2002, 23B(3):385-396
[13] Zhao L K. Hankel operators on the Dirichlet space. J Math Anal Appl, 2009, 352:767-772
[14] Zhu K H. Operator Theory on the Function Spaces. New York:Marcel Dekker, 1990