1 引言
令$\mathbb{C}$为复平面,$\mathbb{D}$表示$\mathbb{C}$中单位圆盘,$\mathbb{T}$为$\mathbb{D}$的边界.
${\rm d}A(z)=\frac{1}{\pi}{\rm d}x{\rm d}y$为$\mathbb{D}$上正规化Lebesgue测度. 对$1\leq p<\infty$,定义
$$
L^{p,1}=
\bigg\{f\bigg| \int_{{\Bbb D}}\bigg(\bigg|\frac{\partial f}{\partial z}\bigg|^p+
\bigg|\frac{\partial f}{\partial \overline{z}}\bigg|^p\bigg){\rm d}A(z)<\infty\bigg\}.
$$
易知${\cal L}^{p,1}=\frac{L^{p,1}}{{\Bbb C}}$为Banach空间,其上范数为
$$
\|f\|_{L^{p,1}}=\bigg(\int_{{\Bbb D}}\bigg(\bigg|\frac{\partial f}{\partial z}\bigg|^p+
\bigg|\frac{\partial f}{\partial \overline{z}}\bigg|^p\bigg){\rm d}A(z)\bigg)^{1/p}.
$$
调和Dirichlet空间${\cal D}^p_h\ (1\leq p<\infty)$是由${\cal L}^{p,1}$中
全体调和函数所成的闭子空间. $\mathbb{D}$上有界调和函数全体所成空间记为
$h^{\infty}$. 令$P_h$是从${\cal L}^{p,1}$到${\cal D}^p_h$上投影,
则$P_h$可以按如下方式表示为积分算子
$\begin{array}{l}
{P_h}(f)(w) = {\langle f,{K^h}(z,w)\rangle _1} = \langle \frac{{\partial f}}{{\partial z}},\frac{{\partial K_w^h}}{{\partial z}}\rangle + \langle \frac{{\partial f}}{{\partial \bar z}},\frac{{\partial K_w^h}}{{\partial \bar z}}\rangle \\
= \int_D ( \frac{{\partial f}}{{\partial z}}\overline {\frac{{\partial K_w^h}}{{\partial z}}} + \frac{{\partial f}}{{\partial \bar z}}\overline {\frac{{\partial K_w^h}}{{\partial \bar z}}} ){\rm{d}}A(z),
\end{array}$
其中$K^h_w(z)=K^h(z,w)$是${\cal D}^p_h$的再生核. 直接计算得
$$
K^h(z,w)=-\ln(1-z\overline{w})-\ln(1-\overline{z}w).
$$
若$\varphi\in L^{p,1}(\mathbb{D},{\rm d}A)$,对$z,\overline{z}$的多项式$f(z,\overline{z})$,
${\cal D}_h^p$上以$\varphi$为符号的Toeplitz算子,小Hankel算子与Hankel算子分别稠密定义为
$$
T^h_{\varphi}f=P_h(\varphi f);\quad\Gamma^h_{\varphi}f=P_h(\varphi U f);
\quad H^h_{\varphi}f=(I-P_h)(\varphi f),
$$
其中$(Uf)(z)=f(\overline{z})$是${\cal D}_h^p$上的酉算子.
Hilbert函数空间上Toeplitz算子与Hankel算子的有界性,紧性,
Fredholm指标已有许多算子论专家进行了深入广泛地研究,特别对Hardy空间$H^2$,
Bergman空间$L^2_a$与Dirichlet空间${\cal D}^2$情形得到了丰富而深刻的结果.
对$1< p<\infty$,$H^p$,$L^p_a$与${\cal D}^p$上Toeplitz算子与
Hankel算子也有了很多有趣的结果,参见文献[1, 2].
Guo与Zheng在文献[3]中讨论了调和Bergman空间$L^2_h$上Toeplitz算子的性质,
得到了一些与解析Bergman空间不同的有趣结论. 但对$p=1$的极端情形却很少有相关成果,
参见文献[4, 5]. 本文讨论调和Dirichlet空间${\cal D}^1_h$上Toeplitz算子,
小Hankel算子与Hankel算子的相关性质.
易知${\cal D}^{p}_h\ (1< p<\infty)$上的调和Dirichlet投影是有界的.
于是,${\cal D}^p_h\ (1< p<\infty)$上符号在
$$
L^{\infty,1}=\bigg\{\varphi\bigg| \varphi,\frac{\partial \varphi}{\partial z},\frac{\partial \varphi}
{\partial \overline{z}}\in L^{\infty}\bigg\}
$$
中的Toeplitz算子,小Hankel算子与Hankel算子是有界的. 然而众所周知,调和Bergman空间
$L_h^1$上的Bergman投影是无界的,同样由$L^{1,1}$到${\cal D}^1_h$的调和Dirichlet投
影也
是无界的. 所以需要对${\cal D}^1_h$上的Toeplitz算子,小Hankel算子与Hankel算子有
界性进行更加深入地讨论.
Zhu第一个在文献[6]中研究了$L^1_a$上的Bergman投影,找出了一大类可以诱导$L^1_a$上
的有界Toeplitz算子的有界函数,他的结果为研究Dirichlet空间${\cal D}^1$上Toeplitz
的有界性给出很多好的思路.
Bergman空间$L^2_a$与Dirichlet空间${\cal D}^2$上Toeplitz算子的Fredholm性质已被广泛研究,
并得到了很多有意思的结果,参见文献[7, 8, 9].
Taskinen与 Virtanen讨论了Bergman空间$L^1_a$上Toeplitz算子的Fredholm性质,
计算了Fredholm指标,参见文献[5]. 对调和Dirichlet空间${\cal D}^1_h$
上Toeplitz算子的Fredholm性质至今没有任何相关结果,是全新的领域.
后文将对
$$
C^1(\overline{\mathbb{D}})=\bigg\{\varphi\bigg|\varphi,\frac{\partial \varphi}{\partial z},\frac{\partial \varphi}
{\partial \overline{z}}\in C(\overline{\mathbb{D}})\bigg\}
$$
中某些函数诱导的Toeplitz算子建立Fredholm理论,这里的$C^1(\overline{\mathbb{D}})$是以
$$\|\varphi\|_*=\max\bigg\{\|\varphi\|_{\infty},
\bigg\|\frac{\partial \varphi}{\partial z}\bigg\|_{\infty},
\bigg\|\frac{\partial \varphi}{\partial \overline{z}} \bigg\|_{\infty}\bigg\}
$$
为范数的Banach空间.
Dirichlet空间${\cal D}^2$上Toeplitz算子,小Hankel算子与Hankel算子的紧性相关结果参见
文献[9, 13]. 下文将讨论调和Dirichlet空间${\cal D}^1_h$上这些算子的紧性,
给出它们为紧算子的充分条件.
后面证明中将会用到文献[6]中关于对数有界均值震荡(BMO$_{\partial \log }$)函数的一些估计.
2 Toeplitz算子,小Hankel算子与Hankel算子的有界性与紧性
首先回顾一下文献[14]中得到的Bergman度量下有界均值震荡(BMO)的一些结论.
令$\rho(z,w)=|\frac{z-w}{1-\overline{z}w}|$,其中$z,w\in \mathbb{D}$,
则Bergman度量$\beta(z,w)$定义为
$\beta (z,w) = \frac{1}{2}\log \frac{{1 + \rho (z,w)}}{{1-\rho (z,w)}},\quad z,w \in \mathbb{D}.$
Bergman度量是M$\mathbb{D}dot{\mbox{o}}$bius不变的,即对任意$\phi\in $Aut$(\mathbb{D})$与$z,w\in \mathbb{D}$有
$\beta (\phi (z),\phi (w)) = \beta (z,w).$
对任意$z\in \mathbb{D}$与$r>0$,记
$D(z,r) = \{ w \in \mathbb{D}|\quad \beta (z,w) < r\} $
是以$z$为心,$r$为半径的Bergman圆盘. 众所周知$D(z,r)$也是欧式圆盘,其圆心和半径分别为
$
C=\frac{1-s^2}{1-s^2|z|^2}z,\quad R=\frac{1-|z|^2}{1-s^2|z|^2}s,
$
这里的$s=\mbox{tanh}r\in (0,1)$.
若$\varphi\in L^1$满足对任意$z\in \mathbb{D}$有
${\rm{M}}{{\rm{O}}_r}(\varphi )(z) = {\left( {\widehat {|\varphi |_r^2}(z)-|{{\hat \varphi }_r}(z){|^2}} \right)^{1/2}} < M < \infty ,$
其中$\widehat{\varphi}_r(z)=\frac{1}{|D(z,r)|}\int_{D(z,r)}\varphi(w){\rm d}A(w)$,
则这些函数组成空间被称为有界均值震荡函数空间,记为BMO$_{\partial }$.
事实上,$\mbox{MO}_r(\varphi)$与$r$无关,对任意$r>0$,
$
\|\varphi\|_{{\rm BMO}_{\partial }}:=\sup\limits_{z\in\mathbb{D}}\mbox{MO}_r(\varphi)(z)
\mbox{ }\mbox{等价于}\mbox{ }
\sup _{z\in\mathbb{D}}\mbox{MO}(\varphi)(z)=({\widetilde{|\varphi|^2}(z)-
|\widetilde{\varphi}(z)|^2})^{1/2},
$
其中$\widetilde{\varphi}$是Berezin变换.
消失均值震荡空间 VMO$_{\partial}$是BMO$_{\partial }$的闭子空间,由所有满足条件
$
\lim_{|z|\rightarrow 1^-}\mbox{MO}_r(\varphi)(z)=0
$
的函数构成,注意这里的极限过程与$r$无关.
下文将使用对数加权有界均值震荡空间BMO$_{\partial \log }$和
消失均值震荡空间VMO$_{\partial \log }$,它们的范数定义为
$$
\|\varphi\|_{{\rm BMO}_{\partial \log}}=\sup _{z\in \mathbb{D}}
\log \frac{1}{1-|z|^2}\mbox{MO}_r(f)(z).
$$
BMO$_{\partial \log }$与VMO$_{\partial \log }$在调和Bergman投影下的像
空间分别为对数加权调和Bloch空间${\cal LB}^h$与对数加权小调和Bloch空间${\cal LB}^h_0$.
$\mathbb{D}$上的调和函数$f$属于调和Bloch空间${\cal B}^h$当且仅当
$$
\sup _{z\in\mathbb{D}}(1-|z|^2)\bigg(\bigg|\frac{\partial f}{\partial z}(z)\bigg|+\bigg|\frac{\partial f
}{\partial \overline{z}}(z)\bigg|\bigg)<\infty;
$$
$f$ 属于小调和Bloch空间$ {\cal B}^h_0$当且仅当
$$
|z|\rightarrow 1^-\mbox{ 时,}\ (1-|z|^2)\bigg(\frac{\partial f}{\partial z}(z)+\frac{\partial f}
{\partial \overline{z}}(z)\bigg)\rightarrow 0.
$$
若在上面两式乘上因子$-\log (1-|z|^2)$,则可得到${\cal LB}^h$与${\cal LB}_0^h$的定义.
下面考虑Toeplitz算子,小Hankel算子与Hankel算子的有界性.
定理 2.1 若$\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log }$,
其中$\epsilon$为任意正数,
Toeplitz算子$T^h_{\varphi}$与Hankel算子$H^h_{\varphi}$在调和
Dirichlet空间${\cal D}^1_h$上有界,即存在常数$C,C_1$使得
${\left\| {T_\varphi ^h} \right\|_{L(D_h^1,D_h^1)}} \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_\partial }}}),$
${\left\| {H_\varphi ^h} \right\|_{L(D_h^1,{L^{1,1}})}} \le {C_1}({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_\partial }}}),$
证
由定义知对任意$f\in {\cal D}^1_h$,
$\begin{array}{l}
{\left\| {T_\varphi ^hf} \right\|_{{L^{1,1}}}} = \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z) + \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial z}}} f\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\
+ \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial \bar z}}\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z) + \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial \bar z}}} f\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\
\le \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) + \int_{\mathbb{D}} | \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial z}}} f\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w)\\
+ \int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial \bar z}}\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) + \int_{\mathbb{D}} | \int_{\mathbb{D}} {\frac{{\partial \varphi }}{{\partial \bar z}}} f\frac{1}{{{{(1-z\bar w)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w).
\end{array}$
因$L^{2+\epsilon,1}\hookrightarrow L^{\infty}$连续,故
$\begin{array}{l}
\int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial f}}{{\partial z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) \le C({\left\| \varphi \right\|_\infty } + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| {\frac{{\partial f}}{{\partial z}}} \right\|_{{L^1}}}\\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| f \right\|_{{L^{1,1}}}},
\end{array}$
上面的第一个不等式来自文献[5,定理6]. 同理有
$\int_{\mathbb{D}} | \int_{\mathbb{D}} \varphi \frac{{\partial {\rm{ }}f}}{{\partial \bar z}}\frac{1}{{{{(1-\bar zw)}^2}}}{\rm{d}}A(z)|{\rm{d}}A(w) \le C({\left\| \varphi \right\|_{{L^{2 + \varepsilon ,1}}}} + {\left\| \varphi \right\|_{{\rm{BM}}{{\rm{O}}_{\partial \log }}}}){\left\| f \right\|_{{L^{1,1}}}}.$
因$L^{1,1}\hookrightarrow L^{2}$为连续,于是
$\frac{\partial\varphi}{\partial z}f\in L^{\frac{2(2+\epsilon)}{4+\epsilon}}$. 因此
$
\int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial z} f
\frac{1}{(1-\overline{z}w)^2} {\rm d}A(z)\bigg| {\rm d}A(w)\\
\leq C\bigg(\int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial z}
f \frac{1}{(1-\overline{z}w)^2} {\rm d}A(z)\bigg|^{\frac{2(2+\epsilon)}{4+\epsilon}}
{\rm d}A(w)\bigg)^{\frac{4+\epsilon}{2(2+\epsilon)}}\\
\leq C\bigg\|\frac{\partial\varphi}{\partial z}f\bigg\|_{L^{\frac{2(2+\epsilon)}{4+\epsilon}}}\leq C \|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2}}\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{1,1}},
$
且
$$
\int_{\mathbb{D}}\bigg|\int_{\mathbb{D}}\frac{\partial\varphi}{\partial \overline{z}} f
\frac{1}{(1-z\overline{w})^2} {\rm d}A(z)\bigg| {\rm d}A(w)
\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{1,1}}.
$$
所以
$$\|T^h_{\varphi}f\|_{L^{1,1}}\leq C(\|\varphi\|_{L^{2+\epsilon,1}}+\|\varphi\|_{{\rm BMO}_{\partial \log}})\|f\|_{L^{1,1}}.
$$
$H^h_{\varphi}$的有界性可由不等式
$
\|\varphi f\|_{L^{1,1}}
=\int_{\mathbb{D}}\bigg(\bigg|\frac{\partial \varphi}{\partial z} f+\varphi \frac{\partial f}{\partial z}\bigg|+
\bigg|\frac{\partial \varphi}{\partial \overline{z}} f+\varphi\frac{\partial f}{\partial \overline{z}}\bigg|\bigg){\rm d}A(z)\\
\leq \int_{\mathbb{D}}\bigg(\bigg|\frac{\partial \varphi}{\partial z} f\bigg|+\bigg|\varphi
\frac{\partial f}{\partial z}\bigg|+\bigg|\frac{\partial \varphi}{\partial \overline{z}} f\bigg|+
\bigg |\varphi\frac{\partial f}{\partial \overline{z}}\bigg|\bigg){\rm d}A(z)\\
\leq C_1(\|\varphi\|_{L^{2+\epsilon,1}}+\|\varphi\|_{{\rm BMO}_{\partial \log }})\|f\|_{L^{1,1}}
$
与
$$
\|H^h_{\varphi}f\|_{L^{1,1}}\leq \|T^h_{\varphi}f\|_{L^{1,1}}+\|\varphi f\|_{L^{1,1}}
$$
推得.
引理 2.1 算子$Uf(z)=f(\overline{z})$是${\cal D}^1_h$上的酉算子,其中$f\in {\cal D}^1_h$.
定理 2.2
若$\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log }$,其中$\epsilon$为任意正数,小Hankel算子$\Gamma^h_{\varphi}=T^h_{\varphi}U$在${\cal D}^1_h$上有界.
证
应用定理2.1与引理2.1可得.
定理 2.3
若$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$,其中$\epsilon$为任意正数,则$T^h_{\varphi}$在${\cal D}^{1}_h$上为紧算子当且仅当
$\varphi|_{\mathbb{T}}=0$.
证
若$\varphi|_{\mathbb{T}}= 0$,
对任意${\cal D}^{1}_h$中满足$\|f_{k}\|_{L^{1,1}}=1$且在${\cal D}^{1}_h$
中$f_{k}$弱收敛到$ 0$的序列$\{f_{k}\}$有
$
\|T_{\varphi}f_{k}\|_{L^{1,1}}\\
=\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi f_{k})(w)}{\partial w}\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}
\bigg|\frac{\partial P_h(\varphi f_{k})(w)}{\partial \overline{w}}\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}
{\partial z}\overline{\frac{\partial^{2} K_{w}(z)}{\partial z
\partial \overline{w}}}{\rm d}A(z)\bigg|{\rm d}A(w)+\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial \overline{z}}
\overline{\frac{\partial^{2} K_{w}(z)}{\partial z \partial \overline{w}}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}
{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial
\overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)+
\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\\
\leq \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial
\overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
$
因$L^{1,1}\hookrightarrow L^{2-\frac{\epsilon}{2}}$是紧的,故有$\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$. 于是
$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}f_{k}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq
C\bigg\|\frac{\partial \varphi}{\partial z}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2}
{8+\epsilon}}}
\leq C \bigg\|\frac{\partial \varphi}{\partial z}\bigg\|_{L^{2+\epsilon}}
\|f_k\|_{L^{2-\frac{\epsilon}{2}}}
=C\|\varphi\|_{L^{2+\epsilon,1}}
\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \leq
C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
$$
注意到
$$
\int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)
= P^b\Big(\varphi \frac{\partial f_{k}}{\partial z}\Big)(w)=(\mathbb{D}dot{T}_{\varphi}f')(w),
$$
其中$P^b$是解析Bergman投影,$\mathbb{D}dot{T}_{\varphi}$为Bergman空间$L_{a}^{1}$上以
$\varphi$为符号的Toeplitz算子. 因$L^{2+\epsilon,1}(\overline{\mathbb{D}})\hookrightarrow
C(\overline{\mathbb{D}})$连续,
$\varphi|_{\mathbb{T}}= 0$且$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log}$,
故$\mathbb{D}dot{T}_{\varphi}$为紧算子,参见文献[5]. 很明显$\frac{\partial f_{k}}{\partial z}$
在$L_{a}^{1}$中弱收敛到0,因此有
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial z}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
=\int_{{\Bbb D}}\bigg|\mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg|{\rm d}A(w)
=\bigg\|\mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg\|_{L^1}
\rightarrow 0.
$$
同理知
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\rightarrow 0.
$$
于是,$\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$. 这说明 $T^h_{\varphi}$为紧算子.
反过来,设$T^h_{\varphi}$在${\cal D}^{1}_h$上紧. 下证
$\varphi|_{\mathbb{T}}= 0$. 若$\{f_{k}\}$为$L^{1}_{a} $中满足
$\|f_{k}\|_{L^1}=1$且$f_{k} $在$L^{1}_{a} $中弱收敛到0的序列,则$F_{k}(z)=\int f_{k}(z){\rm d}z$满足
$\|F_{k}\|_{L^{1,1}}=1$,$F_{k} $在${\cal D}^{1}_h$弱收敛到0且$\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$. 由${\cal D}^{1}_h$上Toeplitz算子的定义知
$
\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\varphi f_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|{\rm d}A(w)
\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\varphi f_{k}}
{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{F_{k}}
{(1-\overline{z}w)^{2}}{\rm d}A(z)+\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\\
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{F_{k}}
{(1-\overline{z}w)^{2}}{\rm d}A(z)-\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\\
\leq \|T^h_{\varphi}F_k\|_{L^{1,1}}+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}
\frac{\partial \varphi}{\partial z}\frac{F_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial
\varphi}{\partial \overline{z}}\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
$
由$T^h_{\varphi}$的紧性得
$$
\|T^h_{\varphi}F_k\|_{L^{1,1}}\rightarrow 0.
$$
因$F_{k} $在${\cal D}^{1}_h$弱收敛到0,故$\|F_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$.
因此
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{F_{k}}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
$$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{F_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
$$
于是,
$\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}\rightarrow 0$,即 $\mathbb{D}dot{T}_{\varphi}$是紧算子.
故$\varphi|_{\mathbb{T}}=0$,参见文献[5].
定理 2.4
若$\varphi \in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$,其中$\epsilon$为任意正数,则$H^h_{\varphi}:{\cal D}_h^{1}\rightarrow L^{1,1}$是紧算子.
证
由定义知对任意${\cal D}^{1}_h$中满足$\|f_{k}\|_{L^{1,1}}=1$且在${\cal D}^{1}_h$中$f_{k}$弱收敛到$ 0$的序列$\{f_{k}\}$有
$
\|H_{\varphi}f_{k}\|_{L^{1,1}}
\\
=\int_{{\Bbb D}}\bigg(\bigg|\frac{\partial \varphi}{\partial w}f_{k}+\varphi
\frac{\partial f_{k} }{\partial w}
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{f_{k}}
{(1-w\overline{z})^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}
\frac{1}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|\\
+\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}+\varphi
\frac{\partial f_{k} }{\partial \overline{w}}
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}\frac{f_{k}}
{(1-z\overline{w})^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w)\\
\leq \int_{{\Bbb D}}\bigg(\bigg|\frac{\partial \varphi}{\partial w}f_{k}\bigg|+
\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{f_{k}}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|
+\bigg|\varphi \frac{\partial f_{k} }
{\partial w}-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}
\frac{1}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|\\
+\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}\bigg|
+\bigg|\int_{{\Bbb D}}
\frac{\partial \varphi}{\partial \overline{z}}
\frac{f_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|+
\bigg|\varphi \frac{\partial f_{k} }
{\partial \overline{w}}-\int_{{\Bbb D}}\varphi
\frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w).
$
因$\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$,故有
$$
\int_{{\Bbb D}}\bigg|\frac{\partial \varphi}{\partial w}f_{k}\bigg|{\rm d}A(w)
\leq
\bigg\|\frac{\partial \varphi}{\partial w}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2}
{8+\epsilon}}}\leq
\bigg\|\frac{\partial \varphi}{\partial w}\bigg\|_{L^{2+\epsilon}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}=\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
$$
且
$$
\int_{{\Bbb D}}\bigg|\frac{\partial \varphi}{\partial \overline{w}}f_{k}\bigg|{\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0;
$$
还有
$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{f_{k}}{(1-w\overline{z})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq
C\bigg \|\frac{\partial \varphi}{\partial w}f_{k}\bigg\|_{L^{\frac{8+2\epsilon-\epsilon^2}
{8+\epsilon}}}
\leq C\bigg \|\frac{\partial \varphi}{\partial w}\bigg\|_{L^{2+\epsilon}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}= C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{f_{k}}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w) \leq C\|\varphi\|_{L^{2+\epsilon,1}}\|f_k\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
$$
注意到
$$\int_{{\Bbb D}}\bigg |\varphi \frac{\partial f_{k} }{\partial w}-
\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial z}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|
{\rm d}A(w)=\bigg\|\mathbb{D}dot{H}_{\varphi}
\frac{\partial f_{k} }{\partial z}\bigg\|_{L^1},
$$
其中$\mathbb{D}dot{H}_{\varphi}$
是$L^1_a\rightarrow L^1$的Hankel算子.
因对任意$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$,
$\mathbb{D}dot{H}_{\varphi}$是紧算子,且$\frac{\partial f_{k}}{\partial z}$在$L_{a}^{1}$中弱收敛到0,
故
$$\int_{{\Bbb D}}
\bigg|\varphi \frac{\partial f_{k} }{\partial w}-\int_{{\Bbb D}}\varphi
\frac{\partial f_{k} }{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|
{\rm d}A(w)
=\int_{{\Bbb D}}\bigg|\mathbb{D}dot{H}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg|{\rm d}A(w)\rightarrow 0.
$$
同理可得
$$
\int_{{\Bbb D}} \bigg|\varphi \frac{\partial f_{k} }{\partial \overline{w}}
-\int_{{\Bbb D}}\varphi \frac{\partial f_{k} }{\partial \overline{z}}
\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\rightarrow 0.
$$
因此$\|H^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$. 这说明$H^h_{\varphi}$为紧算子.
下面得到的调和Dirichlet空间上小Hankel算子的紧性充分条件与解析Dirichlet空间情形有很大区别.
定理 2.5
若$\varphi\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log}$,
其中$\epsilon$为任意正数,则$\Gamma^h_{\varphi}$是${\cal D}^{1}_h$
上紧算子当且仅当$\varphi|_{\mathbb{T}}=0$.
证
应用定理2.3与引理2.1.
命题 2.1
若$\varphi\in L^{2+\epsilon,1}\cap {\rm BMO}_{\partial \log}$且
$\psi\in L^{2+\epsilon,1}\cap \mbox{VMO}_{\partial \log}$,其中$\epsilon$为任意正数,
$T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi}$为紧算子.
证
由定义知对任意${\cal D}^{1}_h$中满足$\|f_{k}\|_{L^{1,1}}=1$且在
${\cal D}^{1}_h$中$f_{k}$弱收敛到$ 0$的序列$\{f_{k}\}$有
$
\|(T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi})f_{k}\|_{L^{1,1}}\\
=\int_{{\Bbb D}}\bigg(\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)
+\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}{\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|\\
+\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)
-\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}\frac{(\psi f_{k})}
{(1-z\overline{w})^{2}}{\rm d}A(z)
\\
+\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}{\partial \overline{z}}
\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|\bigg){\rm d}A(w)\\
\leq \int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{(\psi f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}
{\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
+\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}
{\partial \overline{z}}\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
$
因$T^h_{\psi}$在$ {\cal D}_h^{1} $上有界,故$\|f_{k}\|_{L^{2-\frac{\epsilon}{2}} }\rightarrow 0$且$\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$,于是有
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(T^h_{\psi}f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
$$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}\frac{(T^h_{\psi}f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq C\|\varphi\|_{L^{2+\epsilon,1}}\|T^h_{\psi}f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0;
$$
还有
$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
\frac{(\psi f_{k})}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{\infty}}
\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}
\leq C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{2+\epsilon}}
\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial \overline{z}}
\frac{(\psi f_{k})}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi\|_{L^{2+\epsilon}}\|\psi\|_{L^{2+\epsilon}}
\|f_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
$$
注意到$H^h_{\psi}$为紧且在${\cal D}^{1}_h$中$f_{k}$弱收敛到$ 0$,
故知$\|H^h_{\psi}f_{k}\|_{L^{1,1}}\rightarrow 0$,所以
$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H^h_{\psi}f_{k})}
{\partial z}\frac{\varphi}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq C\|\varphi\|_{L^{\infty}}\bigg\|\frac{\partial(-H^h_{\psi}f_{k})}
{\partial z}\bigg\|_{L^{1,1}} \leq
C \|\varphi\|_{L^{2+\epsilon,1}}\|H^h_{\psi }f_{k}\|_{L^{1,1}}\rightarrow 0.
$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial(-H_{\psi}f_{k})}
{\partial \overline{z}}\frac{\varphi}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
\leq C \|\varphi\|_{L^{2+\epsilon,1}}\|H^h_{\psi }f_{k}\|_{L^{1,1}}\rightarrow 0.
$$
于是$\|(T^h_{\varphi}T^h_{\psi}-T^h_{\varphi \psi})f_{k}\|_{L^{1,1}}\rightarrow 0$,
即$T^h_{\varphi}T^h_{\psi}-T^h_{\varphi\psi}$为紧算子.
${\cal D}^1_h$的对偶空间${\cal B}^{h,1}$定义为
$$
{\cal B}^{h,1} =\frac{\{f|f\in h,\mbox{ }\frac{\partial f}{\partial z},\frac{\partial f}
{\partial \overline{z}}\in {\cal B}\}}{ \mathbb{C} },
$$
其中$h$表示$\mathbb{D}$上调和函数所成空间. 很明显$f\in {\cal B}^{h,1}$的范数为
$$ \|f\|_{{\cal B}^{h,1}}=\bigg\|\frac{\partial f}{\partial z}\bigg\|_{{\cal B}}+
\bigg\|\overline{\frac{\partial f}{\partial \overline{z}}}\bigg\|_{{\cal B}}.
$$
命题 2.2
若$\varphi\in L^{\infty,1}\cap {\rm BMO}_{\partial \log}$,
则$(T^h_{\varphi})^{*}-T^h_{\overline{\varphi}}$为${\cal B}^{h,1}$上紧算子.
证 由定义知对${\cal B}^{h,1}$中满足$\|g_{k}\|_{{\cal B}^{h,1}}=1$且$g_{k}$在
${\cal B}^{h,1}$中弱*收敛到0的序列$g_{k}$有
$
\|((T^h_{\varphi})^{*}-T^h_{\overline{\varphi}})g_{k}\|_{{\cal B}^{h,1}}\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg| \frac{\partial^2 \langle (T^{*}_{\varphi}
-T_{\overline{\varphi}})g_{k},K_{w}(z)\rangle_{1}}{\partial ^2 w}\bigg|+
\bigg| \frac{\partial^2 \langle (T^{*}_{\varphi}-T_{\overline{\varphi}})
g_{k},K_{w}(z)\rangle_{1}}{\partial^2 \overline{w}}\bigg|\bigg)\\
\leq \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial z},
\frac{\partial \varphi}{\partial z}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|
+\sup_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial \overline{\varphi}}{\partial z}g_k,
\frac{z}{(1-z\overline{w})^3}\bigg\rangle\bigg|\\
+\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial \overline{z}}\frac{\overline{z}^2}{(1-\overline{z}w)^2}
\bigg\rangle\bigg|+\sup_{w\in\mathbb{D}}(1-|w|^2)
\bigg|\bigg\langle \frac{\partial \overline{\varphi}}
{\partial \overline{z}}g_k,\frac{\overline{z}}{(1-\overline{z}w)^3}\bigg\rangle\bigg|.
$
因$\frac{z^2(1-|w|^2)}{(1-z\overline{w})^2},\frac{z^2(1-|w|^2)}
{(1-\overline{z}w)^2}\in L^2$且满足$\|\frac{z^2(1-|w|^2)}{(1-z\overline{w})^2}\|_{L^2}\leq 1$与$\|\frac{z^2(1-|w|^2)}{(1-\overline{z}w)^3}\|_{L^2}\leq 1$,故
$$
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial z},\frac{\partial \varphi}
{\partial z}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|\rightarrow 0,\quad
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg\langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial \overline{z}}\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|\rightarrow 0.
$$
注意到$g_{k}$在${\cal B}^{h,1}$中弱*收敛到0且$\|g_{k}\|_{{\cal B}^{h,1}}=1$,于是存在充分小的$\delta>0$,对任意$1-\delta < r < 1$,在$\mathbb{D}-\overline{\mathbb{D}_r}$中有$|\frac{\partial g_k}{\partial z}(z)|\leq C(-\log(1-|z|^2)),|\frac{\partial g_k}{\partial \overline{z}}(z)|\leq C(-\log(1-|z|^2))$,且在$\overline{\mathbb{D}_r}=\{z|\mbox{ }|z|\leq 1-\delta\}$一致地有$\frac{\partial g_k}{\partial z},\frac{\partial g_k}{\partial \overline{z}}\rightarrow 0$.
因此,对任意$\epsilon>0$,存在$K$,当$k>K$,对任意$1-\delta < r < 1$,其中充分小$\delta>0$,有
$
\sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|<\frac{\epsilon}{2};\\
\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\\
\leq C \sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)(-\log(1-|w|^2))<\frac{\epsilon}{2}.
$
于是
$
\|g_k\|_{{\cal B}^h}
\leq \sup\limits_{z\in\overline{\mathbb{D}_r}}(1-|w|^2)
\bigg(\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|+\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\bigg)\\
+\sup\limits_{z\in\mathbb{D}-\overline{\mathbb{D}_r}}(1-|w|^2)\bigg(\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|
+\bigg|\frac{\partial g_k}{\partial \overline{w}}(w)\bigg|\bigg)\rightarrow 0.
$
又注意到$\frac{\partial \overline{\varphi}}{\partial z}\in L^{\infty}$且
$\frac{(1-|w|^2)z}{(1-z\overline{w})^3}\in L^1$,故
$
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg(\bigg|\bigg\langle \frac{\partial \overline{\varphi}}{\partial z}g_k,
\frac{z}{(1-z\overline{w})^3}\bigg\rangle\bigg|+\bigg|\bigg\langle \frac{\partial \overline{\varphi}}
{\partial \overline{z}}g_k,\frac{\overline{z}}{(1-\overline{z}w)^3}\bigg\rangle\bigg|\bigg)\\
\leq C\|g_k\|_{{\cal B}^h}\bigg(\bigg\|\frac{\partial \overline{\varphi}}{\partial z}\bigg\|_{L^{\infty}}
+\bigg\|\frac{\partial \overline{\varphi}}{\partial \overline{z}}\bigg\|_{L^{\infty}}\bigg)
\bigg\|
\frac{(1-|w|^2)z}{(1-z\overline{w})^2}\bigg\|_{L^1}\rightarrow 0.
$
因此,
$$
\|(T^{*}_{\varphi}-T_{\overline{\varphi}})g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0,
$$
即
$T_{\varphi}^{*}-T_{\overline{\varphi}}$是紧算子.
3 Fredholm性质与指标
Banach空间$X$上有界算子$A$为Fredholm算子当且仅当$A$的核与余核是有限维; Fredholm指标定义如下
$$
\mbox{Ind}\mbox{ }A=\mbox{dim}\mbox{ }\mbox{ker}\mbox{ }A-\mbox{dim}\mbox{ }\mbox{coker}\mbox{ }A.
$$
下面定理中得到了${\cal D}^1_h$上Toeplitz算子$T^h_{\varphi}$为Fredholm算子的充要条件.
定理 3.1
设$\varphi \in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log }$,
则$T_{\varphi}$是Fredholm算子当且仅当对任意$z\in \mathbb{T}$,$\varphi(z)\neq 0$.
证 不失一般性,设$0\in \varphi(\mathbb{T})$,
则$\mathbb{D}dot{T}_{\varphi}$不是$L^{1}_{a}({\Bbb D})$上Fredholm算子,
故对$\{f_{k}\}\subset L^{1}_{a} $
满足$\|f_{k}\|_{L^1}=1$,且在$L^{1}_{a} $中$f_{k}$弱收敛到0有
$\|\mathbb{D}dot{T}_{\varphi}f_{k}\|_{L^1}\rightarrow 0$,或
对$\{g_{k}\}\subset {\cal B}$,其中${\cal B}$为解析Bloch空间,
满足$\|g_{k}\|_{{\cal B}_h}=1$,$g_{k} $在${\cal B}$中弱$*$收敛到0有
$\|\mathbb{D}dot{T}^{*}_{\varphi}g_{k}\|_{{\cal B}}\rightarrow 0$.
记$F_{k}=\int f_{k}{\rm d}z$,则$\{F_{k}\}\subset {\cal D}^{1}_h $,
$\|F_{k}\|_{L^{1,1}}=1$,且$F_{k}$在${\cal D}^{1}_h $中弱收敛到0. 注意到
$
\|T^h_{u} F_{k}\|_{L^{1,1}}\\
=\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi F_{k})(w)}{\partial w}
\bigg|{\rm d}A(w)+\int_{{\Bbb D}}\bigg|\frac{\partial P_h(\varphi F_{k})(w)}
{\partial \overline{w}}\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi F_{k})}
{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi F_{k})}
{\partial \overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial z}F_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)
+\int_{{\Bbb D}}\varphi f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
\leq \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}
{\partial z}F_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi f_{k}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+ \int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w).
$
因$\|F_{k}\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0$,故
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}F_{k}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0
$$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}F_{k}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi\|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0.
$$
又因
$$\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\varphi f_{k}\frac{1}{(1-\overline{z}w)^{2}}
{\rm d}A(z)\bigg|{\rm d}A(w)=\int_{{\Bbb D}}|P^b(\varphi f_{k})(w)|{\rm d}A(w)
=\int_{{\Bbb D}}|(\mathbb{D}dot{T}_{u}f_{k})(w)|{\rm d}A(w)\rightarrow 0,
$$
其中$P^b$为 $L^1$到$L^1_a$上的投影,$\mathbb{D}dot{T}_{u}$是$L^1_a$上的Toeplitz算子,
则$\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$. 这说明$ T_{\varphi}$不是Fredholm算子.
记$G_{k}=\int g_{k}{\rm d}z$,则有$\{G_{k}\}\subset {\cal B}^{h,1} $.
很明显$f\in {\cal B}^1$满足$\|f\|_{{\cal B}^{h,1}}=\|f'\|_{{\cal B}}$.
故有$\|G_{k}\|_{{\cal B}^{h,1}}=1$,且$G_{k}$在${\cal B}^{h,1} $中弱*收敛到0. 注意
$
\|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^{h,1}}
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle (T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 w}
\bigg|+
\bigg|\frac{\partial^2 \langle(T^h_{\varphi})^{*} G_k,K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 w}\bigg|
+\bigg|\frac{\partial^2 \langle G_k,T^h_{\varphi} K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 w}\bigg|
+\bigg|\frac{\partial^2 \langle G_k,\varphi K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
\leq \sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg| \bigg\langle g_k,\frac{\partial \varphi}{\partial z} \frac{z^2}
{(1-z\overline{w})^2}\bigg\rangle\bigg|+\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg|\frac{d \langle g_k,\varphi \frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|.
$
因$g_k\rightarrow 0$在${\cal B}$中弱*收敛到0,
$\frac{\partial \varphi}{\partial z}\in L^{2+\epsilon}$,
$\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a$且满足
$\|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1$,故
$$
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle g_k,\frac{\partial \varphi}{\partial z}
\frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|
\rightarrow 0.
$$
又因
$$
\|(\mathbb{D}dot{T}_{\varphi})^* g_k\|_{{\cal B}}=
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle g_k,\varphi
\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0,
$$
所以
$$
\|(T^h_{\varphi})^{*} G_{k}\|_{{\cal B}^1}\rightarrow 0.
$$
这说明$ T^h_{\varphi}$不是Fredholm算子.
反过来,若$T^h_{\varphi}$不是Fredholm算子,则
存在序列$\{f_{k}\}\subset {\cal D}^{1}_h$
满足$\|f_{k}\|_{L^{1,1}}=1$,且$f_{k}$在${\cal D}^{1}_h$中弱收敛到0,使得
$\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$,或存在
$\{g_{k}\}\subset {\cal B}^{h,1}$满足$\|g_{k}\|_{{\cal B}^{h,1}}=1$,且$g_{k}$在$ {\cal B}^{h,1}$中弱*收敛到0,使得
$\|(T^{h}_{\varphi})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0$. 注意到$\|\frac{\partial f_{k}}{\partial z}\|_{L^{1}}+\|\frac{\partial f_{k}}{\partial \overline{z}}\|_{L^{1}}=1$,选取恰当子列得$\frac{\partial f_{k}}{\partial z}$在$L^{1}_a({\Bbb D})$中弱收敛到0,但$\|\frac{\partial f_{k}}{\partial z}\|_{L^1}\geq \delta>0$.
又注意到$\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}+\|\overline{\frac{\partial g_{k}}{\partial \overline{z}}}\|_{{\cal B}}=1$,选取恰当子列得$\frac{\partial g_{k}}{\partial z}$在${\cal B}$中弱*收敛到0,但$\|\frac{\partial g_{k}}{\partial z}\|_{{\cal B}}\geq \delta>0$.
若$\|T^h_{\varphi}f_{k}\|_{L^{1,1}}\rightarrow 0$,因
$
\|T^h_{\varphi} f_{k}\|_{L^{1,1}}
=\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)}{\partial w}
\bigg|{\rm d}A(w)+\int_{{\Bbb D}}\bigg|\frac{\partial P_h( \varphi f_{k})(w)}
{\partial \overline{w}}\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}
{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial (\varphi f_{k})}{\partial
\overline{z}}\frac{1}{(1-z\overline{w})^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
=\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial z}
f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial z}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\\
+\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial \varphi}{\partial
\overline{z}}f_{k}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)+
\int_{{\Bbb D}} \varphi \frac{\partial f_{k}}{\partial \overline{z}}
\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)
$
且
$$
\int_{{\Bbb D}}\bigg|\int_{{\Bbb D}}\frac{\partial\varphi}{\partial z}f_{k}\frac{1}
{(1-\overline{z}w)^{2}}{\rm d}A(z)\bigg|{\rm d}A(w)\leq
C\|\varphi \|_{L^{2+\epsilon,1}}\|f\|_{L^{2-\frac{\epsilon}{2}}}\rightarrow 0,
$$
则
$$\bigg\| \mathbb{D}dot{T}_{\varphi}\frac{\partial f_{k}}{\partial z}\bigg\|_{L^{1}}=\int_{{\Bbb D}}
\bigg|\int_{{\Bbb D}}\varphi \frac{\partial f_{k}}{\partial z}\frac{1}{(1-\overline{z}w)^{2}}{\rm d}A(z)
\bigg|{\rm d}A(w)\rightarrow 0.
$$
这说明$ \mathbb{D}dot{T}_{\varphi}$不是Fredholm算子,故 $0\in \varphi|_{\mathbb{T}}$.
若$\|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}}\rightarrow 0$,因
$
\|(T^{h}_{u})^* g_{k}\|_{{\cal B}^{h,1}}
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k,K^h_w(z)\rangle_1}
{\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle (T^{h}_{u})^* g_k,
K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)
\bigg(\bigg|\frac{\partial^2 \langle g_k,T_{\varphi} K^h_w(z)\rangle_1}
{\partial^2 w}\bigg|+\bigg|\frac{\partial^2 \langle g_k,T_{\varphi}
K^h_w(z)\rangle_1}{\partial^2 \overline{w}}\bigg|\bigg)\\
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial z},
\frac{\partial \varphi}{\partial z} K^h_w(z)\rangle}{\partial^2 w}+\frac{d \langle \frac{\partial g_k}{\partial z},
\varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\\
+\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{\partial^2 \langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial \overline{z}} K^h_w(z)\rangle}{\partial^2 \overline{w}}+
\frac{d \langle \frac{\partial g_k}{\partial \overline{z}},\varphi\frac{1}{(1-\overline{z}w)^2}
\rangle}{d \overline{w}}\bigg|.
$
再因$\frac{\partial g_k}{\partial \overline{z}} $在${\cal B}$中弱*收敛到0,
$\frac{\partial \varphi}{\partial z}\in L^{2+\epsilon}$,
$\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\in L^2_a$且
$\|\frac{(1-|w|^2)z^2}{(1-z\overline{w})^2}\|_{L^{2}}\leq 1$,得
$$
\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\bigg \langle \frac{\partial g_k}{\partial \overline{z}},
\frac{\partial \varphi}{\partial z} \frac{z^2}{(1-z\overline{w})^2}\bigg\rangle\bigg|
\rightarrow 0,
$$
所以
$$\bigg\|\mathbb{D}dot{T}^{*}_{\varphi}\frac{\partial g_k}{\partial \overline{z}}\bigg\|_{{\cal B}}
=\sup\limits_{w\in\mathbb{D}}(1-|w|^2)\bigg|\frac{d \langle \frac{\partial g_k}{\partial \overline{z}},
\varphi\frac{1}{(1-z\overline{w})^2} \rangle}{d w}\bigg|\rightarrow 0.
$$
这说明$ \mathbb{D}dot{T}^{*}_{\varphi}$不是Fredholm算子,于是
$0\in \varphi|_{\mathbb{T}}$.
引理3.1 若$m$为正整数,则
$$\mathbb{D}im (\ker T^h_{z^m})=\mathbb{D}im (\ker (T^h_{z^m})^*)=1.
$$
证
首先证明$(T^h_{z^m})^*z^m=0$. 对$l>0$,有
$$
\langle (T^h_{z^m})^*z^m,z^l\rangle_1=\langle z^m,z^m z^l\rangle_1=0,\mbox{ }\mbox{且}\mbox{ }
\langle (T^h_{z^m})^*z^m,\overline{z}^l\rangle_1=\langle z^m,z^m \overline{z}^l\rangle_1=0,
$$
故
$$(T^h_{z^m})^*z^m=0.
$$
于是,记
$$h=\sum\limits_{k=1,k\neq m}^{\infty}a_k z^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k\in \mbox{ker} (T^h_{z^m})^*.
$$
对任意$f\in {\cal D}^1$,有
$$
\langle z^m f,h\rangle_1= \langle f,(T^h_{z^m})^* h\rangle_1=0.
$$
注意到
$$\langle z^m f,h\rangle_1=\bigg\langle z^{m-1}(m f+z f'),
\frac{\partial h}{\partial z}\bigg\rangle,
$$
故
$$h=\sum\limits_{k=1}^{m-1}a_kz^k+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \overline{z}^k.
$$
因对$k< m$与$l>0$,
$$
\langle (T^h_{z^m})^* z^k,z^l\rangle_1=\langle z^k,z^m z^l\rangle_1=0
\mbox{ }
\mbox{ 且}
\mbox{ }
\langle (T^h_{z^m})^* z^k,\overline{z}^l\rangle_1=\langle z^k,z^m\overline{z}^l\rangle_1=\langle k z^{k-1},m z^{m-1}\overline{z}^l\rangle.
$$
故
$$
(T^h_{z^m})^* z^k=\frac{k}{m-k}\overline{z}^{m-k}.
$$
又因对$k>0$与$l>0$,
$$
\langle (T^h_{z^m})^* \overline{z}^k,z^l\rangle_1=0,
\mbox{ }
\mbox{ 且}
\mbox{ }
\langle (T^h_{z^m})^* \overline{z}^k,\overline{z}^l\rangle_1=\langle \overline{z}^k,z^m \overline{z}^l\rangle_1=\langle k\overline{z}^{k-1},z^m l\overline{z}^{l-1}\rangle.
$$
所以
$$
(T^h_{z^m})^* \overline{z}^k=\frac{k}{m+k}\overline{z}^{m+k}.
$$
于是
$$
(T^h_{z^m})^* h=\sum\limits_{k=1}^{m-1}a_k\frac{k}{m-k}\overline{z}^{m-k}+\sum\limits_{k=1}^{\infty}\mathbb{T}ilde{a}_k \frac{k}{m+k}\overline{z}^{m+k}=0.
$$
这说明$h=0$且$\mbox{dim}(\mbox{ker}(T^h_{z^m})^*)=1$.
同理可得$\mbox{dim}(\mbox{ker}T^h_{z^m})=1$.
应用上述结论可得对$m\geq 0$有Ind $T^h_{z^m}=0$,其中Ind $T^h_{z^m}$表示$T^h_{z^m}$
的Fredholm指标,同理对$m> 0$,有Ind $T^h_{\overline{z}^m}=0$.
为证明下面结论,这里引入无零点连续函数$u(z)$的绕数,其定义为
$$
\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\frac{[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}}{2\pi},
$$
这里的$[\mbox{arg}\mbox{ }u]_{{\Bbb \partial {\Bbb D}}}$表示当自变量在
${\Bbb T}=\partial{\Bbb D}$中取遍一周时,辐角arg $u(t)$的全增量.
定理 3.2
设$u\in L^{2+\epsilon,1}(\overline{\mathbb{D}})\cap \mbox{VMO}_{\partial \log}$,
对任意$z\in \mathbb{T}$满足$u(z)\neq 0$,则
$$
\mbox{Ind} T^h_{u}=0.
$$
证
易知存在函数$v\in C^{2}(\overline{{\Bbb D}})$
在${\Bbb T}$上无零点且满足
$$
\mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{v}\mbox{ }\mbox{ }
\mbox{和}\mbox{ }\mbox{ }\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{
}v|_{{\Bbb T}}=:k\geq 0.
$$
对$s\in [0,1]$,定义
$$
F_{s}(t)=t^{k}\exp (s\log g(t)) \mbox{ }\mbox{ }\mbox{ }(t\in {\Bbb T}),
$$
其中$g(t)=t^{-k}v(t)$. 因$v\in C^{2}({\Bbb T})$,wind $v|_{{\Bbb T}}=k$,
且$F_{s}$是$C^{2}({\Bbb T})$中的同伦映射,在
${\Bbb T}$上无零点,故可以延拓$F_{s}:{\Bbb T}\rightarrow {\Bbb C}$为
$C^{1}(\overline{{\Bbb D}})$中映射. 于是对任意$s\in [0,1]$,$T^h_{F_{s}}$为Fredholm算子,
又由
Fredholm指标的连续性得
$$
\mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{F_{0}}=\mbox{Ind}\mbox{ }T^h_{F_{1}}=\mbox{Ind}\mbox{ }T^h_{v}=\mbox{Ind}\mbox{ }T^h_{u}.
$$
当$k\geq 0$,不难得到
$$
0=\mbox{Ind}\mbox{ }T^h_{z^{k}}=\mbox{Ind}\mbox{ }T^h_{u}.
$$
当$k<0$,同样讨论可知
$$
\mbox{wind}\mbox{ }u|_{{\Bbb T}}=\mbox{wind}\mbox{
}\overline{z}^{|k|}|_{{\Bbb T}}=:k<0.
$$
于是,
$$
\mbox{Ind}\mbox{ }T^h_{u}=\mbox{Ind}\mbox{ }T^h_{\overline{z}^{|k|}}=0.
$$