数学物理学报  2015, Vol. 35 Issue (5): 878-883   PDF (270 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
钟越
袁倩
一类非线性Volterra方程零解的稳定性
钟越, 袁倩    
四川师范大学文理学院 成都 610101
摘要: 讨论如下一类非线性Volterra方程零解的稳定性x'(t)=-a(t)x(t)+b(t)x'(g(t))+0tk(t,s)f(x(s),x(v(s)))ds+h(t),使用不动点理论,并在一定条件下构造适当的压缩映射,得到了方程零解的稳定性.
关键词: 非线性Volterra方程     压缩映射     稳定性    
The Asymptotic Stability of the Zero Solution for A Nonlinear Volterra Equation
Zhong Yue, Yuan Qian    
The Arts and Sciences College of Sichuan Normal University, Chengdu 610101
Abstract: The aim of this paper is to deal with the stability of the zero solution for a nonlinear Volterra integro-differential equation x'(t)=-a(t)x(t)+b(t)x'(g(t))+0tk(t,s)f(x(s),x(v(s)))ds+h(t),, The asymptotic stability of the zero solution for the equation is established by using fixed-point theory and constructing contraction mapping.
Key words: Nonlinear Volterra equation     Contraction mapping     Asymptotic stability    
1 引言

在讨论不含衰减项方程零解的稳定性时, 常常引入李雅普洛夫泛函. 但对于含有衰减项的方程,特别是当衰减项无界衰减时(见文献[1]), 使用李雅普洛夫泛函讨论零解的稳定性就会遇到困难. 因此, 需寻求其它方法来处理含无界衰减项方程零解的稳定性问题,本文将探讨此类情形. 考虑如下一类非线性Volterra方程

\begin{eqnarray} x' (t)=-a(t)x(t)+b(t)x' (g(t))+\int^{t}_{0}k(t,s)f(x(s),x(v(s))){\rm d}s+h(t), \label{eq:1.1}\end{eqnarray} (1.1)

其中$a(t),b(t),h(t)$是连续函数且有界,$x' (g(t))$为自由衰减项且是对时间$t$的导数. 由于方程(1.1)不能写成下面的形式

\begin{eqnarray*} \frac{\rm d}{{\rm d}t}[x(t)+b(t)x(g(t))]=-a(t)x(t)+\int^{t}_{0}k(t,s)f(x(s),x(v(s))){\rm d}s+h(t), \end{eqnarray*}

故不能对它采用直接积分,换句话说, 不能直接构造李雅普洛夫泛函来讨论方程零解的稳定性. 类似(1.1)式这类含有无界衰减项的非线性方程, 需引入不动点理论的相关知识,通过构造相应的压缩映射来证明其零解的稳定性. 在众多相关研究中,文献[4]利用上述方法讨论了当$g' (t)\neq1$ 时方程

\begin{eqnarray} x' (t)=-a(t)x(t)+c(t)x' (t-g(t))+\int^{t}_{t-g(t)}k(t,s)h(x(s)){\rm d}s \label{eq:1.01}\end{eqnarray} (1.2)

零解的稳定性. 在文献[6]中, 作者使用相同方法讨论了一类非线性中性微分方程周期解(即在周期变化条件下的解)的存在唯一性. 此外,在讨论方程解的稳定性文献中, 文献[2, 5, 8, 9]分别证明了几类线性方程解的稳定性,而 文献[1, 3, 7, 10, 11]则对几类非线性方程解的稳定性进行了证明. 本文主要参考了文献[4, 6]的分析方法, 在一定条件下构造一个适当压缩映射的同时,引入不动点理论对一类含无界 衰减项的非线性Volterra方程(1.1)零解的稳定性进行了讨论, 并得到了在时间无限大情形下其零解的渐近性态.方程(1.1)与其他工 作的区别在于自由衰减项$x' (g(t))$按时间$t$ 无界衰减且$g' (t)>0$, 积分项$\int^{t}_{0}k(t,s)f(x(s),x(v(s))){\rm d}s$ 中 $f(x(s),x(v(s)))$ 是含两个中间变量的复合函数.

2 基本引理及定理

考虑如下一类含衰减项的微分方程

\begin{eqnarray} x' (t)=-a(t)x(t)+b(t)x' (g(t))+h(t),\label{eq:2.1} \end{eqnarray} (2.1)

其中$a(t),b(t),h(t)$是连续有界函数,$b(t)\neq0$且可微. $g(t)>0,\; t\in {\Bbb R}$ 且二次连续可微. 通过上节分析知道方程(2.1)不能通过直接积分,再利用李雅普洛夫泛函来讨论, 而需引入不动点理论,构造一个合适的映射. 在方程(2.1)中,假设$g' (t)\neq0,\;t\in {\Bbb R},$ 有如下引理

引理 2.1 如果 $g' (t)\neq0,\;t\in {\Bbb R}$,则 $x(t)$是方程(2.1)的一个解当且仅当

\begin{eqnarray*}x(t)&=&[x(0)-\frac{b(0)}{g' (0)}x(g(0))] {\rm e}^{-\int_{0}^{t}a(s){\rm d}s}+\frac{b(t)}{g' (t)}x(g(t)) \nonumber\\ &&-\int_{0}^{t}[r(u)x(g(u))-h(u)]{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u, \end{eqnarray*}

其中

$$ r(u)=\frac{(b' (u)+b(u)a(u))g' (u)-b(u)g'' (u)}{(g' (u))^{2}}. $$

在方程(2.1)两边同时乘以${\rm e}^{\int_{0}^{t}a(s){\rm d}s}$且从0到$t$积分有

\begin{eqnarray}\int_{0}^{t}[x(u){\rm e}^{\int_{0}^{u}a(s){\rm d}s}]'{\rm d}u= \int_{0}^{t}[b(u)x' (g(u))+h(u)]{\rm e}^{\int_{0}^{u}a(s){\rm d}s}{\rm d}u,\label{eq:2.2} \end{eqnarray} (2.2)

\begin{eqnarray}x(t){\rm e}^{\int_{0}^{t}a(s){\rm d}s}-x(0)= \int_{0}^{t}[b(u)x' (g(u))+h(u)]{\rm e}^{\int_{0}^{u}a(s){\rm d}s}{\rm d}u. \label{eq:2.3}\end{eqnarray} (2.3)

再两边同时除以${\rm e}^{\int_{0}^{t}a(s){\rm d}s}$有

\begin{eqnarray}x(t)=x(0){\rm e}^{-\int_{0}^{t}a(s){\rm d}s}+\int_{0}^{t}b(u)x' (g(u)){\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u +\int_{0}^{t}h(u){\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u.\label{eq:2.4}\end{eqnarray} (2.4)

下面考虑右边第二项

\begin{eqnarray}\int_{0}^{t}[b(u)x' (g(u))]{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u= \int_{0}^{t}\frac{b(u)x' (g(u))g' (u)}{g' (u)}{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u, \label{eq:2.5}\end{eqnarray} (2.5)

利用分部积分方法,令

$$ U(u)=\frac{b(u)}{g' (u)}{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}, \qquad {\rm d}V=x' (g(u))g' (u){\rm d}u, $$

则有

\begin{eqnarray}&&\int_{0}^{t}[b(u)x' (g(u))]{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\nonumber\\ &=&\frac{b(t)}{g' (t)}x(g(t))-\frac {b(0)}{g' (0)}x(g(0)){\rm e}^{-\int_{0}^{t}a(s){\rm d}s}\nonumber\\ && -\int_{0}^{t}\frac{(b' (u)+b(u)a(u))g' (u)-b(u)g'' (u)} {(g' (u))^{2}}x(g(u)){\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\nonumber\\ & =&\frac{b(t)}{g' (t)}x(g(t))-\frac {b(0)}{g' (0)}x(g(0)){\rm e}^{-\int_{0}^{t}a(s){\rm d}s} -\int_{0}^{t}r(u)x(g(u)){\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u, \label{eq:2.6}\end{eqnarray} (2.6)

将(2.6)式代入(2.4)式即得证引理.

令$\psi(t):(-\infty,0]\longrightarrow{\Bbb R}$是连续有界初值函数, 假设$x(t) =\psi(t),\;t\leq0$,且当$t\geq0$时满足方程(2.1), 则$x(t):=x(t,0,\psi),\;t\geq0$是方程(2.1)的一个解. 如果对任意$\epsilon>0$,存在$\delta=\delta(\epsilon)>0$, 且$\psi:[-\infty,t_{0}]\longrightarrow{\Bbb R},|\psi(t)|<\delta,t\geq t_{0}$时,$|x(t,t_{0},\psi)|<\epsilon,$ 则方程(2.1)的零解在$t_{0}$点稳定.

令$C$是${\Bbb R}\longrightarrow{\Bbb R}$的连续函数空间并定义集合

$$S=\{\varphi:{\Bbb R}\longrightarrow{\Bbb R}\mid\varphi(t)=\psi(t),t\leq0;\; t\longrightarrow\infty,\varphi(t)\longrightarrow0,\varphi\in C \}, $$

其中$\varphi$有界, 则$(S,\|\cdot\|)$是一个完备度量空间.

假设

\begin{eqnarray}{\rm e}^{-\int_{0}^{t}a(s){\rm d}s}\longrightarrow0,\quad t\longrightarrow\infty,\label{eq:2.7}\end{eqnarray} (2.7)

且存在$\alpha>0$满足

\begin{eqnarray} \bigg|\frac{b(t)}{g' (t)}\bigg|+ \int_{0}^{t}|r(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u+\int_{0}^{t}|h(u)| {\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\leq\alpha<1,\quad t\geq0,\label{eq:2.8}\end{eqnarray} (2.8)

则有如下定理

定理 2.2 若 $g' (t)\neq0,\;t\in {\Bbb R}$且(2.7)式, (2.8)成立, 则对连续小初值函数$\psi(t)$,方程(2.1)的所有解$x(t,0,\psi)$均是有界的, 且当$t\longrightarrow\infty$ 时,这些解都趋于零. 并且其零解在$t_{0}=0$点处稳定.

定义映射$P:S\longrightarrow S$

$$(P\varphi)(t)=\psi(t),\qquad t\leq0 $$

\begin{eqnarray*}(P\varphi)(t)&=& \bigg[\varphi(0)-\frac{b(0)}{g' (0)}\varphi(g(0))\bigg]{\rm e}^{-\int_{0}^{t}a(s){\rm d}s}+\frac{b(t)}{g' (t)}\varphi(g(t)) \nonumber\\ &&-\int_{0}^{t}[r(u)\varphi(g(u))-h(u)]{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u,\quad t\geq0.\end{eqnarray*}

则对$\varphi\in S,\; P\varphi$是连续的. 令$\varphi\in S,\; \|\varphi\|\leq K, K$是一个正常数. 假设$\psi(t)$是给定的连续小初值函数,且$|\psi|<\delta, \delta>0,$ 则利用(2.8)式及$(P\varphi)(t)$的定义有

\begin{eqnarray}\|(P\varphi)(t)\|&\leq& \bigg|1-\frac{b(0)}{g' (0)}\bigg|K+\bigg|\frac{b(t)}{g' (t)}\bigg|K \nonumber\\ &&+K\int_{0}^{t}|r(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u +\int_{0}^{t}|h(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u \nonumber\\ &\leq&\bigg|1-\frac{b(0)}{g' (0)}\bigg|\delta+\alpha K.\label{eq:2.9}\end{eqnarray} (2.9)

由此可知当$\delta$ 足够小时, $\|P\varphi(t)\|\leq K,$即$(P\varphi)(t)$有界. 此外, 由条件(2.7)可知$(P\varphi)(t)$右边第一项趋于零. 又由$S$的定义知右边第二项亦趋于零. 给定$\epsilon>0,\varphi\in S$且$\|\varphi\|\leq K,K>0,$则存在$t_{1}>0$, 当$t>t_{1}$时有$|\varphi(g(t))|<\epsilon.$由条件(2.7), 当$t>t_{1}$时,${\rm e}^{-\int_{t_{1}}^{t}a(s){\rm d}s}<\epsilon/\alpha K$. 因此当$t>t_{1}$时,有

\begin{eqnarray}&& \bigg|\int_{0}^{t}[r(u)\varphi(g(u))-h(u)] {\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\bigg|\nonumber\\ &\leq &K\int_{0}^{t_{1}}|r(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u +\epsilon\int_{t_{1}}^{t}|r(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u +\epsilon\int_{0}^{t}|h(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\nonumber\\ &\leq& K{\rm e}^{-\int_{t_{1}}^{t}a(s){\rm d}s}\int_{0}^{t_{1}}|r(u)| {\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u+\alpha\epsilon \nonumber\\ &\leq&\alpha K{\rm e}^{-\int_{t_{1}}^{t}a(s){\rm d}s}+\alpha\epsilon\nonumber\\ &\leq&\epsilon+\alpha\epsilon \label{eq:2.10}\end{eqnarray} (2.10)

故当$t\longrightarrow\infty$时,$(P\varphi)(t)\longrightarrow0$.

令$\xi,\eta\in S$,则

\begin{eqnarray} |(P\xi)(t)-(P\eta)(t)| &\leq& \left\{\bigg|\frac{b(t)}{g' (t)}\bigg|+\int_{0}^{t}|r(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\right\}\|\xi-\eta\| \nonumber\\ &\leq& \alpha\|\xi-\eta\|. \label{eq:2.11}\end{eqnarray} (2.11)

因此,由压缩映射原理,$P$在$S$中有唯一不动点满足方程(2.1), 且当$t\longrightarrow\infty$ 时$P\longrightarrow0$. 即方程(2.1)的零解在$t_{0}=0$点处稳定.

3 非线性Volterra方程

考虑如下一类非线性Volterra方程

\begin{eqnarray} x' (t)=-a(t)x(t)+b(t)x' (g(t))+\int^{t}_{0}k(t,s)f(x(s),x(v(s))){\rm d}s+h(t), \label{eq:3.1}\end{eqnarray} (3.1)

其中$a(t),b(t),h(t)$均是连续有界函数. 假设$f(0,0)=0$且$f(x,y)$对$x,y$是局部李普希兹连续的,即存在$K>0$, 当$|x|,|y|,|z|,|w|\leq K$时,有

\begin{eqnarray}|f(x,y)-f(z,w)|\leq L|x-z|+E|y-w|,\label{eq:3.2}\end{eqnarray} (3.2)

其中常数$L,E>0$. 记

\begin{eqnarray}|f(x,y)|&=&|f(x,y)-f(0,0)+f(0,0)|\nonumber\\&\leq&|f(x,y)-f(0,0)|+|f(0,0)|\nonumber\\&\leq& L|x|+E|y|.\label{eq:3.3}\end{eqnarray} (3.3)

$$S=\{\varphi:(0,\infty)\longrightarrow{\Bbb R}\mid \|\varphi\|\leq K,\varphi(t)=\psi(t), t\leq0;\varphi(t)\longrightarrow0, t\longrightarrow\infty;\varphi\in C\}. $$

定义映射$P:S\longrightarrow S$

$$ (P\varphi)(t)=\psi(t),\qquad t\leq0 $$

\begin{eqnarray*}(P\varphi)(t)&=& \bigg(\varphi(0)-\frac{b(0)}{g' (0)}\varphi(g(0))\bigg){\rm e}^{-\int_{0}^{t}a(s){\rm d}s}+\frac{b(t)}{g' (t)}\varphi(g(t)) \nonumber\\ &&-\int_{0}^{t}\bigg[r(u)\varphi(g(u))-h(u)-\int^{t}_{0}k(t,s)f(x(s),x(v(s))){\rm d}s \bigg]{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u,\; t\geq0,\end{eqnarray*}

对于$\varphi\in S,P\varphi$是连续的, 若$P$有一不动点$\varphi$,则$\varphi$为方程(3.1)的一个解.

为了说明$P$是压缩的,作如下假设,当$\alpha>0$时,假设

\begin{eqnarray} &&\bigg|\frac{b(t)}{g' (t)}\bigg|+\int_{0}^{t} \bigg[|r(u)|+\int^{t}_{0}(L+E)|k(t,s)|{\rm d}s\bigg] {\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\nonumber\\ &&+\int_{0}^{t} |h(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\leq\alpha<1,~~t\geq0. \label{eq:3.4}\end{eqnarray} (3.4)

有如下定理

定理 3.1 如果$g' (t)\neq0,\;t\in{\Bbb R}$且(2.7), (3.3)和(3.4)式均成立,则在连续小初值函数$\psi(t):(-\infty,0]\longrightarrow {\Bbb R}$条件下,当$t\longrightarrow\infty$时, 方程(3.1)的零解在$t_{0}=0$点处是稳定的.

由条件(2.7)知, 当$t>t_{1}$时${\rm e}^{-\int_{t_{1}}^{t}a(s){\rm d}s}<\epsilon$, 对连续小初值函数$\psi(t)$当$|\psi|<\delta,$ $\delta>0$时,由(3.4)式得

\begin{eqnarray}\|(P\varphi)(t)\|&\leq&|1-\frac{b(0)}{g' (0)}|\delta+|\frac{b(t)}{g' (t)}|K +K\int_{0}^{t_{1}}|h(u)|{\rm e}^{-\int_{u}^{t_{1}}a(s){\rm d}s}{\rm d}u\nonumber\\ &&+K\int_{0}^{t_{1}}[|r(u)|+\int^{t}_{0}(L+E)|k(t,s)|{\rm d}s]{\rm e}^{-\int_{u}^{t_{1}}a(s){\rm d}s}{\rm d}u\nonumber\\ &&+\epsilon\int_{t_{1}}^{t}|h(u)|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u +\epsilon\int_{t_{1}}^{t}[|r(u)|+\int^{t}_{0}(L+E)|k(t,s)|{\rm d}s]{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u \nonumber\\&\leq&|1-\frac{b(0)}{g' (0)}|\delta +\epsilon\alpha K+\epsilon\alpha,\label{eq:3.6}\end{eqnarray} (3.5)

故当$t\longrightarrow\infty$ 时,$(P\varphi)(t)\longrightarrow0$.

又令$\xi,\eta\in S$,则

\begin{eqnarray} &&|(P\xi)(t)-(P\eta)(t)|\nonumber\\ &\leq&\bigg|\frac{b(t)}{g' (t)}\bigg|\cdot\|\xi-\eta\|+\|\xi-\eta\|\int_{0}^{t}|h(u)|\cdot|\xi(g(u))-\eta(g(u))|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u \nonumber\\&&+\|\xi-\eta\|\int_{0}^{t}\bigg|\int^{t}_{0}k(t,s)f(x(s),\xi(v(s))){\rm d}s -\int^{t}_{0}k(t,s)f(x(s),\eta(v(s))){\rm d}s\bigg|{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u \nonumber\\ &\leq&\left\{\bigg|\frac{b(t)}{g' (t)}\bigg|+\int_{0}^{t} \bigg[|r(u)|+\int^{t}_{0}(L+E)|k(t,s)|{\rm d}s\bigg]{\rm e}^{-\int_{u}^{t}a(s){\rm d}s}{\rm d}u\right\}\|\xi-\eta\| \nonumber\\ &\leq&\alpha\|\xi-\eta\|. \label{eq:3.7}\end{eqnarray} (3.6)

因此,由压缩映射原理: $P$在$S$中有唯一不动点满足方程(3.1), 且当$t$趋于无穷大时其零解在$t_{0}=0$点处是稳定的.

参考文献
[1] Zhang B. Asymptotic criterica and integrability properties of the resolvent of Volterra and functional equations. Funkcialaj Ekvacioj, 1997, 40:335-351
[2] Burton T A. Stability and Periodic Solutions of Ordinary and Functional Differential Equations. New York:Academic Press, 1985
[3] Burton T A, Furumochi T. Fixed points and problems in stability theory. Dynamical Systems and Appl, 2001, 10:89-116
[4] Raffoul Y N. Stability in neutral nonlinear differential equations with functional decays using fixed-point theory. Mathematical and Computer Modelling, 2004, 40:691-700
[5] 赖绍永. 一类非线性扰动波方程的渐近理论及应用. 四川师范大学学报(自然科学版), 1996, 19(6):56-61
[6] Raffoul Y N. Periodic solutions in neutral nonlinear differential equtions with functional delay. Electron J Differential Equtions, 2003, 102(7):1-7
[7] Raffoul Y N. Uniform asymptotic stability in linear Volterra systems with nonlinear perturbation. Int J Differential Equtions Appl, 2002, 6(1):19-28
[8] Burton T A. Volterra Intergral and Differential Equations. New York:Academic Press, 1983
[9] 严勇, 赖绍永. 一类四阶半线性方程的渐近解. 四川师范大学学报(自然科学版), 2004, 27(4):347-350
[10] 钟越, 赖绍永, 刘诗焕. 不动点理论在非线性方程解的稳定性中的应用. 四川师范大学学报(自然科学版), 2007, 30(3):300-303
[11] 钟越, 赖绍永, 穆春来.一类带记忆边界条件波动系统解的长时间性态. 高校应用数学学报,2011, 26(2):127-136