数学物理学报  2015, Vol. 35 Issue (5): 895-909   PDF (332 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
黄春妙
王五生
一类非线性差分不等式中未知函数的估计及其应用
黄春妙, 王五生    
河池学院数学与统计学院 广西宜州 546300
摘要: 该文建立了一类非线性差分不等式.此不等式包含了非线性函数与未知函数的复合函数,是一个具有多重和的差分不等式.利用单调技巧、放大方法、积分中值定理、变量替换技巧、差分和求和技巧,给出了未知函数的上界估计.最后,用所得结果研究了差分方程解的估计.
关键词: Volterra-Fredholm差分不等式     多重和     单调技巧     积分中值定理     估计    
Estimation of Unknown Function on A Class of Nonlinear Difference Inequality and Application
Huang Chunmiao, Wang Wusheng    
School of Mathematics and Statistics, Hechi University, Guangxi Yizhou 546300
Abstract: In this paper, we establish a class of nonlinear difference inequalities, where the inequalities consist of multiple iterated sums, and composite function of nonlinear function and unknown function. Firstly, the upper bounds of the unknown functions are given by technique of monotonization, amplification method, the mean-value theorem for integrals, technique of change of variable, difference and summation. Finally, we apply our derived results to the study of the estimation of solutions of difference equations.
Key words: Volterra-Fredholm type difference inequality     Multiple iterated sums     Technique of monotonization     The mean-value theorem for integrals     Estimation    
1 引言

著名的 Gronwall-Bellman不等式[1, 2]可以表述如下

u(t)c+taf(s)u(s)ds,     t[a,b],

其中 c0 为常数,f 是非负连续函数, u 是未知函数. 该不等式广泛应用于微分方程和差分方程解的存在性、唯一性、有界性、振动性、稳定性 及不变流型等性质的研究. Gronwall-Bellman型不等式的推广形式很多, 参见文献 [2, 3, 4, 5, 6, 7, 8]及其中参考文献.

2008年马庆华 和 Pečarić[4]讨论了下面的 Volterra-Fredholm 型积分不等式

u(t)k+α(t)α(t0)h1(s)[f1(s)w(u(s))+sα(t0)h2(τ)w(u(τ))dτ]ds         +α(T)α(t0)h1(s)[f1(s)w(u(s))+sα(t0)h2(τ)w(u(τ))dτ]ds, tI, (1.1)
u(t)k+α(t)α(t0)h11(s)[f11(s)w(u(s))+sα(t0)h12(τ)w(u(τ))dτ]ds+α(T)α(t0)h12(s)[f21(s)w(u(s))+sα(t0)h22(τ)w(u(τ))dτ]ds, tI. (1.2)

2011年 Abdeldaim 等[6]研究了如下的多重积分不等式

u(t)k+tα(t0)f(s)u(s)[u(s)+sα(t0)h(τ)[u(τ)+τα(t0)g(ξ)u(ξ)dξ]dτ]ds. (1.3)

另一方面,随着积分不等式理论及差分方程理论的发展,许多学者更关注 Gronwall-Bellman 型不等式的离散形式,见参考文献[9, 10, 11, 12, 13, 14, 15].

Pachpatte 在文献[11] 中研究了线性迭代不等式

u(n)u0+n1s=n0f(s)[u(s)+h(s)]+n1s=n0f(s)(s1τ=n0g(τ)u(τ)), nN0. (1.4)

作者受文献[4, 6, 11]的启发, 研究了一种新的具有多重和的非线性 Volterra-Fredholm 型差分不等式

φ(u(n))a(n)+n1t1=n0h11(n,t1)[f11(n,t1)ϕ1(u(t1))+t11t2=n0h12(t1,t2)[f12(t1,t2)ϕ2(u(t2))             +t21t3=n0h13(t2,t3)[f13(t2,t3)ϕ3(u(t3))++tk21tk1=n0h1k1(tk2,tk1)             ×[f1k1(tk2,tk1)ϕk1(u(tk1))+tk11tk=n0h1k(tk1,tk)ϕk(u(tk))]]]]        +N1t1=n0h21(n,t1)[f21(n,t1)ϕ1(u(t1))+t11t2=n0h22(t1,t2)[f22(t1,t2)ϕ2(u(t2))           +t21t3=n0h23(t2,t3)[f23(t2,t3)ϕ3(u(t3))++tk21tk1=n0h2k1(tk2,tk1)           ×[f2k1(tk2,tk1)ϕk1(u(tk1))+tk11tk=n0h2k(tk1,tk)ϕk(u(tk))]]]], (1.5)

其中 N 是正的自然数.

2 主要结果

文中,令 N0:={0,1,2,},N:={1,2,}, Nln0={n0,n0+1,n0+2,,l} (n0N0, lN). 函数 u(n)的差分定义为 Δu=u(n+1)u(n). 显然,具有初始条件u(n0)=0的线性差分方程  u(n)=b(n)u(n)=n1s=n0b(s). 为方便起见,我们补充定义 n01s=n0b(s)=0.

为了简化证明过程的叙述,我们给出下面的记号.

我们用式(1.5)中的函数ϕi(u)φ(u)定义一个函数列 {wi(u)},递归定义如下

{w1(u):=maxτ[0,u]{ϕ1(φ1(τ))},wi+1(u):=maxτ[0,u]{ϕi+1(φ1(τ))/wi(φ1(τ))}wi(u),    i=1,,k. (2.1)

显然,函数列 {wi(u)} 由非负递减函数组成,且满足 wi(u)ϕi(φ1(u)),i=1,,k. 此外函数列 {wi(u)}还满足比值 wi+1(u)/wi(u),i=1,,k1也都是不减的函数. 文献 [17]中把这种函数单调性的比较记作

wiwi+1,     i=1,2,,k1. (2.2)

对于给定的常数 ui>0,我们用(2.1)式中的函数wi定义函数Wi

{W1(u,u1):=uu1dsw1(s),Wi(u,ui):=uuiwi1(W11(W1i1(s)))dswi(W11(W1i1(s))),  i=2,,k. (2.3)

显然,这些函数都是严格的递增函数. 在不至于产生歧义的情况下, 用简单的记号Wi(u) 表示Wi(u,ui). W1i 表示Wi(u)的逆函数. 根据文献[3]中注释2,在函数 Wi中选择不同的ui 不会影响我们的结果. 利用(1.5)式中的函数hij,fi,j,我们定义函数 hj,fj 如下

{hj(tj1,tj):=max{maxsNtj1n0{h1j(s,tj)},maxsNtj1n0{h2j(s,tj)}},j=1,2,,k,fj(tj1,tj):=max{maxsNtj1n0{h1j(s,tj)},maxsNtj1n0{h2j(s,tj)}},j=1,2,,k1, (2.4)

其中 t0=n. 显然,h1,h2,,hk,f1,f2,,fk1 关于第一个变量都是单调不减的. 利用函数 hj,fj, 我们定义新的函数 {Hi(n)} (i=1,2,,k)

{H1(n):=n1t1=n0h1(n,t1)f1(n,t1),H2(n):=n1t1=n0h1(n,t1)[t11t2=n0h2(t1,t2)f2(t1,t2)],Hk1(n):=n1t1=n0h1(n,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)  ×fk1(tk2,tk1)]]],Hk(n):=n1t1=n0h1(n,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)[tk11tk=n0hk(tk1,tk)]]]]. (2.5)

定义函数

G(ξ)=Wk{Wk1{{W2{W1(2ξa(N))}}}}Wk{Wk1{{W2{W1(ξ)           +H1(N)}+H2(N)}}+Hk1(N)}Hk(N),ξ>a(N). (2.6)

定理2.1   假设 φ 是严格单调递增函数,hk(n,m),fi(n,m),hi(n,m)C(NNn0×NNn0,R+), (i=1,,k1),a(n)C(NNn0,R+) 是非减的, 所有的 ϕi 都是连续函数,且对 u>0,有ϕi(u)>0 (i=1,,n), Wi(2.3)式定义,且满足 Wi(+)=+,i=1,2,,n. 假设(2.6) 式中定义的函数 G(ξ) 是单调递增的且 G(ξ)=0 有解 ξ=c>a(N). 则 不等式 (1.5) 中的未知函数u(n)有估计式

u(n)W11{W12{{W1k{Wk{Wk1{{W2{W1(c(n))+H1(n)}       +H2(n)}}+Hk1(n)}+Hk(n)}}}},  nNNn0, (2.7)

其中 W1i(i=1,2,,n)Wi的逆函数.

   利用(2.1) 和 (2.4)式,由 (1.5)式得到

u(n)a(N)+n1t1=n0h1(N1,t1)[f1(N1,t1)w1(u(t1))+t11t2=n0h2(t1,t2)[f2(t1,t2)w2(u(t2))      ++tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(u(tk1))            +tk11tk=n0hk(tk1,tk)wk(u(tk))]]]+N1t1=n0h1(N1,t1)[f1(N1,t1)w1(u(t1))                      +t11t2=n0h2(t1,t2)[f2(t1,t2)w2(u(t2))++tk21tk1=n0hk1(tk2,tk1)            ×[fk1(tk2,tk1)wk1(u(tk1))+tk11tk=n0hk(tk1,tk)wk(u(tk))]]], (2.8)

对任意 nNN1n0成立,其中N1N ,N1 是任意的.

z1(n) 表示不等式(2.8)中右端,显然它是 NN1n0上非负不减的函数. (2.8) 式等价于

u(n)z1(n),  nNN1n0, (2.9)
z1(n0)=a(N)+N1t1=n0h1(N1,t1)[f1(N1,t1)w1(u(t1))           +t11t2=n0h2(t1,t2)[f2(t1,t2)w2(u(t2))+          +tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(u(tk1))          +tk11tk=n0hk(tk1,tk)wk(u(tk))]]]. (2.10)

利用差分公式及 (2.9)式有

Δz1(n)=h1(N1,n)[f1(N1,n)w1(u(n))+n1t2=n0h2(t1,t2)[f2(t1,t2)w2(u(t2))+            +tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(u(tk1))              +tk11tk=n0hk(tk1,tk)wk(u(tk))]]]          h1(N1,n)[f1(N1,n)w1(z1(n))+n1t2=n0h2(t1,t2)[f2(t1,t2)w2(z1(t2))+              +tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(z1(tk1))              +tk11tk=n0hk(tk1,tk)wk(z1(tk))]]], nNN1n0. (2.11)

因为w1z1的单调性. 由(2.11)式推出

Δz1(n)w1(z1(n))h1(N1,n)[f1(N1,n)+n1t2=n0h2(t1,t2)[f2(t1,t2)w2(z1(t2))w1(z1(t2))+                +tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(z1(tk1))w1(z1(tk1))                 +tk11tk=n0hk(tk1,tk)wk(z1(tk))w1(z1(tk))]]], nNN1n0. (2.12)

另一方面,由积分中值定理,对任意整数

W1(z1(n+1))W1(z1(n))=z1(n+1)z1(n)dsw1(s)=Δz1(n)w1(v)Δz1(n)w1(z1(n)), (2.13)

对所有的 nNN1n0成立,其中 W1由式 (2.3)定义. 由(2.12)式和 (2.13)式,推出

W1(z1(n+1))W1(z1(n))+h1(N1,n)[f1(N1,n)+n1t2=n0h2(t1,t2)[f2(t1,t2)w2(z1(t2))w1(z1(t2))                   ++tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(z1(tk1))w1(z1(tk1))                    +tk11tk=n0hk(tk1,tk)wk(z1(tk))w1(z1(tk))]]], nNN1n0. (2.14)

在 (2.14)式中令n=s ,再分别令 s=n0,n1,n2,,n1,然后把所得式子相加,我们有

W1(z1(n))W1(z1(n0))+n1t1=n0h1(N1,t1)f1(N1,t1)+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)                ×[f2(t1,t2)w2(z1(t2))w1(z1(t2))++tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)                ×wk1(z1(tk1))w1(z1(tk1))+tk11tk=n0hk(tk1,tk)wk(z1(tk))w1(z1(tk))]]]           W1(z1(n0))+N11t1=n0h1(N1,t1)f1(N1,t1)+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)                  ×[f2(t1,t2)w2(z1(t2))w1(z1(t2))++tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)                 ×wk1(z1(tk1))w1(z1(tk1))+tk11tk=n0hk(tk1,tk)wk(z1(tk))w1(z1(tk))]]], nNN1n0. (2.15)

z2(n)表示不等式(2.15)的右端,则它在 NN1n0上是非负不减的函数. (2.15) 式等价于

z1(n)W11(z2(n)),  nNN1n0, (2.16)
z2(n0)=W1(z1(n0))+N11t1=n0h1(N1,t1)f1(N1,t1). (2.17)

z2的定义,利用差分公式及 (2.16) 式 我们有

Δz2(n)=h1(N1,n)[n1t2=n0h2(n,t2)[f2(n,t2)w2(z1(t2))w1(z1(t2))+             +tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(z1(tk1))w1(z1(tk1))             +tk11tk=n0hk(tk1,tk)wk(z1(tk))w1(z1(tk))]]]           h1(N1,n)[n1t2=n0h2(n,t2)[f2(n,t2)w2(W11(z2(t2)))w1(W11(z2(t2)))+                 +tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(W11(z2(tk1)))w1(W11(z2(tk1)))                  +tk11tk=n0hk(tk1,tk)wk(W11(z2(tk)))w1(W11(z2(tk)))]]], nNN1n0. (2.18)

利用 函数wi/w1 (i=2,,k),W11z2 的单调性, 由(2.18)式可以推出

Δz2(n)w1(W11(z2(n)))w2(W11(z2(n)))h1(N1,n)n1t2=n0h2(n,t2)f2(n,t2)+h1(N1,n)×[n1t2=n0h2(n,t2)[t21t3=n0h3(t2,t3)[f3(t2,t3)w3(W11(z2(t3)))w2(W11(z2(t3)))++tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(W11(z2(tk1)))w2(W11(z2(tk1)))+tk11tk=n0hk(tk1,tk)wk(W11(z2(tk)))w2(W11(z2(tk)))]]]], nNN1n0. (2.19)

进行(2.13) 式及 (2.14)式的类似推导,由(2.19)式推出

W2(z2(n))W2(z2(n0))+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)f2(t1,t2)]          +n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[t21t3=n0h3(t2,t3)[f3(t2,t3)w3(W11(z2(t3)))w2(W11(z2(t3)))        ++tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(W11(z2(tk1)))w2(W11(z2(tk1)))              +tk11tk=n0hk(tk1,tk)wk(W11(z2(tk)))w2(W11(z2(tk)))]]]]           W2(z2(n0))+N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)f2(t1,t2)]          +n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[t21t3=n0h3(t2,t3)[f3(t2,t3)w3(W11(z2(t3)))w2(W11(z2(t3)))        ++tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(W11(z2(tk1)))w2(W11(z2(tk1)))     +tk11tk=n0hk(tk1,tk)wk(W11(z2(tk)))w2(W11(z2(tk)))]]]],  nNN1n0, (2.20)

这里函数 W2 由 (2.3)式定义. 重复 (2.16)式到 (2.20)式的类似推导,我们有

Wk2(zk2(n))Wk2(zk2(n0))+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)   [tk31tk2=n0hk2(tk3,tk2)fk2(tk3,tk2)]] +n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)  [fk1(tk2,tk1)wk1(W11(W12((W1k3(zk2(tk1))))))wk2(W11(W12((W1k3(zk2(tk1))))))  +tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k3(zk2(tk))))))wk2(W11(W12((W1k3(zk2(tk))))))]]]]Wk2(zk2(n0))+N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)  [tk31tk2=n0hk2(tk3,tk2)fk2(tk3,tk2)]]+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1) [fk1(tk2,tk1)wk1(W11(W12((W1k3(zk2(tk1))))))wk2(W11(W12((W1k3(zk2(tk1))))))+tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k3(zk2(tk))))))wk2(W11(W12((W1k3(zk2(tk))))))]]]],      (2.21)

对所有的 nNN1n0成立,其中 Wk2 由 (2.3)式定义. 令 zk1(n)为不等式 (2.21)中右端的函数,则它在 NN1n0上是非负不减的. (2.21) 式等价于

zk2(n)W1k2(zk1(n)),  nNN1n0, (2.22)
zk1(n0)=Wk2(zk2(n0))+N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)              [tk31tk2=n0hk2(tk3,tk2)fk2(tk3,tk2)]]. (2.23)

zk1的定义,利用差分公式及 (2.22)式我们有

Δzk1(n)=h1(N1,n)[n1t2=n0h2(n,t2)[[tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)                  =×wk1(W11(W12((W1k3(zk2(tk1))))))wk2(W11(W12((W1k3(zk2(tk1))))))                    +tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k3(zk2(tk))))))wk2(W11(W12((W1k3(zk2(tk))))))]]]]              h1(N1,n)[n1t2=n0h2(n,t2)[[tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)                      ×wk1(W11(W12((W1k2(zk1(tk1))))))wk2(W11(W12((W1k2(zk1(tk1))))))                      +tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k2(zk1(tk))))))wk2(W11(W12((W1k2(zk1(tk))))))]]]],      (2.24)

对所有 nNN1n0成立. 从(2.24)式我们推出

Δzk1(n)wk2(W11(W12((W1k2(zk1(n))))))wk1(W11(W12((W1k2(zk1(n))))))h1(N1,n)[n1t2=n0h2(n,t2)[[tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)+tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k2(zk1(tk))))))wk1(W11(W12((W1k2(zk1(tk))))))]]]], (2.25)

对所有 nNN1n0成立,这里利用了函数 zk1,W11,,W1k2wk2/wk1的单调性.

进行由(2.19)式推出(2.21)式的推导,由(2.25) 式推出

Wk1(zk1(n))Wk1(zk1(n0))+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[     [tk21tk1=n0hk1(tk2,tk1)fk1(tk2,tk1)]]]   +n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)      [tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k2(zk1(tk))))))wk1(W11(W12((W1k2(zk1(tk))))))]]]]Wk1(zk1(n0))+N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[  [tk21tk1=n0hk1(tk2,tk1)fk1(tk2,tk1)]]]  +n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)[tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k2(zk1(tk))))))wk1(W11(W12((W1k2(zk1(tk))))))]]]] (2.26)

对所有的 nNN1n0成立.

zk(n) 为不等式 (2.26)右边的函数,则它在 NN1n0上是非负不减的函数. (2.26)式等价于

zk1(n)W1k1(zk(n)),  nNN1n0, (2.27)
zk(n0)=Wk1(zk1(n0))+N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)fk1(tk2,tk1)]]]. (2.28)

利用差分公式及(2.27)式我们有

Δzk(n)=h1(N1,n)[n1t2=n0h2(n,t2)[[tk21tk1=n0hk1(tk2,tk1)            [tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k2(zk1(tk))))))wk1(W11(W12((W1k2(zk1(tk))))))]]]]        h1(N1,n)[n1t2=n0h2(n,t2)[[tk21tk1=n0hk1(tk2,tk1)         [tk11tk=n0hk(tk1,tk)wk(W11(W12((W1k1(zk(tk))))))wk1(W11(W12((W1k1(zk(tk))))))]]]], (2.29)

对所有的 nNN1n0成立. 由 (2.29)式我们有

Δzk(n)wk1(W11(W12((W1k1(zk(n))))))wk(W11(W12((W1k1(zk(n))))))h1(N1,n)[n1t2=n0h2(n,t2)[[tk21tk1=n0hk1(tk2,tk1)[tk11tk=n0hk(tk1,tk)]]]], (2.30)

对所有的 nNN1n0.

重复(2.14) 式及 (2.15)式类似的推导,我们有

Wk(zk(n))Wk(zk(n0))n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)                                 [tk11tk=n0hk(tk1,tk)]]]], nNN1n0. (2.31)

从(2.16),(2.22),(2.27)式及 (2.31)式我们有

z1(n)W11(W12((W1k1(zk(n)))))       W11{W12{{W1k{Wk(zk(n0))+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)          [[tk21tk1=n0hk1(tk2,tk1)[tk11tk=n0hk(tk1,tk)]]]]}}}}, (2.32)

对所有的 nNN1n0成立. 将 (2.17),(2.23)式及 (2.28) 式带入 (2.32) 式,我们有

z1(n)W11{W12{{W1k{Wk{Wk1{Wk2{{W2{W1(z1(n0))         +N11t1=n0h1(N1,t1)f1(n,t1)}+N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)f2(t1,t2)]}}      +N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[             [tk3α(n0)hk2(tk3,tk2)fk2(tk3,tk2)]]]}      +N11t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[              [tk21tk1=n0hk1(tk2,tk1)fk1(tk2,tk1)]]]}         +n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)               [tk11tk=n0hk(tk1,tk)]]]]}}}},  tNN1n0. (2.33)

因为 N1 是任意选取的,我们有

z1(n)W11{W12{{W1k{Wk{Wk1{Wk2{{W2{W1(z1(n0))       +n1t1=n0h1(n,t1)f1(n,t1)}+n1t1=n0h1(N1,t1)[t11t2=n0h2(t1,t2)f2(t1,t2)]}}     +n1t1=n0h1(n,t1)[t11t2=n0h2(t1,t2)[            [tk3α(n0)hk2(tk3,tk2)fk2(tk3,tk2)]]]}     +n1t1=n0h1(n,t1)[t11t2=n0h2(t1,t2)[          [tk21tk1=n0hk1(tk2,tk1)fk1(tk2,tk1)]]]}    +n1t1=n0h1(n,t1)[t11t2=n0h2(t1,t2)[[tk21tk1=n0hk1(tk2,tk1)          [tk11tk=n0hk(tk1,tk)]]]]}}}}    =W11{W12{{W1k{Wk{Wk1{{W2{W1(z1(n0))+H1(n)}      +H2(n)} }+Hk1(n)}+Hk(n)}}}},nNN1n0. (2.34)

z1 的定义及 (2.10)式我们推出

2z1(n0)a(N)=a(N)+2N1t1=n0h1(N1,t1)[f1(N1,t1)w1(u(t1))                        +t11t2=n0h2(t1,t2)[f2(t1,t2)w2(u(t2))+                       +tk21tk1=n0hk1(tk2,tk1)[fk1(tk2,tk1)wk1(u(tk1))                       +tk11tk=n0hk(tk1,tk)wk(u(tk))]]]             =z1(N). (2.35)

因为 N1 是任意选取的,从 (2.34) 式及 (2.35)式,我们推出

2z1(n0)a(N)W11{W12{{W1k{Wk{Wk1{{W2{W1(z1(n0))                       +H1(N)}+H2(N)}}+Hk1(N)}+Hk(N)}}}},

或者

Wk{Wk1{{W2{W1(2z1(n0)a(N))}}}}Wk{Wk1{{W2{W1(z1(n0))+H1(N)}+H2(N)}}+Hk1(N)}Hk(N)0. (2.36)

从函数 G的定义,定理 2.1的假设 及(2.36)式,我们得出

G(z1(n0),t)0=G(c(n),t),

其中G 关于第一个变量是递增的,从最后的不等式及 (2.9) 式, 我们得到所求的估计 (2.7)式.

我们定义下面的函数

H1(n)=n1t1=n0h1(n,t1)f1(n,t1), (2.37)
H2(n)=n1t1=n0h1(n,t1)[t11t2=n0h2(t1,t2)], (2.38)
E(ξ)=W2{W1(2ξa(N))}W2{W1(ξ)+H1(N)}H2(N), (2.39)

对所有的 u>k,其中 Wi,i=1,2 由 (2.3)式定义.

推论2.1   假设(1.5)式中 k=2,φ,a,f1,hi,ϕi,Wi,i=1,2的定义同定理 2.1一样. 假设函数 E(ξ) 是递增的且 当ξ>k时方程E(ξ)=0有一个解 ξ=c . 如果 u(n) 满足 (1.5)式,则

u(n)W11{W12{W2{W1(c)+H1(n)}+H2(n)}},  nNNn0, (2.40)

其中 W1i (i=1,2)Wi的逆函数.

  如果 在推论2.1中ϕ1=ϕ2, 则推论 2.1 的结果就是文献[4]的定理 2.1. 因为如果 ϕ1=ϕ2,则

W2(u)=uu2,W12(u)=u+u2,

由(2.40)式推出 u(n)W11{W1(c)+H1(n)+H2(n)} 对所有的 tNNn0成立.

3 应用

最后,我们用推论2.1中的结果来研究 Volterra-Fredholm 差分方程

x(n)=x0+N1s=n0G(n,s,x(s),s1τ=n0F2(s,τ,x(τ))), nNNn0, (3.1)

式中

$\begin{equation} |G(n,s,u,y)|\le\left\{ \begin{array}{ll} 2F_1(n,s,u,y),&s (3.2)

下面我们研究方程(3.1)解的界.

推论3.1    假设 (3.1)式及 (3.2) 式中的F1,F2 满足条件

|F1(n,s,u,y)|h1(n,s)[f1(n,s)|u|p1+|y|], (3.3)
|F2(n,s,u)|h2(n,s)|u|p2, (3.4)

其中 f1(n,s),h1(n,s),h2(n,s)的定义和推论 2.1相同. 假设 p1,p2 是常数且 $0

|x(n)|W11{W12[W2[W1(c)+n1n=n0h1(n,s)f1(n,s)]     +n1n=n0h1(n,s)[s1n=n0h2(s,τ)]]},  nNNn0, (3.5)

其中

W1(u)=u1p11p1u1p111p1, (3.6)
W11(u)=((1p1)u+u1p11)11p1, (3.7)
W2(u)=1p11p2((1p1)u+u1p11)1p21p11p11p2((1p1)u2+u1p11)1p21p1, (3.8)
W12(u)=11p1{[1p21p1u+1p11p2((1p1)u2+u1p11)1p21p1]1p11p2+u1p11}, (3.9)

u1,u2 是非负常数,W11 ,W12 分别是 W1W2的逆函数, c 是下面方程的一个解

W2[W1(2u|x0|)]W2[W1(u)+N1s=n0h1(N,s)f1(N,s)]=N1s=n0h1(N,s)[s1τ=n0h2(s,τ)].   (3.10)

  由定理 2.1中函数 Wi 的定义,我们推出

W1(u,u1):=uu1dssp1,W2(u,u2):=uu2(W1(s))p1ds(W1(s))p2. (3.11)

由(3.11)式,我们得到 (3.6),(3.7),(3.8) 式及 (3.9)式. 我们令

E(u):=W2[W1(2u|x0|)]W2[W1(u)+N1s=n0h1(N,s)f1(N,s)]       N1s=n0h1(N,s)[s1τ=n0h2(s,τ)]. (3.12)

从(3.6),(3.8) 式及(3.12)式,以及 E(|x0|)<0. 由(3.12)式,我们推出

  E(u):=2W2[W1(2u|x0|)]W1(2u|x0|)W2[W1(u)+N1s=n0h1(N,s)f1(N,s)]W1(u).   (3.13)

从(3.6)式 及 (3.8)式,我们推出

   2W2[W1(2u|x0|)]W1(2u|x0|)=2((1p1)((2u|x0|)1p11p1u1p111p1)+u1p11)p1p21p1(2u|x0|)p1=2(2u|x0|)p1p2(2u|x0|)p12(2u)p1p2(2u)p1up1p2up1=W2[W1(u)]W1(u)>W2[W1(u)+N1s=n0h1(N,s)f1(N,s)]W1(u),  u>|x0|. (3.14)

由(3.13)式及 (3.14)式,以及 E(u) 是单调递增的且方程 E(n)=0有一个解 c 满足u>|x0|. 利用(3.2),(3.3) 式及 (3.4)式的条件,从(3.1)式 我们推出

|x(n)||x0|+N1s=n0|G(n,s,x(s),s1τ=n0F2(s,τ,x(τ)))|         |x0|+n1s=n0F1(n,s,x(s),s1τ=n0F2(s,τ,x(τ)))      +N1s=n0F1(n,s,x(s),s1τ=n0F2(s,τ,x(τ)))      |x0|+n1s=n0h1(n,s)[f1(n,s)|x(s)|p1+s1τ=n0h2(s,τ)|x(τ)|p2]      +N1s=n0h1(n,s)[f1(n,s)|x(s)|p1+s1τ=n0h2(s,τ)|x(τ)|p2], nNNn0. (3.15)

利用推论2.1的结果,由上式我们就可以得到所求的估计 (3.5)式.

参考文献
[1] Gronwall T H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann Math, 1919, 20:292-296
[2] Bellman R. The stability of solutions of linear differential equations. Duke Math J, 1943, 10:643-647
[3] Agarwal R P, Deng S, Zhang W. Generalization of a retarded Gronwall-like inequality and its applications. Appl Math Comput, 2005, 165:599-612
[4] Ma Q H, Pečarić J. Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal, 2008, 69:393-407
[5] 罗日才, 王五生, 许弘雷. 一类非连续函数积分不等式中未知函数的估计及其应用. 数学物理学报, 2010, 30A(4):1176-1182
[6] Abdeldaim A, Yakout M. On some new integral inequalities of Gronwall-Bellman-Pachpatte type. Appl Math Comput, 2011, 217:7887-7899
[7] 王五生, 周效良. 时标上的推广的Pachpatte型不等式及其在边值问题中的应用. 数学物理学报, 2012, 32(2):404-413
[8] 王五生, 李自尊. 含多个非线性项的时滞积分不等式及其应用. 数学进展, 2012, 41(5):597-604
[9] Hull T E, Luxemburg W A J. Numerical methods and existence theorems for ordinary differential equations. Numerische Mathematik, 1960, 2(1):30-41
[10] Willett D, Wong J S W. On the discrete analogues of some generalizations of Gronwall's inequality. Monatshefte für Mathematik, 1965, 69:362-367
[11] Pachpatte B G. Finite-difference inequalities and discrete-time control systems. Indian J Pure Appl Math, 1978, 9:1282-1290
[12] Pang P Y H, Agarwal R P. On an integral inequality and discrete analogue. J Math Anal Appl, 1995, 194:569-577
[13] Pachpatte B G. On some fundamental integral inequalities and their discrete analogues. J Ineq Pure Appl Math, 2001, 2(2):Article 15, 13 pages
[14] Ma Q H, Cheung W S. Some new nonlinear difference inequalities and their applications. J Comput Appl Math, 2007, 202:339-351
[15] 王五生, 李自尊, 周效良. 一类推广的二变量和差分不等式及其在初边值问题中的应用. 数学物理学报, 2013, 33A(2):340-353
[16] 覃永昼, 王五生,王文霞. 一类乘积形式的离散不等式及其应用. 数学物理学报, 2014, 34A(6):1408-1414
[17] Pinto M. Integral inequalities of Bihari-type and applications. Funkcial Ekvac, 1990, 33:387-430
一类非线性差分不等式中未知函数的估计及其应用
黄春妙, 王五生