1 引言
令C为复平面,D表示C中单位圆盘,T为D的边界.
dA(z)=1πdxdy为D上正规化Lebesgue测度. 对1≤p<∞,定义
Lp,1={f|∫D(|∂f∂z|p+|∂f∂¯z|p)dA(z)<∞}.
易知Lp,1=Lp,1C为Banach空间,其上范数为
‖f‖Lp,1=(∫D(|∂f∂z|p+|∂f∂¯z|p)dA(z))1/p.
调和Dirichlet空间Dph (1≤p<∞)是由Lp,1中
全体调和函数所成的闭子空间. D上有界调和函数全体所成空间记为
h∞. 令Ph是从Lp,1到Dph上投影,
则Ph可以按如下方式表示为积分算子
Ph(f)(w)=⟨f,Kh(z,w)⟩1=⟨∂f∂z,∂Khw∂z⟩+⟨∂f∂ˉz,∂Khw∂ˉz⟩=∫D(∂f∂z¯∂Khw∂z+∂f∂ˉz¯∂Khw∂ˉz)dA(z),
其中Khw(z)=Kh(z,w)是Dph的再生核. 直接计算得
Kh(z,w)=−ln(1−z¯w)−ln(1−¯zw).
若φ∈Lp,1(D,dA),对z,¯z的多项式f(z,¯z),
Dph上以φ为符号的Toeplitz算子,小Hankel算子与Hankel算子分别稠密定义为
Thφf=Ph(φf);Γhφf=Ph(φUf);Hhφf=(I−Ph)(φf),
其中(Uf)(z)=f(¯z)是Dph上的酉算子.
Hilbert函数空间上Toeplitz算子与Hankel算子的有界性,紧性,
Fredholm指标已有许多算子论专家进行了深入广泛地研究,特别对Hardy空间H2,
Bergman空间L2a与Dirichlet空间D2情形得到了丰富而深刻的结果.
对1<p<∞,Hp,Lpa与Dp上Toeplitz算子与
Hankel算子也有了很多有趣的结果,参见文献[1, 2].
Guo与Zheng在文献[3]中讨论了调和Bergman空间L2h上Toeplitz算子的性质,
得到了一些与解析Bergman空间不同的有趣结论. 但对p=1的极端情形却很少有相关成果,
参见文献[4, 5]. 本文讨论调和Dirichlet空间D1h上Toeplitz算子,
小Hankel算子与Hankel算子的相关性质.
易知Dph (1<p<∞)上的调和Dirichlet投影是有界的.
于是,Dph (1<p<∞)上符号在
L∞,1={φ|φ,∂φ∂z,∂φ∂¯z∈L∞}
中的Toeplitz算子,小Hankel算子与Hankel算子是有界的. 然而众所周知,调和Bergman空间
L1h上的Bergman投影是无界的,同样由L1,1到D1h的调和Dirichlet投
影也
是无界的. 所以需要对D1h上的Toeplitz算子,小Hankel算子与Hankel算子有
界性进行更加深入地讨论.
Zhu第一个在文献[6]中研究了L1a上的Bergman投影,找出了一大类可以诱导L1a上
的有界Toeplitz算子的有界函数,他的结果为研究Dirichlet空间D1上Toeplitz
的有界性给出很多好的思路.
Bergman空间L2a与Dirichlet空间D2上Toeplitz算子的Fredholm性质已被广泛研究,
并得到了很多有意思的结果,参见文献[7, 8, 9].
Taskinen与 Virtanen讨论了Bergman空间L1a上Toeplitz算子的Fredholm性质,
计算了Fredholm指标,参见文献[5]. 对调和Dirichlet空间D1h
上Toeplitz算子的Fredholm性质至今没有任何相关结果,是全新的领域.
后文将对
C1(¯D)={φ|φ,∂φ∂z,∂φ∂¯z∈C(¯D)}
中某些函数诱导的Toeplitz算子建立Fredholm理论,这里的C1(¯D)是以
‖φ‖∗=max
为范数的Banach空间.
Dirichlet空间{\cal D}^2上Toeplitz算子,小Hankel算子与Hankel算子的紧性相关结果参见
文献[9, 13]. 下文将讨论调和Dirichlet空间{\cal D}^1_h上这些算子的紧性,
给出它们为紧算子的充分条件.
后面证明中将会用到文献[6]中关于对数有界均值震荡(BMO_{\partial \log })函数的一些估计.
2 Toeplitz算子,小Hankel算子与Hankel算子的有界性与紧性
首先回顾一下文献[14]中得到的Bergman度量下有界均值震荡(BMO)的一些结论.
令\rho(z,w)=|\frac{z-w}{1-\overline{z}w}|,其中z,w\in \mathbb{D},
则Bergman度量\beta(z,w)定义为
\beta (z,w) = \frac{1}{2}\log \frac{{1 + \rho (z,w)}}{{1-\rho (z,w)}},\quad z,w \in \mathbb{D}.
Bergman度量是M\mathbb{D}dot{\mbox{o}}bius不变的,即对任意\phi\in Aut(\mathbb{D})与z,w\in \mathbb{D}有
\beta (\phi (z),\phi (w)) = \beta (z,w).
对任意z\in \mathbb{D}与r>0,记
D(z,r) = \{ w \in \mathbb{D}|\quad \beta (z,w) < r\}
是以z为心,r为半径的Bergman圆盘. 众所周知D(z,r)也是欧式圆盘,其圆心和半径分别为
C=\frac{1-s^2}{1-s^2|z|^2}z,\quad R=\frac{1-|z|^2}{1-s^2|z|^2}s,
这里的s=\mbox{tanh}r\in (0,1).
若\varphi\in L^1满足对任意z\in \mathbb{D}有
{\rm{M}}{{\rm{O}}_r}(\varphi )(z) = {\left( {\widehat {|\varphi |_r^2}(z)-|{{\hat \varphi }_r}(z){|^2}} \right)^{1/2}} < M < \infty ,
其中\widehat{\varphi}_r(z)=\frac{1}{|D(z,r)|}\int_{D(z,r)}\varphi(w){\rm d}A(w),
则这些函数组成空间被称为有界均值震荡函数空间,记为BMO_{\partial }.
事实上,\mbox{MO}_r(\varphi)与r无关,对任意r>0,
\|\varphi\|_{{\rm BMO}_{\partial }}:=\sup\limits_{z\in\mathbb{D}}\mbox{MO}_r(\varphi)(z)
\mbox{ }\mbox{等价于}\mbox{ }
\sup _{z\in\mathbb{D}}\mbox{MO}(\varphi)(z)=({\widetilde{|\varphi|^2}(z)-
|\widetilde{\varphi}(z)|^2})^{1/2},
其中\widetilde{\varphi}是Berezin变换.
消失均值震荡空间 VMO_{\partial}是BMO_{\partial }的闭子空间,由所有满足条件
\lim_{|z|\rightarrow 1^-}\mbox{MO}_r(\varphi)(z)=0
的函数构成,注意这里的极限过程与r无关.
下文将使用对数加权有界均值震荡空间BMO_{\partial \log }和
消失均值震荡空间VMO_{\partial \log },它们的范数定义为
\|\varphi\|_{{\rm BMO}_{\partial \log}}=\sup _{z\in \mathbb{D}}
\log \frac{1}{1-|z|^2}\mbox{MO}_r(f)(z).
BMO_{\partial \log }与VMO_{\partial \log }在调和Bergman投影下的像
空间分别为对数加权调和Bloch空间{\cal LB}^h与对数加权小调和Bloch空间{\cal LB}^h_0.
\mathbb{D}上的调和函数f属于调和Bloch空间{\cal B}^h当且仅当
\sup _{z\in\mathbb{D}}(1-|z|^2)\bigg(\bigg|\frac{\partial f}{\partial z}(z)\bigg|+\bigg|\frac{\partial f
}{\partial \overline{z}}(z)\bigg|\bigg)<\infty;
f 属于小调和Bloch空间 {\cal B}^h_0当且仅当
|z|\rightarrow 1^-\mbox{ 时,}\ (1-|z|^2)\bigg(\frac{\partial f}{\partial z}(z)+\frac{\partial f}
{\partial \overline{z}}(z)\bigg)\rightarrow 0.
若在上面两式乘上因子-\log (1-|z|^2),则可得到{\cal LB}^h与{\cal LB}_0^h的定义.
下面考虑Toeplitz算子,小Hankel算子与Hankel算子的有界性.
定理 2.1 若\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log },
其中\epsilon为任意正数,
Toeplitz算子T^h_{\varphi}与Hankel算子H^h_{\varphi}在调和
Dirichlet空间{\cal D}^1_h上有界,即存在常数C,C_1使得
{\left\| {T_\varphi ^h} \right\|_{L(D_h^1,D_h^1)}} \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_\partial }}}),
{\left\| {H_\varphi ^h} \right\|_{L(D_h^1,{L^{1,1}})}} \le {C_1}({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_\partial }}}),
证
由定义知对任意f\in {\cal D}^1_h,
\begin{array}{l}
{\left\| {T_\varphi ^hf} \right\|_{{L^{1,1}}}} = \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z) + \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial z}}} f\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\
+ \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial \bar z}}\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z) + \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial \bar z}}} f\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\
\le \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) + \int_{\mathbb{D}} | \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial z}}} f\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\
+ \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial \bar z}}\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) + \int_{\mathbb{D}} | \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial \bar z}}} f\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w).
\end{array}
因L^{2+\epsilon,1}\hookrightarrow L^{\infty}连续,故
\begin{array}{l}
\int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) \le C({\left\| \varphi \right\|_\infty } + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| {\frac{{\partial f}}{{\partial z}}} \right\|_{{L^1}}}\\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| f \right\|_{{L^{1,1}}}},
\end{array}
上面的第一个不等式来自文献[5,定理6]. 同理有
\int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial {\rm{ }}f}}{{\partial \bar z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| f \right\|_{{L^{1,1}}}}.
因L^{1,1}\hookrightarrow L^{2}为连续,于是
\frac{\partial\varphi}{\partial z}f\in L^{\frac{2(2+\epsilon)}{4+\epsilon}}. 因此
\int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial z} f
\frac{1}{(1-\overline{z}w)^2} {\rm d}A(z)\bigg| {\rm d}A(w)\\
\leq C\bigg(\int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial z}
f \frac{1}{(1-\overline{z}w)^2} {\rm d}A(z)\bigg|^{\frac{2(2+\epsilon)}{4+\epsilon}}
{\rm d}A(w)\bigg)^{\frac{4+\epsilon}{2(2+\epsilon)}}\\
\leq C\bigg\|\frac{\partial\varphi}{\partial z}f\bigg\|_{L^{\frac{2(2+\epsilon)}{4+\epsilon}}}\leq C \|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2}}\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{1,1}},
且
\int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial \overline{z}} f
\frac{1}{(1-z\overline{w})^2} {\rm d}A(z)\bigg| {\rm d}A(w)
\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{1,1}}.
所以
\|T^h_{\varphi}f\|_{L^{1,1}}\leq C(\|\varphi\|_{L^{2+\epsilon,1}}+\|\varphi\|_{{\rm BMO}_{\partial \log}})\|f\|_{L^{1,1}}.
H^h_{\varphi}的有界性可由不等式
\|\varphi f\|_{L^{1,1}}
=\int_{\mathbb{D}}\bigg(\bigg|\frac{\partial \varphi}{\partial z} f+\varphi \frac{\partial f}{\partial z}\bigg|+
\bigg|\frac{\partial \varphi}{\partial \overline{z}} f+\varphi\frac{\partial f}{\partial \overline{z}}\bigg|\bigg){\rm d}A(z)\\
\leq \int_{\mathbb{D}}\bigg(\bigg|\frac{\partial \varphi}{\partial z} f\bigg|+\bigg|\varphi
\frac{\partial f}{\partial z}\bigg|+\bigg|\frac{\partial \varphi}{\partial \overline{z}} f\bigg|+
\bigg |\varphi\frac{\partial f}{\partial \overline{z}}\bigg|\bigg){\rm d}A(z)\\
\leq C_1(\|\varphi\|_{L^{2+\epsilon,1}}+\|\varphi\|_{{\rm BMO}_{\partial \log }})\|f\|_{L^{1,1}}
与
\|H^h_{\varphi}f\|_{L^{1,1}}\leq \|T^h_{\varphi}f\|_{L^{1,1}}+\|\varphi f\|_{L^{1,1}}
推得.
引理 2.1 算子Uf(z)=f(\overline{z})是{\cal D}^1_h上的酉算子,其中f\in {\cal D}^1_h.
定理 2.2
若
\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log },其中
\epsilon为任意正数,小Hankel算子
\Gamma^h_{\varphi}=T^h_{\varphi}U在
{\cal D}^1_h上有界.
证
应用定理2.1与引理2.1可得.
定理 2.3
若\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log },其中\epsilon为任意正数,则T^h_{\varphi}在{\cal D}^{1}_h上为紧算子当且仅当
\varphi|_{\mathbb{T}}=0.
证
若\varphi|_{\mathbb{T}}= 0,
对任意{\cal D}^{1}_h中满足\|f_{k}\|_{L^{1,1}}=1且在{\cal D}^{1}_h
中f_{k}弱收敛到 0的序列\{f_{k}\}有
\|T_{\varphi}f_{k}\|_{L^{1,1}}\\
=\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi f_{k})(w)}{\partial w}\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}
\bigg|\frac{\partial P_h(\varphi f_{k})(w)}{\partial \overline{w}}\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}
{\partial z}\overline{\frac{\partial^{2} K_{w}(z)}{\partial z
\partial \overline{w}}}{\rm d}A(z)\bigg|{\rm d}A(w)+\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial \overline{z}}
\overline{\frac{\partial^{2} K_{w}(z)}{\partial z \partial \overline{w}}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}
{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial
\overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)+
\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\\
\leq \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial
\overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
因L^{1,1}\hookrightarrow L^{2-\frac{\epsilon}{2}}是紧的,故有\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0. 于是
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}f_{k}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq
C\bigg\|\frac{\partial \varphi}{\partial z}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2}
{8+\epsilon}}}
\leq C \bigg\|\frac{\partial \varphi}{\partial z}\bigg\|_{L^{2+\epsilon}}
\|f_k\|_{L^{2-\frac{\epsilon}{2}}}
=C\|\varphi\|_{L^{2+\epsilon,1}}
\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \leq
C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
注意到
\int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)
= P^b\Big(\varphi \frac{\partial f_{k}}{\partial z}\Big)(w)=(\mathbb{D}dot{T}_{\varphi}f')(w),
其中P^b是解析Bergman投影,\mathbb{D}dot{T}_{\varphi}为Bergman空间L_{a}^{1}上以
\varphi为符号的Toeplitz算子. 因L^{2+\epsilon,1}(\overline{\mathbb{D}})\hookrightarrow
C(\overline{\mathbb{D}})连续,
\varphi|_{\mathbb{T}}= 0且\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log},
故\mathbb{D}dot{T}_{\varphi}为紧算子,参见文献[5]. 很明显\frac{\partial f_{k}}{\partial z}
在L_{a}^{1}中弱收敛到0,因此有
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial z}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
=\int_{{\Bbb D}}\bigg|\mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg|{\rm d}A(w)
=\bigg\|\mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg\|_{L^1}
\rightarrow 0.
同理知
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\rightarrow 0.
于是,\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0. 这说明 T^h_{\varphi}为紧算子.
反过来,设T^h_{\varphi}在{\cal D}^{1}_h上紧. 下证
\varphi|_{\mathbb{T}}= 0. 若\{f_{k}\}为L^{1}_{a} 中满足
\|f_{k}\|_{L^1}=1且f_{k} 在L^{1}_{a} 中弱收敛到0的序列,则F_{k}(z)=\int f_{k}(z){\rm d}z满足
\|F_{k}\|_{L^{1,1}}=1,F_{k} 在{\cal D}^{1}_h弱收敛到0且\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0. 由{\cal D}^{1}_h上Toeplitz算子的定义知
\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\varphi f_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|{\rm d}A(w)
\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\varphi f_{k}}
{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{F_{k}}
{(1-\overline{z}w)^{2}}{\rm d}A(z)+\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\\
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{F_{k}}
{(1-\overline{z}w)^{2}}{\rm d}A(z)-\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\\
\leq \|T^h_{\varphi}F_k\|_{L^{1,1}}+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}
\frac{\partial \varphi}{\partial z}\frac{F_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial
\varphi}{\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
由T^h_{\varphi}的紧性得
\|T^h_{\varphi}F_k\|_{L^{1,1}}\rightarrow 0.
因F_{k} 在{\cal D}^{1}_h弱收敛到0,故\|F_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
因此
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{F_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
于是,
\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}\rightarrow 0,即 \mathbb{D}dot{T}_{\varphi}是紧算子.
故\varphi|_{\mathbb{T}}=0,参见文献[5].
定理 2.4
若\varphi \in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log },其中\epsilon为任意正数,则H^h_{\varphi}:{\cal D}_h^{1}\rightarrow L^{1,1}是紧算子.
证
由定义知对任意{\cal D}^{1}_h中满足\|f_{k}\|_{L^{1,1}}=1且在{\cal D}^{1}_h中f_{k}弱收敛到 0的序列\{f_{k}\}有
\|H_{\varphi}f_{k}\|_{L^{1,1}}
\\
=\int_{{\Bbb D}}\bigg(\bigg|\frac{\partial \varphi}{\partial w}f_{k}+\varphi
\frac{\partial f_{k} }{\partial w}
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{f_{k}}
{(1-w\overline{z})^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}
\frac{1}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|\\
+\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}+\varphi
\frac{\partial f_{k} }{\partial \overline{w}}
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}\frac{f_{k}}
{(1-z\overline{w})^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w)\\
\leq \int_{{\Bbb D}}\bigg(\bigg|\frac{\partial \varphi}{\partial w}f_{k}\bigg|+
\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{f_{k}}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|
+\bigg|\varphi \frac{\partial f_{k} }
{\partial w}-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}
\frac{1}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|\\
+\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}\bigg|
+\bigg|\int_{{\Bbb D}}
\frac{\partial \varphi}{\partial \overline{z}}
\frac{f_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|+
\bigg|\varphi \frac{\partial f_{k} }
{\partial \overline{w}}-\int_{{\Bbb D}}\varphi
\frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w).
因\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0,故有
\int_{{\Bbb D}}\bigg|\frac{\partial \varphi}{\partial w}f_{k}\bigg|{\rm d}A(w)
\leq
\bigg\|\frac{\partial \varphi}{\partial w}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2}
{8+\epsilon}}}\leq
\bigg\|\frac{\partial \varphi}{\partial w}\bigg\|_{L^{2+\epsilon}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}=\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
且
\int_{{\Bbb D}}\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}\bigg|{\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0;
还有
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{f_{k}}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq
C\bigg \|\frac{\partial \varphi}{\partial w}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2}
{8+\epsilon}}}
\leq C\bigg \|\frac{\partial \varphi}{\partial w}\bigg\|_{L^{2+\epsilon}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}= C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{f_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
注意到
\int_{{\Bbb D}}\bigg |\varphi \frac{\partial f_{k} }{\partial w}-
\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|
{\rm d}A(w)=\bigg\|\mathbb{D}dot{H}_{\varphi}
\frac{\partial f_{k} }{\partial z}\bigg\|_{L^1},
其中\mathbb{D}dot{H}_{\varphi}
是L^1_a\rightarrow L^1的Hankel算子.
因对任意\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log },
\mathbb{D}dot{H}_{\varphi}是紧算子,且\frac{\partial f_{k}}{\partial z}在L_{a}^{1}中弱收敛到0,
故
\int_{{\Bbb D}}
\bigg|\varphi \frac{\partial f_{k} }{\partial w}-\int_{{\Bbb D}}\varphi
\frac{\partial f_{k} }{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|
{\rm d}A(w)
=\int_{{\Bbb D}}\bigg|\mathbb{D}dot{H}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg|{\rm d}A(w)\rightarrow 0.
同理可得
\int_{{\Bbb D}} \bigg|\varphi \frac{\partial f_{k} }{\partial \overline{w}}
-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\rightarrow 0.
因此\|H^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0. 这说明H^h_{\varphi}为紧算子.
下面得到的调和Dirichlet空间上小Hankel算子的紧性充分条件与解析Dirichlet空间情形有很大区别.
定理 2.5
若\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log},
其中\epsilon为任意正数,则\Gamma^h_{\varphi}是{\cal D}^{1}_h
上紧算子当且仅当\varphi|_{\mathbb{T}}=0.
证
应用定理2.3与引理2.1.
命题 2.1
若\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log}且
\psi\in L^{2+\epsilon,1}\cap \mbox{VMO}_{\partial \log},其中\epsilon为任意正数,
T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi}为紧算子.
证
由定义知对任意{\cal D}^{1}_h中满足\|f_{k}\|_{L^{1,1}}=1且在
{\cal D}^{1}_h中f_{k}弱收敛到 0的序列\{f_{k}\}有
\|(T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi})f_{k}\|_{L^{1,1}}\\
=\int_{{\Bbb D}}\bigg(\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)
+\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}{\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|\\
+\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(\psi f_{k})}
{(1-z\overline{w})^{2}}{\rm d}A(z)
\\
+\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}{\partial \overline{z}}
\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w)\\
\leq \int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{(\psi f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}
{\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}
{\partial \overline{z}}\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
因T^h_{\psi}在 {\cal D}_h^{1} 上有界,故\|f_{k}\|_{L^{2-\frac{\epsilon}{2}} }\rightarrow 0且\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0,于是有
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0;
还有
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{\infty}}
\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}
\leq C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{2+\epsilon}}
\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{(\psi f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{2+\epsilon}}
\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
注意到H^h_{\psi}为紧且在{\cal D}^{1}_h中f_{k}弱收敛到 0,
故知\|H^h_{\psi}f_{k}\|_{L^{1,1}}\rightarrow 0,所以
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}
{\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq C\|\varphi\|_{L^{\infty}}\bigg\|\frac{\partial(-H^h_{\psi}f_{k})}
{\partial z}\bigg\|_{L^{1,1}} \leq
C \|\varphi\|_{L^{2+\epsilon,1}}\|H^h_{\psi }f_{k}\|_{L^{1,1}}\rightarrow 0.
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H_{\psi}f_{k})}
{\partial \overline{z}}\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\leq C \|\varphi\|_{L^{2+\epsilon,1}}\|H^h_{\psi }f_{k}\|_{L^{1,1}}\rightarrow 0.
于是\|(T^h_{\varphi}T^h_{\psi}-T^h_{\varphi \psi})f_{k}\|_{L^{1,1}}\rightarrow 0,
即T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi}为紧算子.
{\cal D}^1_h的对偶空间{\cal B}^{h,1}定义为
{\cal B}^{h,1} =\frac{\{f|f\in h,\mbox{ }\frac{\partial f}{\partial z},\frac{\partial f}
{\partial \overline{z}}\in {\cal B}\}}{ \mathbb{C} },
其中h表示\mathbb{D}上调和函数所成空间. 很明显f\in {\cal B}^{h,1}的范数为
\|f\|_{{\cal B}^{h,1}}=\bigg\|\frac{\partial f}{\partial z}\bigg\|_{{\cal B}}+
\bigg\|\overline{\frac{\partial f}{\partial \overline{z}}}\bigg\|_{{\cal B}}.
命题 2.2
若\varphi\in L^{\infty,1}\cap {\rm BMO}_{\partial \log},
则(T^h_{\varphi})^{*}-T^h_{\overline{\varphi}}为{\cal B}^{h,1}上紧算子.
证 由定义知对{\cal B}^{h,1}中满足\|g_{k}\|_{{\cal B}^{h,1}}=1且g_{k}在
{\cal B}^{h,1}中弱*收敛到0的序列g_{k}有
\|((T^h_{\varphi})^{*}-T^h_{\overline{\varphi}})g_{k}\|_{{\cal B}^{h,1}}\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg| \frac{\partial^2 \langle (T^{*}_{\varphi}
-T_{\overline{\varphi}})g_{k},K_{w}(z)\rangle_{1}}{\partial ^2 w}\bigg|+
\bigg| \frac{\partial^2 \langle (T^{*}_{\varphi}-T_{\overline{\varphi}})
g_{k},K_{w}(z)\rangle_{1}}{\partial^2 \overline{w}}\bigg|\bigg)\\
\leq \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial z},
\frac{\partial \varphi}{\partial z}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|
+\sup_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial \overline{\varphi}}{\partial z}g_k,
\frac{z}{(1-z\overline{w})^3}\bigg\rangle\bigg|\\
+\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial \overline{z}}\frac{\overline{z}^2}{(1-\overline{z}w)^2}
\bigg\rangle\bigg|+\sup_{w\in\mathbb{D}}(1-|w|^2)
\bigg|\bigg\langle \frac{\partial \overline{\varphi}}
{\partial \overline{z}}g_k,\frac{\overline{z}}{(1-\overline{z}w)^3}\bigg\rangle\bigg|.
因\frac{z^2(1-|w|^2)}{(1-z\overline{w})^2},\frac{z^2(1-|w|^2)}
{(1-\overline{z}w)^2}\in L^2且满足\|\frac{z^2(1-|w|^2)}{(1-z\overline{w})^2}\|_{L^2}\leq 1与\|\frac{z^2(1-|w|^2)}{(1-\overline{z}w)^3}\|_{L^2}\leq 1,故
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial z},\frac{\partial \varphi}
{\partial z}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|\rightarrow 0,\quad
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial \overline{z}}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|\rightarrow 0.
注意到g_{k}在{\cal B}^{h,1}中弱*收敛到0且\|g_{k}\|_{{\cal B}^{h,1}}=1,于是存在充分小的\delta>0,对任意1-\delta < r < 1,在\mathbb{D}-\overline{\mathbb{D}_r}中有|\frac{\partial g_k}{\partial z}(z)|\leq C(-\log(1-|z|^2)),|\frac{\partial g_k}{\partial \overline{z}}(z)|\leq C(-\log(1-|z|^2)),且在\overline{\mathbb{D}_r}=\{z|\mbox{ }|z|\leq 1-\delta\}一致地有\frac{\partial g_k}{\partial z},\frac{\partial g_k}{\partial \overline{z}}\rightarrow 0.
因此,对任意\epsilon>0,存在K,当k>K,对任意1-\delta < r < 1,其中充分小\delta>0,有
\sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|<\frac{\epsilon}{2};\\
\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\\
\leq C \sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)(-\log(1-|w|^2))<\frac{\epsilon}{2}.
于是
\|g_k\|_{{\cal B}^h}
\leq \sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg(\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\bigg)\\
+\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)\bigg(\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|
+\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\bigg)\rightarrow 0.
又注意到\frac{\partial \overline{\varphi}}{\partial z}\in L^{\infty}且
\frac{(1-|w|^2)z}{(1-z\overline{w})^3}\in L^1,故
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg(\bigg|\bigg\langle \frac{\partial \overline{\varphi}}{\partial z}g_k,
\frac{z}{(1-z\overline{w})^3}\bigg\rangle\bigg|+\bigg|\bigg\langle \frac{\partial \overline{\varphi}}
{\partial \overline{z}}g_k,\frac{\overline{z}}{(1-\overline{z}w)^3}\bigg\rangle\bigg|\bigg)\\
\leq C\|g_k\|_{{\cal B}^h}\bigg(\bigg\|\frac{\partial \overline{\varphi}}{\partial z}\bigg\|_{L^{\infty}}
+\bigg\|\frac{\partial \overline{\varphi}}{\partial \overline{z}}\bigg\|_{L^{\infty}}\bigg)
\bigg\|
\frac{(1-|w|^2)z}{(1-z\overline{w})^2}\bigg\|_{L^1}\rightarrow 0.
因此,
\|(T^{*}_{\varphi}-T_{\overline{\varphi}})g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0,
即
T_{\varphi}^{*}-T_{\overline{\varphi}}是紧算子.
3 Fredholm性质与指标
Banach空间X上有界算子A为Fredholm算子当且仅当A的核与余核是有限维; Fredholm指标定义如下
\mbox{Ind}\mbox{ }A=\mbox{dim}\mbox{ }\mbox{ker}\mbox{ }A-\mbox{dim}\mbox{ }\mbox{coker}\mbox{ }A.
下面定理中得到了{\cal D}^1_h上Toeplitz算子T^h_{\varphi}为Fredholm算子的充要条件.
定理 3.1
设\varphi \in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log },
则T_{\varphi}是Fredholm算子当且仅当对任意z\in \mathbb{T},\varphi(z)\neq 0.
证 不失一般性,设0\in \varphi(\mathbb{T}),
则\mathbb{D}dot{T}_{\varphi}不是L^{1}_{a}({\Bbb D})上Fredholm算子,
故对\{f_{k}\}\subset L^{1}_{a}
满足\|f_{k}\|_{L^1}=1,且在L^{1}_{a} 中f_{k}弱收敛到0有
\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}\rightarrow 0,或
对\{g_{k}\}\subset {\cal B},其中{\cal B}为解析Bloch空间,
满足\|g_{k}\|_{{\cal B}_h}=1,g_{k} 在{\cal B}中弱*收敛到0有
\|\mathbb{D}dot{T}^{*}_{\varphi}g_{k}\|_{{\cal B}}\rightarrow 0.
记F_{k}=\int f_{k}{\rm d}z,则\{F_{k}\}\subset {\cal D}^{1}_h ,
\|F_{k}\|_{L^{1,1}}=1,且F_{k}在{\cal D}^{1}_h 中弱收敛到0. 注意到
\|T^h_{u} F_{k}\|_{L^{1,1}}\\
=\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi F_{k})(w)}{\partial w}
\bigg|{\rm d}A(w)+\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi F_{k})(w)}
{\partial \overline{w}}\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi F_{k})}
{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi F_{k})}
{\partial \overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial z}F_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)
+\int_{{\Bbb D}}\varphi f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial z}F_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi f_{k}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
因\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0,故
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}F_{k}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
又因
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi f_{k}\frac{1}{(1-\overline{z}w)^{2}}
{\rm d}A(z)\bigg|{\rm d}A(w)=\int_{{\Bbb D}}|P^b(\varphi f_{k})(w)|{\rm d}A(w)
=\int_{{\Bbb D}}|(\mathbb{D}dot{T}_{u}f_{k})(w)|{\rm d}A(w)\rightarrow 0,
其中P^b为 L^1到L^1_a上的投影,\mathbb{D}dot{T}_{u}是L^1_a上的Toeplitz算子,
则\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0. 这说明 T_{\varphi}不是Fredholm算子.
记G_{k}=\int g_{k}{\rm d}z,则有\{G_{k}\}\subset {\cal B}^{h,1} .
很明显f\in {\cal B}^1满足\|f\|_{{\cal B}^{h,1}}=\|f'\|_{{\cal B}}.
故有\|G_{k}\|_{{\cal B}^{h,1}}=1,且G_{k}在{\cal B}^{h,1} 中弱*收敛到0. 注意
\|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^{h,1}}
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle (T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 w}
\bigg|+
\bigg|\frac{\partial^2 \langle(T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 w}\bigg|
+\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 w}\bigg|
+\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
\leq \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg| \bigg\langle g_k,\frac{\partial \varphi}{\partial z} \frac{z^2}
{(1-z\overline{w})^2}\bigg\rangle\bigg|+\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg|\frac{d \langle g_k,\varphi \frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|.
因g_k\rightarrow 0在{\cal B}中弱*收敛到0,
\frac{\partial \varphi}{\partial z}\in L^{2+\epsilon},
\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a且满足
\|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1,故
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle g_k,\frac{\partial \varphi}{\partial z}
\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|
\rightarrow 0.
又因
\|(\mathbb{D}dot{T}_{\varphi})^* g_k\|_{{\cal B}}=
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle g_k,\varphi
\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0,
所以
\|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^1}\rightarrow 0.
这说明 T^h_{\varphi}不是Fredholm算子.
反过来,若T^h_{\varphi}不是Fredholm算子,则
存在序列\{f_{k}\}\subset {\cal D}^{1}_h
满足\|f_{k}\|_{L^{1,1}}=1,且f_{k}在{\cal D}^{1}_h中弱收敛到0,使得
\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0,或存在
\{g_{k}\}\subset {\cal B}^{h,1}满足\|g_{k}\|_{{\cal B}^{h,1}}=1,且g_{k}在 {\cal B}^{h,1}中弱*收敛到0,使得
\|(T^{h}_{\varphi})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0. 注意到\|\frac{\partial f_{k}}{\partial z}\|_{L^{1}}+\|\frac{\partial f_{k}}{\partial \overline{z}}\|_{L^{1}}=1,选取恰当子列得\frac{\partial f_{k}}{\partial z}在L^{1}_a({\Bbb D})中弱收敛到0,但\|\frac{\partial f_{k}}{\partial z}\|_{L^1}\geq \delta>0.
又注意到\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}+\|\overline{\frac{\partial g_{k}}{\partial \overline{z}}}\|_{{\cal B}}=1,选取恰当子列得\frac{\partial g_{k}}{\partial z}在{\cal B}中弱*收敛到0,但\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}\geq \delta>0.
若\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0,因
\|T^h_{\varphi} f_{k}\|_{L^{1,1}}
=\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)}{\partial w}
\bigg|{\rm d}A(w)+\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)}
{\partial \overline{w}}\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}
{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial
\overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial z}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial \overline{z}}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
且
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial\varphi}{\partial z}f_{k}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi \|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0,
则
\bigg\| \mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg\|_{L^{1}}=\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|{\rm d}A(w)\rightarrow 0.
这说明 \mathbb{D}dot{T}_{\varphi}不是Fredholm算子,故 0\in \varphi|_{\mathbb{T}}.
若\|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0,因
\|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}}
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k,K^h_w(z)\rangle_1}
{\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k,
K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle g_k,T_{\varphi} K^h_w(z)\rangle_1}
{\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle g_k,T_{\varphi}
K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial z},
\frac{\partial \varphi}{\partial z} K^h_w(z)\rangle}{\partial^2 w}+\frac{d \langle \frac{\partial g_k}{\partial z},
\varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\\
+\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial \overline{z}} K^h_w(z)\rangle}{\partial^2 \overline{w}}+
\frac{d \langle \frac{\partial g_k}{\partial \overline{z}},\varphi\frac{1}{(1-\overline{z}w)^2}
\rangle}{d \overline{w}}\bigg|.
再因\frac{\partial g_k}{\partial \overline{z}} 在{\cal B}中弱*收敛到0,
\frac{\partial \varphi}{\partial z}\in L^{2+\epsilon},
\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a且
\|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1,得
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial z} \frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|
\rightarrow 0,
所以
\bigg\|\mathbb{D}dot{T}^{*}_{\varphi}\frac{\partial g_k}{\partial \overline{z}}\bigg\|_{{\cal B}}
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle \frac{\partial g_k}{\partial \overline{z}},
\varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0.
这说明 \mathbb{D}dot{T}^{*}_{\varphi}不是Fredholm算子,于是
0\in \varphi|_{\mathbb{T}}.
引理3.1 若m为正整数,则
\mathbb{D}im (\ker T^h_{z^m})=\mathbb{D}im (\ker (T^h_{z^m})^*)=1.
证
首先证明(T^h_{z^m})^*z^m=0. 对l>0,有
\langle (T^h_{z^m})^*z^m,z^l\rangle_1=\langle z^m,z^m z^l\rangle_1=0,\mbox{ }\mbox{且}\mbox{ }
\langle (T^h_{z^m})^*z^m,\overline{z}^l\rangle_1=\langle z^m,z^m \overline{z}^l\rangle_1=0,
故
(T^h_{z^m})^*z^m=0.
于是,记
h=\sum\limits_{k=1,k\neq m}^{\infty}a_k z^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k\in \mbox{ker} (T^h_{z^m})^*.
对任意f\in {\cal D}^1,有
\langle z^m f,h\rangle_1= \langle f,(T^h_{z^m})^* h\rangle_1=0.
注意到
\langle z^m f,h\rangle_1=\bigg\langle z^{m-1}(m f+z f'),
\frac{\partial h}{\partial z}\bigg\rangle,
故
h=\sum\limits_{k=1}^{m-1}a_kz^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k.
因对k< m与l>0,
\langle (T^h_{z^m})^* z^k,z^l\rangle_1=\langle z^k,z^m z^l\rangle_1=0
\mbox{ }
\mbox{ 且}
\mbox{ }
\langle (T^h_{z^m})^* z^k,\overline{z}^l\rangle_1=\langle z^k,z^m\overline{z}^l\rangle_1=\langle k z^{k-1},m z^{m-1}\overline{z}^l\rangle.
故
(T^h_{z^m})^* z^k=\frac{k}{m-k}\overline{z}^{m-k}.
又因对k>0与l>0,
\langle (T^h_{z^m})^* \overline{z}^k,z^l\rangle_1=0,
\mbox{ }
\mbox{ 且}
\mbox{ }
\langle (T^h_{z^m})^* \overline{z}^k,\overline{z}^l\rangle_1=\langle \overline{z}^k,z^m \overline{z}^l\rangle_1=\langle k\overline{z}^{k-1},z^m l\overline{z}^{l-1}\rangle.
所以
(T^h_{z^m})^* \overline{z}^k=\frac{k}{m+k}\overline{z}^{m+k}.
于是
(T^h_{z^m})^* h=\sum\limits_{k=1}^{m-1}a_k\frac{k}{m-k}\overline{z}^{m-k}+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \frac{k}{m+k}\overline{z}^{m+k}=0.
这说明h=0且\mbox{dim}(\mbox{ker}(T^h_{z^m})^*)=1.
同理可得\mbox{dim}(\mbox{ker}T^h_{z^m})=1.
应用上述结论可得对m\geq 0有Ind T^h_{z^m}=0,其中Ind T^h_{z^m}表示T^h_{z^m}
的Fredholm指标,同理对m> 0,有Ind T^h_{\overline{z}^m}=0.
为证明下面结论,这里引入无零点连续函数u(z)的绕数,其定义为
\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\frac{[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}}{2\pi},
这里的[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}表示当自变量在
{\Bbb T}=\partial{\Bbb D}中取遍一周时,辐角arg u(t)的全增量.
定理 3.2
设u\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log},
对任意z\in \mathbb{T}满足u(z)\neq 0,则
\mbox{Ind} T^h_{u}=0.
证
易知存在函数v\in C^{2}(\overline{{\Bbb D}})
在{\Bbb T}上无零点且满足
\mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{v}\mbox{ }\mbox{ }
\mbox{和}\mbox{ }\mbox{ }\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{
}v|_{{\Bbb T}}=:k\geq 0.
对s\in [0,1],定义
F_{s}(t)=t^{k}\exp (s\log g(t)) \mbox{ }\mbox{ }\mbox{ }(t\in {\Bbb T}),
其中g(t)=t^{-k}v(t). 因v\in C^{2}({\Bbb T}),wind v|_{{\Bbb T}}=k,
且F_{s}是C^{2}({\Bbb T})中的同伦映射,在
{\Bbb T}上无零点,故可以延拓F_{s}:{\Bbb T}\rightarrow {\Bbb C}为
C^{1}(\overline{{\Bbb D}})中映射. 于是对任意s\in [0,1],T^h_{F_{s}}为Fredholm算子,
又由
Fredholm指标的连续性得
\mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{F_{0}}=\mbox{Ind}\mbox{ }T^h_{F_{1}}=\mbox{Ind}\mbox{ }T^h_{v}=\mbox{Ind}\mbox{ }T^h_{u}.
当k\geq 0,不难得到
0=\mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{u}.
当k<0,同样讨论可知
\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{
}\overline{z}^{|k|}|_{{\Bbb T}}=:k<0.
于是,
\mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{\overline{z}^{|k|}}=0.